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We apply the thermal (imaginary time) perturbative expansion to the
relevant effective field theory to compute characteristics of the phase tran-
sition to the ordered state which can occur at low temperatures in the
gas of (nonrelativistic) spin-1/2 fermions interacting through a short-range
spin-independent repulsive binary interaction potential. We show how to
obtain a systematic expansion of the system’s free energy depending on the
densities n+ and n

−
of spin-up and spin-down fermions. In this paper, we

truncate this expansion at the second order and determine, by numerically
minimizing the free energy, the equilibrium proportions of n+ and n

−
(that

is, the system’s polarization) as functions of the temperature, the system’s
overall density n = n+ + n

−
, and the strength of the interaction.
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1. Introduction

There is a qualitative argument that in the gas of spin-1/2 fermions
interacting through a short-range repulsive spin-independent binary poten-
tial, a phase transition to the ordered state should occur if the interaction
strength and/or the system’s density is sufficiently large. Indeed, at zero
temperature, when the entropy factor does not intervene, the configuration
of the system in which there are more fermions in one spin state than in the
other one may be energetically favoured. This is because, due to the Pauli
exclusion principle, the s-wave interaction of fermions in the same spin state

(11-A4.1)
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is impossible and the resulting decrease in the interaction energy may be
greater than the associated increase of the kinetic energy (increase of the
Fermi energy of the more populated spin state).

Theoretical investigation of this phenomenon, called the Stoner tran-
sition, taking into account its temperature dependence, requires the full
machinery of statistical mechanics. The standard textbook treatment of
the problem [1, 2], equivalent to the so-called mean field approach or the
Hartree–Fock approximation, employs the pseudo-potential method which
allows to determine in the first-order approximation the Hamiltonian spec-
trum and to compute the Canonical Ensemble partition function of the sys-
tem. In this approximation, the phase transition is continuous (with diver-
gent magnetic susceptibility characterized by the critical exponent γ = 1 and
a finite discontinuity of the heat capacity) and at low temperatures (where
the Sommerfeld expansion can be used to obtain an analytical expression
for the relevant chemical potentials), it occurs when [1–3]

kFa0 ≥
π

2

[

1 +
π2

12

(

kBT

εF

)2

+ . . .

]

,

where the (overall) Fermi wave vector and energy

kF =

(

3π2
N

V

)1/3

, εF =
ℏ
2k2F
2mf

, (1)

characterize the density of the system and a0 > 0 is the s-wave scattering
length characterizing the strength of the (repulsive) interaction. The con-
tinuous character of the Stoner transition obtained in this approximation
is, however, accidental — it is due to a numerical coincidence specific for a
(three-dimensional) system of spin s = 1/2 fermions only (in the same ap-
proximation, the transition is of the first order if s > 1/2 and/or D ̸= 3). In
fact, computing the system’s free energy beyond the mean field approxima-
tion, using the ordinary second-order perturbative expansion, it was found
[4] that at low temperatures it is of the first order, just as had been suggested
in [5] on the basis of the generic presence of nonanalytic terms (resulting from
the coupling of the order parameter to the gap-less modes) in the free energy
which cause the transition to have the first-order character.

The character of the considered transition (its dependence on the pa-
rameter kFa0) can be most easily investigated at zero temperature because
then the problem reduces to the computation of the ground-state energy
density EΩ/V of the system of fermions interacting through a binary spin-
independent repulsive potential as a function of the system’s density n =
N/V and its polarization

P = (N+ −N−)/N . (2)
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Such a computation is most easily performed using the modern effective field
theory approach, the application of which to this problem has been pioneered
in [6]. In this approach, the underlying spatially nonlocal field-theory inter-
action (see e.g. [7] for the exposition of the relevant formalism of the second
quantization), resulting from the ordinary potential two-body interaction, is
replaced by an infinite set of local (contact) effective interactions

V̂int = C0

∫

d3x ψ†
+ψ+ψ

†
−ψ− + V̂

(C2)
int + V

(C′
2)

int + . . . (3)

ψ±(x) are here the usual field operators of spin-up and spin-down fermions;

the terms V
(C2)
int , V

(C′
2)

int (which will be not needed in this work) represent
local operators of lower length dimension with four fermionic fields and
two spatial derivatives, and the ellipsis stands for other local operators
(with more derivatives and/or field operators) of yet lower length dimension
(see [6]). The amount of work needed to obtain the systematic expansion of
the ground-state energy in powers (which can be modified by logarithms) of
kFR, where R is the characteristic length scale of the underlying two-body
spin-independent interaction potential, is in this way greatly reduced. This
is because in this approach the coupling constants, like C0 in (3), of the
effective local interactions are directly determined in terms of the scattering
lengths aℓ and the effective radii rℓ, ℓ = 0, 1, . . . (which are assumed to be of
the order of ∼ R), parametrizing the low-energy expansion in powers of the
relative momentum ℏ|k| of the elastic scattering amplitude of two fermions.
The simplifications brought in by the effective field theory method allowed
to easily reproduce [8] and generalize to arbitrary repulsive potentials and
arbitrary spins s [9] the old result of Kanno [10] who computed the order
(kFR)

2 correction to the energy density using the specific hard-sphere in-
teraction of spin s = 1/2 fermions. The first-order character of the phase
transition at T = 0 is then clearly seen in the form of the energy density
obtained in this approximation plotted as a function of the order parameter
P : starting from some value of kFa0, the energy density develops the sec-
ond minimum well away from the one at P = 0 and at kFa0 = 1.054 (for
s = 1/2), this second minimum becomes deeper than that at P = 0.

However, the analysis of the dependence on the order parameter of the
system’s energy density which includes the complete order (kFR)

3 correc-
tions obtained recently in [11, 12] using the same effective field theory ap-
proach shows that, independently of the value s of the fermion spin, they
have the effect of erasing the first-order character of the Stoner transition,
making it almost indistinguishable from the continuous one. This is reflected
in the fact that the height of the hill separating the minimum at P ̸= 0 from
the one at P = 0 is greatly reduced (for higher spins also the position of
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the nontrivial minimum of EΩ/V as a function of the relevant order param-
eter is strongly shifted towards its small values) compared to the situation
without these corrections. Moreover, there are claims [13] based on a re-
summation of an infinite subclass of Feynman diagrams contributing to the
ground-state energy density that the transition (at T = 0) is indeed contin-
uous. Although it is not obvious that the contributions taken into account
in this resummation are really the dominant ones [12], the results it leads
to seem to agree well, as far as the critical value of kFa0 is concerned, with
the numerical quantum Monte Carlo simulations [14].

In view of this situation, it is desirable to investigate how the higher-
order corrections influence the character of the Stoner phase transition at
nonzero temperatures. With this goal in mind, in this paper, we formu-
late a systematic perturbative expansion of the thermodynamic potentials
of the system in question applying the standard imaginary time formalism
[7] within the effective field theory. We show that the expansion of the free
energy is in this approach particularly simple being given by the same con-
nected vacuum Feynman diagrams which give nonzero contributions to the
energy density expressed in terms of the chemical potentials of the noninter-
acting system. In the numerical analysis, we restrict ourselves in this paper
only to the second-order contributions reproducing the results obtained in
[4], but with more labour the computations can be extended to higher orders
as well.

