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An infinite-equilibria memristive chaotic system (MCS) with plentiful
parameter-relied and initial-relied dynamics is constructed from a six-term
three-dimensional (3D) system by leading into a flux-controlled memris-
tor. The stabilities of equilibria and dynamical behaviors are discussed.
Period-doubling bifurcation corresponds to system parameters and initial
values are investigated to reveal its chaos generation. Infinite coexisting
chaotic and periodic attractors are discovered in the system by using bifur-
cation diagrams and phase portraits. Changing multiple parameters of the
system, the oscillation amplitude of variables increase or decrease accord-
ingly, yielding the amplitude control feature. Not only the parameter-relied
amplitude control, but also the initial-relied amplitude control is found as
well. Moreover, the circuit implementation is given to support the physical
existence and reliability of the system.
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1. Introduction

Memristor which was currently confirmed as the fourth basic compo-
nent [1] portraying the inherent relationship between magnetic flux and
charge has been of latest and significant interest in many disciplinary fields.
In the field of chaos research, the memristor was commonly deemed to be
the nonlinear resistance with a unique memory function and used to con-
struct chaotic circuits and systems, promoting the chaos research to the new
stage of memristive chaotic system (MCS) for gaining desired dynamics, and
broadening potential applications. Nowadays, the exploration of MCS has
become an important issue with widespread attention. Ioth and Chua [2]
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first constructed the memristive chaotic oscillator by coupling the memris-
tor, inductor, and capacitor together. Muthuswamy et al. [3] substituted
the nonlinear resistor in the Chua circuit for a flux-controlled memristor to
establish a new chaotic circuit, and proposed the simplest chaotic circuit
only with a passive inductor, a