2. Perturbative expansion of the thermodynamic potential

Ω(T, V, µ+, µ
−
)

The natural equilibrium statistical physics formalism in which to treat
the problem of the gas of fermions the interactions of which preserve their
spins, and therefore the numbers Nσ of particles with the spin projection σ,
is the Grand Canonical Ensemble with separate chemical potentials µσ as-
sociated with the individual spin projections. One is, therefore, interested
in the statistical operator (as usually, β ≡ 1/kBT )

ρ̂ =
1

Ξstat
e−βK̂ , in which K̂ = Ĥ0 −

∑

σ

µσN̂σ + V̂int ≡ K̂0 + V̂int ,

(4)
and in computing the statistical sum (we specify the notation to the case of
spin-1/2 fermions, so that σ = +,−)

Ξstat(T, V, µ+, µ−) = Tr
(

e−βK̂
)

, (5)

from which all the necessary thermodynamic potentials can, in principle, be
obtained by performing the standard steps. The free part K̂0 of the operator
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K̂ = K̂0 + V̂int, in which V̂int will be taken in the form (3), reads

K̂0 =
∑

p,σ

(εp − µσ) a
†
p,σap,σ =

∑

σ

∫

d3p

(2π)3
(εp − µσ) a

†
σ(p) aσ(p) , (6)

with εp ≡ ℏ
2p2/2mf , in the normalizations in the finite volume V and in

an infinite space, respectively.
To compute perturbatively the statistical sum Ξstat(T, V, µ+, µ−), one

introduces [7] the (imaginary time) interaction picture evolution operator

UI(τ2, τ1) = eτ2K̂0 e−(τ2−τ1)K̂ e−τ1K̂0 , (7)

which satisfies the differential equation

d

dτ2
UI(τ2, τ1) = −V I

int(τ2) UI(τ2, τ1) ,

(V I
int(τ2) = eτ2K̂0Vinte

−τ2K̂0) with the “initial” condition UI(τ, τ) = 1̂ and
which formally can be written in the form

UI(τ2, τ1) = Tτ exp







−
τ2
∫

τ1

dτ V I
int(τ)







,

in which Tτ is the symbol of the “chronological” ordering. Since e−βK̂ =

e−βK̂0 UI(β, 0), the statistical sum can be represented as

Ξstat = Tr
(

e−βK̂0 UI(β, 0)
)

≡ Ξ
(0)
statTr

(

ρ̂(0) UI(β, 0)
)

, (8)

with ρ̂(0) and Ξ
(0)
stat the statistical operator and the statistical sum of the

noninteracting system, respectively. The perturbative expansion of Ξstat is
then given by the series

Ξstat = Ξ
(0)
stat

∞
∑

n=0

(−1)n

n!

β
∫

0

dτn . . .

β
∫

0

dτ1Tr
(

ρ̂(0) Tτ

[

V I
int(τn) . . . V

I
int(τ1)

]

)

.

(9)
The corresponding expansion of the potential

Ω(T, V, µ+, µ−) = − 1

β
lnΞstat(T, V, µ+, µ−)
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is

Ω = Ω(0)− 1

β
ln







∞
∑

n=0

(−1)n

n!

β
∫

0

dτn. . .

β
∫

0

dτ1Tr
(

ρ̂(0)Tτ

[

V I
int(τn) . . . V

I
int(τ1)

]

)







,

(10)
its first term Ω(0) being the textbook expression [1] (εk = ℏ

2k2/2mf )

Ω(0)(T, V, µσ) = − 1

β

∑

σ

V

∫

d3k

(2π)3
ln
(

1 + e−β(εk−µσ)
)

. (11)

Or, since the logarithm picks up connected contributions only,

Ω = Ω(0)− 1

β

∞
∑

n=0

(−1)n

n!

β
∫

0

dτn . . .

β
∫

0

dτ1Tr
(

ρ̂(0)Tτ

[

V I
int(τn) . . . V

I
int(τ1)

]

)con
.

(12)
In this form, the expression for Ω is just the thermal analog of the expansion
of the formula1

EΩ = EΩ0 − lim
T→∞

ℏ

iT
⟨Ω0|Tt exp






− i

ℏ

T/2
∫

−T/2

dt V I
int(t)






|Ω0⟩con (13)

used in [6, 8, 11, 12] for computing the ground state energy EΩ of the
system. It is clear that the correspondence between the two formalisms is
β ↔ iT/ℏ (it transforms the K-picture operators into the Heisenberg picture
ones and vice versa). The formula (13) for the ground-state energy is thus
obtained from the thermal expansion (12) by taking the limit β → ∞ and
simultaneously adjusting the chemical potential µσ so that there are Nσ

particles with the spin projection σ (see below).
Evaluation of the successive terms of the expansion (12) reduces, owing

to the thermal analog of the Wick formula (see [7]), to drawing all possible
connected Feynman diagrams with a given number of different interaction
vertices arising from V̂int joined by the oriented lines and integrating over
the positions x and “times” τ ascribed to these vertices the corresponding
products of free thermal propagators

−G(0)
σ2,σ1

(τ2 − τ1;x2 − x1) =
1

β

∑

n

∫

d3k

(2π)3
e−iωF

n (τ2−τ1) eik·(x2−x1)

×
(

−G̃(0)
σ2,σ1

(

ωF
n ,k

)

)

,

1 Here T denotes time and not the temperature.
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associated with the (oriented) lines connecting the vertices of the diagram.

The Fourier transforms −G̃(0)
σ2,σ1 have the form [7] (the definition of ωF

n as
well as of ωB

n are given in (A.1) and (A.2))

−G̃(0)
σ2,σ1

(

ωF
n ,k

)

=
−δσ2,σ1

iωF
n − (εk − µσ1)

.

The resulting Feynman rules in the “momentum” space are almost iden-
tical to the ordinary ones except that the integrations over frequencies
are replaced by summations over the (fermionic) Matsubara frequencies
ωF
n = (π/β)(2n + 1), n ∈ Z. In this way, one obtains the expansion of

the potential Ω(T, V, µ+, µ−) the successive terms of which depend on the
chemical potentials µ+ and µ− which must be adjusted in successive orders
of the expansion to yield through the relations

N± = − (∂Ω/∂µ±)T,V , (14)

the prescribed densities n+ = N+/V and n− = N−/V of particles with the
spin projections up and down.

It will be instructive to recover first, using this formalism, the textbook
results [1, 2] of the mean field approximation. The first correction Ω(1) to
the grand potential is given by the single diagram shown in figure 1. The
corresponding expression reads

Ω(1) =
1

β
C0

β
∫

0

dτ

∫

d3xTr
(

ρ̂(0)Tτ

[

ψ̂†I
+ ψ̂

I
+ψ̂

†I
− ψ̂

I
−

])

= C0V G(0)
++(0,0)G

(0)
−−(0,0) . (15)

Using the summation formula (A.1), one obtains

G(0)
±±(0,0) =

∫

d3k

(2π)3

[

1 + eβ(εk−µ±)
]−1

. (16)

Fig. 1. The first-order correction Ω(1) to the thermodynamic potential

Ω(T, V, µ+, µ−
). Solid and dashed lines represent fermions with opposite spin pro-

jections.
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As will be shown in the next section, to the first order in the coupling
C0 the free energy F (T, V,N+, N−) is given by

F (T, V,N+, N−) = Ω(0)
(

T, V, µ
(0)
+ , µ

(0)
−

)

+N+µ
(0)
+ +N−µ

(0)
−

+Ω(1)
(

T, V, µ
(0)
+ , µ

(0)
−

)

+ . . . , (17)

where µ
(0)
± are the zeroth order chemical potentials determined by the con-

ditions analogous to (14) but with Ω replaced by Ω(0) given by (11). It is
convenient to define the function

f(ν) ≡ 3

2

∞
∫

0

dξ
ξ1/2

1 + eξ−ν
≡ 3

√
π

4
f3/2(ν) , (18)

and to rewrite these conditions in the form

f(ν±) =

(

ε
(0)
F (n±)

kBT

)3/2

, (19)

in which ν± ≡ µ±/kBT and ε
(0)
F (n) = (6π2n)2/3ℏ2/2mf is the Fermi energy

of the system of N = nV spin-0 noninteracting fermions enclosed in the
volume V . The function f(ν), which is a decent monotonically growing
function of ν mapping R onto R+, has the inverse, so after writing n± as
(n/2)(1± P ), the solutions take the form2

µ
(0)
±

kBT
= f−1

(

(1± P )

(

εF(n)

kBT

)3/2
)

, (20)

in which εF(n) is the system’s overall Fermi energy (1).

Expressed in terms of the zeroth order chemical potentials µ
(0)
± , the

first-order correction (15) can be simply written as Ω(1)(T, V, µ
(0)
+ , µ

(0)
− ) =

C0V (N+/V )(N−/V ), i.e. it is independent (when expressed in terms of the
particle densities) of the temperature. Minimization with respect to N+

2 Inverting the appropriate expansions of the integral in (18) given e.g. in [1], it is
straightforward to find that asymptotically

f−1(x) =















ln

(

√
2−

√

2−
(

4x
3

)

√

8
π

)

+ . . . , x ≪ 1

x2/3
[

1−
(

π2

12

)

x−4/3 −
(

π4

80

)

x−8/3 −
(

1511π6

207360

)

x−4 + . . .
]

, x ≫ 1

.
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of F (T, V,N+, N −N+) truncated to the first order in the coupling C0 (at
fixed N) then leads to the equilibrium condition

µ
(0)
+ (N+)− µ

(0)
− (N −N+) +

C0

V
(N − 2N+) = 0 ,

which, because N − 2N+ = −NP and (to this order) C0 = (4πℏ2/mf )a0,
can be rewritten [6, 8] in the familiar form [1]

µ
(0)
+ (N+)− µ

(0)
− (N−) =

8

3π
εF(kFa0)P . (21)

This leads to the continuous phase transition.
The effect of the external magnetic field H can be also taken into account

by simply including the interaction with it in the free part of the Hamilto-
nian, i.e. by replacing µ± in (6) by µ̃± = µ±±H (the magnetic moment has
been here included in H which has therefore the dimension of energy). Since
ultimately the free energy will be cast in the form in which its dependence

on N± and H enters only through µ̃
(0)
± which should be determined from the

conditions

µ̃
(0)
±

kBT
=
µ
(0)
± ±H
kBT

= f−1

(

(1± P )

(

εF(n)

kBT

)3/2
)

, (22)

this prescription remains valid to all orders of the expansion. In particular,
in the first-order approximation the equilibrium condition, written in the
convenient dimensionless variables

t ≡ T

TF
≡ kBT

εF
, h ≡ H

εF
, δ± ≡ µ

(0)
±

εF
, (23)

takes the form

8

3π
(kFa0)P + 2h = t

[

f−1

(

1 + P

t3/2

)

− f−1

(

1− P

t3/2

)]

. (24)

If the asymptotic expansion of f−1(x) for x≫ 1 is used, this reproduces the
equilibrium condition derived in [1].

For further applications, it will be convenient to write down explicitly the
formula (17) (including the external magnetic field H) expressing it through
the introduced dimensionless variables (23) and the polarization (2):

6π2

k3F

F

εFV
= −3

√
π

4
t5/2

[

f5/2(ν̃+) + f5/2(ν̃−)
]

+(1 + P )
(

δ̃+ − h
)

+ (1− P )
(

δ̃− + h
)

+ (kFa0)
4

3π

(

1− P 2
)

+ . . . (25)



11-A4.10 O. Grocholski, P.H. Chankowski

Here3,

fp(ν) =
1

Γ (p)

∞
∫

0

dξ ξp−1

1 + eξ−ν
, (26)

and ν̃± (and δ̃± ≡ tν̃±) are given by (22). In the limit of T → 0 (t → 0) in
which ν̃± ≫ 1, f5/2(ν) = (4/3

√
π )(2/5)ν5/2 + . . ., while (cf. the expansion

of the function f−1(x) given in footnote 2) ν̃± = ((1 ± P )2/3)/t + . . . and
the right-hand side of (25) tends to

−2

5

[

(1 + P )5/3 + (1− P )5/3
]

+ (1 + P )
[

(1 + P )2/3 − h
]

+(1− P )
[

(1− P )2/3 + h
]

+ (kFa0)
4

3π

(

1− P 2
)

,

reproducing, of course, the well-known formula for the ground-state energy
given (for H = 0) e.g. in [12].

3. Expansion of the free energy

From the thermodynamic point of view, much more convenient to work
with than the potential Ω is the free energy F = Ω + µ+N+ + µ−N− which
canonically depends on T , V , and the particle numbers N±. It turns out
that the expansion of this potential is also simpler. We will derive it here
up to the third order following the method outlined in [15]. To make the
notation more transparent, we will denote the chemical potentials as

µ+ ≡ x = x0 + x1 + x2 + . . . , µ− ≡ y = y0 + y1 + y2 + . . . , (27)

where the successive terms xn, yn correspond to the successive terms Ω(n) of

the expansion of the potential Ω. Introducing the notation Ω
(n)
x , Ω

(n)
y , Ω

(n)
xx ,

etc. for the first, second, etc. derivatives of Ω(n) with respect to their chem-
ical potential arguments and expanding the right-hand side of the relation
(Nx ≡ N+, Ny ≡ N−)

F = Ω(0)(x0 + x1 + x2 + x3 + . . . , y0 + y1 + y2 + y3 + . . .)

+Ω(1)(x0 + x1 + x2 + . . . , y0 + y1 + y2 + . . .)

+Ω(2)(x0 + x1 + . . . , y0 + y1 + . . .) +Ω(3)(x0 + . . . , y0 + . . .) + . . .

+(x0 + x1 + x2 + x3 + . . .)Nx + (y0 + y1 + y2 + y3 + . . .)Ny ,

3 By the appropriate change of variables and the integration by parts, Ω(0) given by
(11) is written in terms of the standard integral (26) with p = 5/2 [1].
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one obtains, using the zeroth order relations Ω
(0)
x = −Nx and Ω

(0)
y = −Ny,

and the fact that Ω(0)(x0, y0) = Ωfree(x0)+Ωfree(y0) (cf. formula (11)), i.e.

that Ω
(0)
xy = 0,

F =
(

Ω(0) + x0Nx + y0Ny

)

+
(

Ω(1)
)

+

(

Ω(2) + x1Ω
(1)
x + y1Ω

(1)
y +

1

2
x21Ω

(0)
xx +

1

2
y21Ω

(0)
yy

)

+

(

Ω(3) + x1Ω
(2)
x + y1Ω

(2)
y +

1

2
x21Ω

(1)
xx +

1

2
y21Ω

(1)
yy + x1y1Ω

(1)
xy

+x2Ω
(1)
x + y2Ω

(1)
y + x1x2Ω

(0)
xx + y1y2Ω

(0)
yy +

1

6
x31Ω

(0)
xxx +

1

6
y31Ω

(0)
yyy

)

+ . . . ,

(28)

all functions being now evaluated at x0 and y0 (at x̃0 = µ
(0)
+ +H and ỹ0 =

µ
(0)
− −H if there is an external magnetic field). The terms in the successive

brackets are the successive terms of the expansion of the free energy. The
first-order correction F (1) used in the preceding section is indeed given by
Ω(1)(x0, y0) (by Ω(1)(x̃0, ỹ0)). Furthermore, expanding around x0 and y0
(or x̃0 and ỹ0) the right-hand side of the relation (14) which determines the
chemical potential x

−Nx = Ω(0)
x + (x1 + x2)Ω

(0)
xx +

1

2
x21Ω

(0)
xxx +Ω(1)

x + x1Ω
(1)
xx

+y1Ω
(1)
xy +Ω(2)

x + . . . ,

and the other similar relation for y, and taking into account that x0 and y0
are such that −Nx = Ω

(0)
x , −Ny = Ω

(0)
y , one obtains

x1 = −Ω
(1)
x

Ω
(0)
xx

,

x2 = −Ω
(2)
x

Ω
(0)
xx

+
Ω

(1)
xxΩ

(1)
x

[

Ω
(0)
xx

]2 +
Ω

(1)
xy Ω

(1)
y

Ω
(0)
xxΩ

(0)
yy

−
Ω

(0)
xxx

[

Ω
(1)
x

]2

2
[

Ω
(0)
xx

]3 . (29)

y1 and y2 are given by the analogous formulae. Inserting the corrections to
the chemical potentials determined in this way into the formulae for F (2)

and F (3), one finds that (again, all functions are evaluated at x0 and y0 or
at x̃0 and ỹ0)

F (2) = Ω(2) −

[

Ω
(1)
x

]2

2Ω
(0)
xx

−

[

Ω
(1)
y

]2

2Ω
(0)
yy

, (30)
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and (the formulae for x1 and y1 immediately imply that the first four terms
in the last line of the formula (28) sum up to zero) that

F (3) = Ω(3) − Ω
(2)
x Ω

(1)
x

Ω
(0)
xx

− Ω
(2)
y Ω

(1)
y

Ω
(0)
yy

+
Ω

(1)
xx

[

Ω
(1)
x

]2

2
[

Ω
(0)
xx

]2 +
Ω

(1)
yy

[

Ω
(1)
y

]2

2
[

Ω
(0)
yy

]2

+
Ω

(1)
xy Ω

(1)
x Ω

(1)
y

Ω
(0)
xxΩ

(0)
yy

−
Ω

(0)
xxx

[

Ω
(1)
x

]3

6
[

Ω
(0)
xx

]3 −
Ω

(0)
yyy

[

Ω
(1)
y

]3

6
[

Ω
(0)
yy

]3 . (31)

It will be seen that the extra terms in (30) precisely cancel the contributions
to Ω(2) of those diagrams which do not contribute to the expansion of the
formula (13) for the ground-state energy density. The analogous cancellation
of the extra terms in (31) and in Ω(3) is demonstrated in Appendix B.

4. Computation of F (2)

Diagrams contributing to Ω(2) are shown in figures 2 and 3 (the left one).
It is straightforward to check that the contributions Ω(2)b and Ω(2)c of the
ones of figure 2 cancel against the last two terms in the formula (30). Indeed,
with the help of the summation rules collected in Appendix A and taking
into account that these contributions are evaluated at x0 and y0, one easily
obtains (Ω(2)c is given by an analogous formula)

Ω(2)b =
C2
0V

2

(

N−

V

)2 ∫ d3p

(2π)3

[

d

da

1

1 + eβa

]

a=εp−x0

= −1

2
C2
0V β(nx − nxx)n

2
y , (32)

where the second form of Ω(2)b is given in the notation introduced in Ap-
pendix B. With the help of the formulae (B.1) and (B.2), it is immediately
seen that it is canceled by the second term of (30). Thus,

Ω(2)b +Ω(2)c −

[

Ω
(1)
x

]2

2Ω
(0)
xx

−

[

Ω
(1)
y

]2

2Ω
(0)
yy

= 0 .

Hence, F (2) = Ω(2)a evaluated at x0 and y0 (or at x̃0 and ỹ0).
The integrals and sums corresponding to the left diagram of figure 3

giving Ω(2)a can be written in three different forms (corresponding to three
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Fig. 2. The order C2
0 contributions Ω(2)b and Ω(2)c.

A(ωB
l+1, q) =

q−k, l−n

k, n

B(ωB
l , q) =

k, n+l

k+q, n

Fig. 3. The order C2
0 diagram contributing to the correction Ω(2) and two “elemen-

tary” one-loop diagrams out of which the second-order and third-order corrections

with the C0 couplings can be constructed. Solid and dashed lines denote propaga-

tors of fermions with the spin projections + and −, respectively.

different routings of the internal momenta and frequencies) of which two can
be composed out of two “elementary” blocks A and B shown in figure 3, right

Ω(2)a = −1

2
C2
0V

1

β

∑

l∈Z

∫

d3q

(2π)3
[

A
(

ωB
l , q

)]2

= −1

2
C2
0V

1

β

∑

l∈Z

∫

d3q

(2π)3
[

B
(

ωB
l , q

)]2
,

where (here n±(p) ≡ [1 + exp{β(εp − µ
(0)
± )}]−1, µ

(0)
+ ≡ x0, µ

(0)
− ≡ y0)

A
(

ωB
l+1, q

)

=
1

β

∑

n∈Z

∫

d3k

(2π)3
1

iωF
n − (εk − x0)

1

iωF
l−n − (εq−k − y0)

=

∫

d3k

(2π)3
n+(k) + n−(q − k)− 1

iωB
l+1 − (εk − x0 + εq−k − y0)

, (33)

and

B
(

ωB
l , q

)

=
1

β

∑

n∈Z

∫

d3k

(2π)3
1

iωF
n − (εk+q − x0)

1

iωF
n+l − (εk − y0)

=

∫

d3k

(2π)3
n+(k + q)− n−(k)

iωB
l − (εk − y0 − εk+q + x0)

. (34)

(The contributions Ω(3)a and Ω(3)b of the left and right diagrams shown
in figure 7 can be written analogously with [A(ωB

l , q)]
3 and [B(ωB

l , q)]
3,

respectively [11, 12]).
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With the help of the sum rule (A.5), the sum over l of two A-blocks can
be done and gives (the symbol

∫

k
stands for the integral over the measure

d3k/(2π)3)

∫

k

∫

p

[n+(k) + n−(q − k)− 1] [n+(p) + n−(q − p)− 1]

εk + εq−k − εp − εq−p

×
(

1

1− eβ(εk−x0)e
β
(

εq−k−y0
) − 1

1− eβ(εp−x0)eβ(εq−p−y0)

)

.

The identity

n+(k)+n−(q−k)−1 = n+(k)n−(q−k)

[

1− eβ(εk−x0)e
β
(

εq−k−y0
)]

(35)

and the fact that the two terms in the bracket above give equal contributions
allow then to write

Ω(2)a = C2
0V

∫

q

∫

p

∫

k

n+(k)n−(q − k)[1− n+(p)− n−(q − p)]

εk + εq−k − εp − εq−p

. (36)

It is interesting to notice that because the integral of the quartic product
n+(k)n−(q−k)n+(p)n−(q−p) vanishes (the numerator is even with respect
to the interchange k ↔ p, while the denominator is odd), the expression for
Ω(2)a can be written (after the change p = −u + s, k = −t + s, q = 2s of
the integration variables) in the form completely analogous to the expres-
sion giving EΩ/V (see [8]), the only modification being the change in the
prefactor and the replacement of θ(k − |v|) and θ(|v| − k) by n(|v|) and
1− n(|v|), respectively. (Curiously enough, we have found that this simple
analogy does not work for the diagrams of figure 7).

It is straightforward to see that the expression (36) is divergent, the
divergence arising from the unity in the square bracket in the numerator. In
the variables s, t, and u, the integral over u is the one evaluated with the
cutoff Λ in [8] and using this result4 and changing once more the variables
to k = t−s, p = t+s, after adding the contribution Ω(1) and expressing C0

in terms of the scattering lengths a0

C0(Λ) =
4πℏ2

mf
a0

(

1 +
2

π
a0Λ+ . . .

)

, (37)

4 In [8], this integral has been computed with the +i0 prescription in dealing with
the pole on the integration axis; its principal value form needed here is obtained by
simply discarding the imaginary part.



Perturbative Computation of Thermal Characteristics of the Stoner . . . 11-A4.15

[11, 12, 16], one arrives at the finite (to the second order) result

Ω(1) +Ω(2)a =
4πℏ2

mf
a0

(

1 +
2

π
Λa0 + . . .

)

V
N−

V

N+

V

− Λ

2π2

(

4πℏ2

mf
a0

)2
mf

ℏ2
V
N−

V

N+

V
+Ω

(2)a
finite

=
4πℏ2

mf
a0 V

N−

V

N+

V
+Ω

(2)a
finite .

The finite part of Ω(2)a,

Ω
(2)a
finite = −C2

0V

∫

q

∫

k

n+(k) n−(q − k)

∫

p

n+(p) + n−(q − p)

εk + εq−k − εp − εq−p

,

upon setting first k = k1, q − k = k2 and then replacing in the term with
n−(k1 + k2 − p), the variable k1 + k2 − p by p′ (upon which εk1+k2−p →
εp′ but at the same time εp → εk1+k2−p′) can be cast in the convenient
symmetric form

Ω
(2)a
finite = F (2) = −C2

0V

∫

k1

∫

k2

n+(k1)n−(k2)

∫

p

n+(p) + n−(p)

εk1 + εk2 − εp − εk1+k2−p

.

(38)
The expression (38) is very similar5 to the formula (5) used in [4] as the
second-order contribution to the system’s internal energy density u, except
that the latter has an extra factor of 2. The foundation of the formula for
f = u−Ts (which, apart from this factor of 2, is equivalent to our one) used
in [4] is, however, somewhat unclear: to obtain their second-order correction
to the energy density u, these authors took the expression (15) given in
Section 11.4 of [2] which is obtained by simply using the finite temperature
distributions in place of the zero-temperature ones in the ordinary second-
order correction to the ground-state energy of the system and have taken the
entropy density s as given by the zeroth order textbook formula. In contrast,
our expression (38) results from a systematic, well-founded expansion, and
the coefficient in (38) is unambiguously fixed by the cancellation of the
divergence.

After integrating over the cosine of the angle between p and k1+k2, one
can write the resulting expression in the form

5 Recall the standard rule
∑

k
→ V

∫

d3
k/(2π)3 ≡ V

∫

k
for passing from the box

normalization used in [2, 4] to the continuum one used here.
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F (2) = −V C2
0mf

(2π)2ℏ2

∫

k1

∫

k2

n+(k1)n−(k2)

|k1 + k2|

∞
∫

0

dp p [n+(p) + n−(p)]

× ln

∣

∣

∣

∣

(p−∆+)(p−∆−)

(p+∆+)(p+∆−)

∣

∣

∣

∣

, (39)

in which

∆± ≡ 1

2
|k1 + k2| ±

1

2
|k1 − k2| .

It is clear that the singularity at |k1 + k2| = 0 in (39) is spurious: if
k1 + k2 = 0, then ∆− = −∆+ and the innermost integral vanishes.

5. Numerical evaluation

The most difficult part of the computation is the accurate and effi-
cient numerical evaluation of the multiple integrals in the expression (39).
Rescaling the momentum integration variables k1 = kFv1, etc. and insert-
ing C0 = (4πℏ/mf )a0, one can write the second-order contribution to the
right-hand side of (25) as

6π2

k3F

F (2)

εFV
= −(kFa0)

2 6

π2

∞
∫

0

dv1 v
2
1 n(v1, ν+, t)

∞
∫

0

dv2 v
2
2 n(v2, ν−, t)

×
∑

σ=±

∑

σ′=±

1
∫

−1

dξ
I(∆σ, νσ′ , t)

√

v21 + v22 + 2ξv1v2
, (40)

where as previously ν± = µ
(0)
± /kBT ≡ δ±/t (δ± = µ

(0)
± /εF),

n(v, ν, t) =

[

1 + exp

(

v2

t
− ν

)]−1

,

I(∆, ν, t) =

∞
∫

0

du u n(u, ν, t) ln

∣

∣

∣

∣

u−∆

u+∆

∣

∣

∣

∣

,

and

∆±(v1, v2, ξ) =
1

2

√

v21 + v22 + 2ξv1v2 ±
1

2

√

v21 + v22 − 2ξv1v2 .

The trick allowing to realize the numerical computation is to make first,
for fixed values of t (temperature) and P (the system’s polarization) which
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together, through (20) determine ν+ and ν−, an interpolation of the func-
tions I(|∆|, ν+, t) and I(|∆|, ν−, t) (because, obviously, I(−|∆|, ν±, t) =
−I(|∆|, ν±, t)) in the variable w = 1/(1+|∆|) (to interpolate on the compact
interval [0, 1]), and then performing numerically the integrations over v1, v2,
and ξ using these interpolations. In the actual code written in the Python
programming language, the functions I(|∆|, ν±, t) are evaluated with the
help of the adaptive integration routine (scipy.integrate.quad; the integration
domain is splitted into three subdomains to accurately handle the logarith-
mic singularity — in the relevant regions near w = 1/(1 + ∆) ≡ w0, we
substitute r3 = |w−w0| so that the integrand behaves like r2 ln(r) and can
be treated using the quadrature methods — and its sharp falloff, especially
for small temperatures t, near u2 = tν of the distribution n(u, ν, t)), and
then interpolated using the cubic spline interpolation routines of Python.
The remaining triple integral over v1, v2, and ξ are performed with the help
of the Clenshaw–Curtis quadrature in the variables w1,2 = 1/(1+v1,2) (again
to have a compact integration domain and again splitting it into subdomains
to better handle the regions v21 ≈ tν+ and v22 ≈ tν−); the spurious singu-
larity at |v1 + v2| = 0 is taken care of by simply taking somewhat different
numbers for the v1 and v2 grids.

To check the correctness of the code, we have first compared its results for
t→ 0 (replacing the distributions n(u, ν, t) by the Heaviside theta functions)

with the second-order correction E
(2)
Ω to the system’s ground-state energy

which as a function of P is known analytically [9, 10] (the function JK(x, y)
is given e.g. by formula (4) in [12])

6π2

k3F

E
(2)
Ω

εFV
= (kFa0)

2 6

5π2
JK

(

(1 + P )1/3, (1− P )1/3
)

.

At P = 0 (equal densities of spin-up and spin-down fermions), JK =
4(11 − ln 4)/21 and the right-hand side of the above formula (setting in
all these comparisons kFa0 = 1) equals 0.222644842, while the Python code
for the right-hand side of (40) gives the value 0.22264522. For P = 0.5, the
code gives 0.17184256 to be compared with 0.17184207, while at P = 0.9,
the numbers to be compared are 0.046470057 and 0.046470077 (at P = 1
both are zero reflecting the impossibility of the s-wave interactions of two
fermions in the same spin state). For nonzero temperatures, the results ob-
tained using the Clenshaw–Curtis quadrature have been compared with the
ones obtained using the more accurate (but more time-consuming) adaptive
integration routine. The comparison shows that the relative uncertainty
∆F (the difference between the results of the two methods divided by their
mean) is typically of the order of 10−5, varying rather irregularity with P
and increasing somewhat with t; in our further estimates, we set ∆F = 10−5



11-A4.18 O. Grocholski, P.H. Chankowski

for t <
∼ 0.1, ∆F = 1.5 × 10−5 for 0.1 < t ≤ 0.2, and ∆F = 2 × 10−5 for

0.2 < t. While this accuracy superficially looks quite satisfactory, it is, nev-
ertheless, barely sufficient: for values of the parameters (t and/or kFa0) at
which spontaneous ordering appears, there is a very delicate cancellation
between different contributions to F and the (relative) error of the order of
10−5 in F (2) can, and in some cases indeed does, lead to the appearances of
very shallow fake minimum near P = 0.

6. Results

For a fixed value of the temperature, the system’s free energy F as a
function of the polarization (and of the parameter kFa0 in which, in the
approximation to which our analysis is restricted, it is a polynomial of the
second order), can be efficiently obtained by evaluating numerically the in-
tegrals in (40) for several values of P and constructing the cubic spline inter-
polation. The resulting free energy differences, F (P )− F (0), are plotted in
figure 4 as functions of the polarization P for two temperatures: t = 0.1 and
0.15 and several values of kFa0 (obtained by constructing the interpolation
based on 11 points in P only).

In view of the mentioned uncertainty in the computation of F (2), the crit-
ical value of kFa0 and the value of the polarization P at the transition must
be determined by requiring that the value of F at a minimum developing
away from P = 0 differs from the one at P = 0 at least by ∆FF

(2)(0). In this
way, one can properly handle the mentioned fake minima close to P = 0 one
of which can be observed in the right panel of figure 4 (for t = 0 that such
a minimum is indeed produced by the inaccuracies of the numerical code
can be substantiated by comparing with the analytically known dependence
of the ground-state energy on P ). The actual procedure which has been
adopted to determine the polarization and its uncertainty is as follows. For
a fixed value of the parameter kFa0 (which is successively increased from 0
in steps ∆(kFa0) = 0.001), the values of F on a preliminary grid of P -values
Pn = n∆P with n = 0, . . . , nmax = 32 are obtained. If the minimal value
of F occurs for nmin = nmax, the polarization is taken as maximal (P = 1);
if nmin = 0 or |F (Pnmin) − F (0)| ≤ ∆FF

(2)(0), the polarization is taken as

vanishing (P = 0). If nmin ̸= 0, nmax and |F (Pnmin) − F (0)| > ∆FF
(2)(0)

the polarization is taken as truly nonvanishing. If it is nonvanishing for the
first time (as far as the increasing values of kFa0 are concerned), one de-
termines ndown and nup such that |F (Pnmin) − F (Pndown/up

)| < 2∆FF
(2)(0)

(of course, ndown = 0 and/or nup = nmax if these criteria cannot be fulfilled
for intermediate values of n) and finds the values of F on a finer grid of
P -values with |Pj+1 − Pj | = 0.0001 and Pndown

≤ Pj ≤ Pnup . If the mini-
mum of F found on the finer grid occurs for Pjmin < 0.02, it is assumed that
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

P

-0.0002

-0.0001

0.0001

0.0002

0.0003

0.0004

F(P) - F(0)

0.1 0.2 0.3 0.4 0.5

P

-0.00010

-0.00005

0.00005

0.00010

0.00015

0.00020

F(P) - F(0)

Fig. 4. Plots of the differences F (P ) − F (0) in units of (k3F/6π
2)(ℏ2k2F/2mf ) of

the system of spin-1/2 fermions as a function of the order parameter P for two

representative values of the temperature t ≡ T/TF as obtained in the second order

of the perturbative expansion. Left: t = 0.1; the successive curves (from below)

correspond to kFa0 = 1.0718 (the lowest, blue line), kFa0 = 1.0723 (yellow), kFa0 =

1.0728 (green), 1.0733 (red) and 1.0738 (the highest, blue line). Right: t = 0.15;

the successive curves (from below) correspond to kFa0 = 1.0978 (the lowest, blue

line), kFa0 = 1.983 (yellow), kFa0 = 1.0988 (green), 1.0993 (red) and 1.0998 (the

highest, blue line).

it is a numerical artifact and the polarization is taken as vanishing. In the
opposite case, the polarization is taken to be nonvanishing and that value
of kFa0 is recorded as the critical one (for the considered temperature). In
this case on the finer grid, one seeks a range (Pjdown

, Pjup) of P around Pjmin

in which |F (Pjmin) − F (Pj)| > ∆FF
(2)(0) for Pjdown

≤ Pj ≤ Pjup ; if such
a range cannot be found, the transition is classified as continuous (the po-
larization at the considered temperature is assumed to increase continuously
from zero as kFa0 is increased), while if a nontrivial range is obtained, the
transition is classified as first order and Pjmin − Pjdown

and Pjup − Pjmin are
taken as the uncertainties of the determination of the polarization right at
the transition. For values of kFa0 higher than the critical one (determined
as described above for the considered temperature), F is evaluated on a finer
grid of points Pj with Pnmin−1 ≤ Pj ≤ Pnmin+1 and Pj+1 − Pj = 0.001 and
the corresponding polarization is determined as the position of the minimum
of F on this finer grid. In this way, one finds that (kFa0)cr = 1.05409 at
t = 0 (which perfectly agrees with the known value obtained by computing
the system’s ground-state energy [11] and with [4]), (kFa0)cr = 1.05858 at
t = 0.05, (kFa0)cr = 1.07282 at t = 0.1, (kFa0)cr = 1.09881 at t = 0.15, and
(kFa0)cr = 1.13845 at t = 0.2. The corresponding values of the polarization
right at the transition point are Pcr = 0.575+0.017

−0.019 (again in agreement with

the value found in [11]), 0.558+0.017
−0.017, 0.477

+0.019
−0.021, 0.325

+0.035
−0.048, and 0.197+0.045

−0.096.



11-A4.20 O. Grocholski, P.H. Chankowski

The dependence of the polarization as a function of the “gas parameter”
kFa0 is shown, for a few values of the temperature t, in the left panel of
figure 5. This is essentially the same plot as the one presented in [4] (the
agreement with the critical values of the gas parameters at successive tem-
peratures that can be read off from the plot there seems to be quite good)
except that in figure 5 marked are also the uncertainties in the determina-
tion (following from the procedure just described) of the polarization right
at the transition.
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Fig. 5. Polarization P = (N+ −N
−
)/N of the system of spin-1/2 fermions with a

short-range repulsive interaction obtained from the free energy F computed up to

the second order of the perturbative expansion. In the left panel as a function of

the “gas parameter” kFa0 for several values of the temperature (counting from the

left): t ≡ T/TF = 0, 0.1, 0.15 and 0.2 (TF ≡ εF/kB); marked are also uncertainties

of the value of P right at the transition points. In the right panel as a function of

the temperature for several fixed values of kFa0.

Owing to the efficiency of our numerical code (stemming basically from
the trick with the interpolations), the procedure of finding the polarization
of the system described above can be applied also at fixed values of kFa0
(replacing the grid in kFa0 by a one in t). The resulting polarization of the
system as a function of the temperature for several fixed values of the gas pa-
rameter is shown in the right panel of figure 5. Knowing the polarization as
a function of the other parameters, it is possible to construct the free energy
F (T, V,N) ≡ F (T, V,N, P (T,N/V )) for several values of kFa0 and to deter-
mine also other thermodynamic characteristics of the system. For example,
using the grid in t, the second derivative of the free energy F (T, V,N) with
respect to the temperature can in principle be obtained yielding the system’s
heat capacity. The result of such an exercise is shown in figure 6 for two
values of the “gas parameter”. It shows that the discontinuity of the heat
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capacity at the transition point grows with the value of kFa0 (i.e. also with
the increasing temperature, if kFa0 is varied). However, for higher values
of kFa0, the numerical inaccuracies do not allow for a reliable computa-
tion. Indeed, as the transition at higher temperatures becomes continuous,
a divergence of the heat capacity probably starts to build up making the
numerical computation of the second derivative of the free energy unstable
for t >

∼ 0.12. Similarly, it is in principle possible to determine the system’s
polarization taking into account an infinitesimally weak external magnetic
field (this as explained influences only the determination of the zeroth order

chemical potentials µ̃
(0)
± from the conditions of (22)) and to compute the

system’s magnetic susceptibility χT by constructing the derivative of the
polarization with respect to H. While such a computation seems to indicate
that at least at low temperatures, at which the transition is (in the approxi-
mation to which our computation is restricted) first order, the susceptibility
also has a finite discontinuity at the transition point, it is not sufficiently
stable numerically to yield reliable values of χT .
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Fig. 6. Heat capacity (in units of NkB) of the system of spin-1/2 fermions with a

short-range repulsive interaction as a function of the temperature for two different

fixed values of the parameter kFa0 obtained from the free energy F computed up

to the second order.

7. Conclusions

We have developed a systematic perturbative expansion of the grand
thermodynamic potential Ω and of the free energy F of the system of (non-
relativistic) interacting spin-1/2 fermions. We have applied this expansion
within the effective field theory in which the underlying repulsive spin-
independent binary interaction of fermions is replaced by an infinite number
of contact interaction terms and which allows to directly express computed
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quantities in terms of the scattering lengths and the effective radii which
characterize the underlying interaction potential. We have shown (up to the
third order but the result seems to be valid in general) that to the expansion
of the free energy effectively contribute only those Feynman diagrams which
give nonvanishing contributions to the ground-state energy of the system
evaluated at zeroth order chemical potentials (associated with spin-up and
spin-down fermions).

Our numerical analysis has been restricted here to the first nontrivial
order of the perturbative expansion (i.e. the first one going beyond the text-
book mean field approximation) in which the results are still universal, i.e.

on the form of the underlying interaction depend only through the s-wave
scattering length a0 (in the next order, the results start to depend also on
the p-wave scattering length a1 and the effective radius r0). We have devised
a method for efficient numerical evaluation of the requisite nested integrals
and used it to compute the system’s polarization and its value right at the
transition point paying attention to the uncertainty of the determination of
the latter quantity which is crucial in assessing the character of the transi-
tion. For low temperatures, T <

∼ 0.1TF, we have also managed to determine
the system’s heat capacity encountering, however, some problems with the
accuracy of the numerical evaluation of the derivatives of the free energy
which seem to prevent obtaining (at least without substantial improvements
in the method) reliable values of the heat capacity for higher temperatures
as well as determining the system’s magnetic susceptibility.

Of course, since the perturbative computation of the system’s ground-
state energy agrees with the results obtained (for specific forms of the un-
derlying interaction) using the Quantum Monte Carlo approach only for
kFa0 <

∼ 0.5, the results presented here cannot be taken very seriously. More-
over, it is now known that already the inclusion of the third-order correc-
tions to the system’s ground-state energy (free energy at zero temperature)
significantly weakens the first order character of the transition (at zero tem-
perature) to the ordered state. For these reasons, our effort summarized
here should be treated rather as a preliminary step taken towards extending
the computation to a higher order and towards a possible implementation
of a resummation of some class of the contributions to the free energy in the
spirit of the approach of [13]. Such a resummation can probably also allow
to overcome the limitation, inherent in the effective field theory approach,
to sufficiently small temperatures only: as this approach relies on the clean
separation of the scales (R ≪ k−1

F , where R is the characteristic length of
the underlying interaction), it cannot be applied, at least if restricted to a
finite order of the perturbative expansion, when kBT becomes comparable
with the energy scale set by εF. We plan to return to these issues in the
forthcoming paper.
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Appendix A

The following summation formulae hold [7] (the limit η → 0+ is implicit):

1

β

∑

n∈Z

eiηω
F
n

iωF
n − x

=
1

1 + eβx
, ωF

n ≡ π

β
(2n+ 1) , (A.1)

1

β

∑

n∈Z

eiηω
B
n

iωB
n − x

=
1

1− eβx
, ωB

n ≡ 2π

β
n , (A.2)

and, by decomposing into simple fractions,

1

β

∑

n∈Z

1

iωF
n − x

1

iωF
n+l − y

=
1

β

∑

n∈Z

1

iωF
n − x

1

iωF
n − (y − iωB

l )

=
1

iωB
l − (y − x)

(

1

1 + eβx
− 1

1 + eβy

)

, (A.3)

1

β

∑

n∈Z

1

iωF
n − x

1

iωF
l−n − y

= − 1

β

∑

n∈Z

1

iωF
n − x

1

iωF
n − (iωB

l+1 − y)

=
1

iωB
l+1 − (y + x)

(

1

1 + eβx
− 1

1 + e−βy

)

. (A.4)

Similarly,

1

β

∑

l∈Z

1

iωB
l − x

1

iωB
l − y

=
1

x− y

(

1

1− eβx
− 1

1− eβy

)

. (A.5)

Useful can be also the formula

1

x− a1

1

x− a2
. . .

1

x− an
=

n
∑

l=1





n
∏

k ̸=l

1

al − ak





1

x− al
. (A.6)

Appendix B

Here, we demonstrate the cancellation of the additional terms in the for-
mula (31) for F (3) against the contributions of diagrams which vanish at zero
temperature. Analogous cancellation of the contribution of the diagrams
shown in figure 2 against the additional terms in (30) has been checked in
the main text. It will be convenient to introduce first the following notation:

nx ≡
∫

k

1

1 + eβ(εk−x0)
,
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nxx ≡
∫

k

1
[

1 + eβ(εk−x0)
]2 ,

nxxx ≡
∫

k

1
[

1 + eβ(εk−x0)
]3 ,

etc. From (11), one immediately obtains (all functions are evaluated at x0
and y0)

Ω(0)
x = −V nx ,

Ω(0)
xx = −V β (nx − nxx) ,

Ω(0)
xxx = −V β2 (nx − 3nxx + 2nxxx) . (B.1)

Analogously can be written the derivatives of Ω(0) with respect to y. The
necessary derivatives of Ω(1) = C0V nx ny take the form

Ω(1)
x = C0V β (nx − nxx)ny ,

Ω(1)
y = C0V β nx (ny − nyy) ,

Ω(1)
xx = C0V β

2 (nx − 3nxx + 2nxxx)ny ,

Ω(1)
yy = C0V β

2 nx (ny − 3nyy + 2nyyy) ,

Ω(1)
xy = C0V β

2 (nx − nxx)(ny − nyy) . (B.2)

To Ω(3), in addition to the two “mercedes-type” diagrams shown in figure 7
(the contributions Ω(3)a and Ω(3)b), contribute also the “mitsubishi-type”
diagrams of figure 8 (the contributions Ω(3)c and Ω(3)d), the two diagrams
of figure 9 (the contributions Ω(3)e and Ω(3)f ), and the single “audi-type”
diagram of figure 10 (Ω(3)g).

The computation of Ω(3)c and Ω(3)d is straightforward (it is analogous
to that of Ω(2)b and Ω(2)c) and yields

Ω(3)c+Ω(3)d =
1

6
C3
0V β

2
[

(nx − 3nxx + 2nxxx)n
3
y + n3x (ny − 3nyy + 2nyy)

]

.

One then readily sees that in (31) this is cancelled by the last two terms

Ω(3)a +Ω(3)b −
Ω

(0)
xxx

[

Ω
(1)
x

]3

6
[

Ω
(0)
xx

]3 −
Ω

(0)
yyy

[

Ω
(1)
y

]3

6
[

Ω
(0)
yy

]3 = 0 .
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Fig. 7. The particle–particle and the particle–hole diagrams (the “mercedes-like”

diagrams) contributing in the order C3
0 to Ω(3).

One has now to consider the −Ω(2)
x Ω

(1)
x /Ω

(0)
xx and −Ω(2)

y Ω
(1)
y /Ω

(0)
yy terms

in (31). Ω(2) is given by three diagrams shown in figures 3, left and 2. It is
convenient to write the contribution the first one, Ω(2)a, in the form

Ω(2)a = −C
2
0V

2

1

β

∑

l∈Z

∫

q

∫

k

∫

p

1

β

∑

n∈Z

1

iωF
n − (εk − x)

1

iωF
n+l − (εk+q − x)

× 1

β

∑

m∈Z

1

iωF
m − (εp − y)

1

iωF
m−l − (εp−q − y)

. (B.3)

Differentiating it with respect to x, one obtains the expression which is a
sum of the two terms

Ω(2)a
x =

C2
0V

2

1

β

∑

l∈Z

∫

q

∫

k

∫

p

1

β

∑

m∈Z

1

iωF
m − (εp − y)

1

iωF
m−l − (εp−q − y)

× 1

β

∑

n∈Z

{

1

[iωF
n − (εk − x)]2

1

iωF
n+l − (εk+q − x)

+
1

iωF
n − (εk − x)

1

[iωF
n+l − (εk+q − x)]2

}

.

These two terms are equal — to see this, it suffices to set in the second term
q = −q′, k = k′+q′, p = p′−q′, and l = −l′, n = n′+ l′, m = m′− l′. Thus,

multiplying the expression for Ω
(2)a
x by −Ω(1)

x /Ω
(0)
xx which simply equals

C0 ny, one readily sees (taking into account that G(0)
−−(0,0) = ny) that the

resulting expression precisely cancels Ω(3)e. Thus, in F (3)

Ω(3)e +Ω(3)f − Ω
(1)
x

Ω
(0)
xx

Ω(2)a
x − Ω

(1)
y

Ω
(0)
yy

Ω(2)a
y = 0 .
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Fig. 8. Two order C3
0 , “mitsubishi-type” diagrams contributing to Ω(3).

After these cancellations, one is left with

F (3) = Ω(3)a +Ω(3)b +Ω(3)g + C0ny

(

Ω(2)b
x +Ω(2)c

x

)

+ C0nx

(

Ω(2)b
y +Ω(2)c

y

)

+
Ω

(1)
xx

[

Ω
(1)
x

]2

2
[

Ω
(0)
xx

]2 +
Ω

(1)
yy

[

Ω
(1)
y

]2

2
[

Ω
(0)
yy

]2 +
Ω

(1)
xy Ω

(1)
x Ω

(1)
y

Ω
(0)
xxΩ

(0)
yy

.

Explicitly, the last line of F (3) reads

1

2
C3
0V β

2
{

(nx − 3nxx + 2nxxx)n
3
y

+n3x (ny − 3nyy + 2nyyy) + 2nx (nx − nxx)(ny − nyy)ny
}

,

while the contribution Ω(3)g of the “audi-type” diagram of figure 10 can be
written as

Ω(3)g = C3
0V β

2 nx (nx − nxx) (ny − nyy)ny .

Finally,

Ω(2)b
x +Ω(2)c

x

= −1

2
C2
0V β

2
[

(nx − 3nxx + 2nxxx)n
2
y + 2nx (nx − nxx)(ny − nyy)

]

,

(the sum Ω
(2)b
y + Ω

(2)c
y is given by an analogous expression) and after a

straightforward algebra all the extra terms cancel out, so that eventually,
F (3) = Ω(3)a+Ω(3)b, that is, it is given solely by the “mercedes-like” diagrams
evaluated at the zeroth order chemical potentials x0, y0 (or x̃0, ỹ0, if there
is an external magnetic field). The diagrams canceled by the extra terms in
the formulae (30) and (31) are precisely those (see e.g. [6]) which vanish at
zero temperature, that is, do not contribute to the expansion of the formula
(13) for the ground-state energy.
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Fig. 9. The contributions to Ω(3)e and Ω(3)f .

One can also simplify the formula (29) for the second-order correction
x2 to the µ+ chemical potential (and the analogous formula for y2). After a
straightforward algebra, one obtains

x2 = −Ω
(2)a
x

Ω
(0)
xx

,

all other terms neatly cancelling. Of course, x1 = C0 n−, y1 = C0 n+ but it
is perhaps more instructive to write6

x = x0 −
1

Ω
(0)
xx

(

Ω(1)
x +Ω(2)a

x + . . .
)

.

The cancellation found here is obviously necessary for the equivalence of
two ways of determining the system’s polarization. Indeed, only if this
cancellation holds, is the minimization of the free energy written in the form

F = Ω(0)(x0, y0) + (x0 nx + y0 ny)V +Ω(1)(x0, y0) +Ω(2)a(x0, y0) + . . . ,

with respect to nx (keeping ny = n − nx), which (taking into account that

Ω
(0)
x + nxV = 0, Ω

(0)
y + nyV = 0) amounts to

(x0 − y0)V = −
[

Ω(1)
x +Ω(2)a

x + . . .
] ∂x0
∂nx

+
[

Ω(1)
y +Ω(2)a

y + . . .
] ∂y0
∂ny

,

equivalent to the condition µ+ = µ− written in the form x0+x1+x2+ . . . =
y0 + y1 + y2 + . . ., that is

x0 − y0 =
Ω

(1)
x +Ω

(2)a
x + . . .

Ω
(0)
xx

− Ω
(1)
y +Ω

(2)a
y + . . .

Ω
(0)
yy

.

6 This form clearly shows, since the cancellation of the divergences in the sum Ω(1) +
Ω(2)a has already been demonstrated, that the computed perturbatively chemical
potentials x and y are to this order finite, after the cutoff dependence of the coupling
C0 is taken into account. The argument obviously generalizes to all orders: if the
free energy F is made finite by the renormalization of the couplings, so must be the
chemical potentials.
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Fig. 10. The “audi”-type, order C3
0 contribution to Ω(3).

The equivalence follows from noticing that since nx = −Ω(0)
x /V , ny =

−Ω(0)
y /V , the derivatives of x0 and y0 are precisely equal to

∂x0
∂nx

= − V

Ω
(0)
xx

,
∂y0
∂ny

= − V

Ω
(0)
yy

.

From this argument it immediately follows that x3 = −(Ω
(3)a
x +Ω

(3)b
x )/Ω

(0)
xx

and y3 = −(Ω
(3)a
y +Ω

(3)b
y )/Ω

(0)
yy .

Restricted to the first order, the left-hand side of the equality x0 + x1 =
y0 + y1 reads

x0 + x1 + . . . = kBT f
−1





(

ε
(0)
F (n+)

kBT

)3/2


+ C0 n− + . . .

The right-hand side is given by the analogous formula. If one sets here
n± = (N/2V )(1± P ), this reproduces the condition (21).
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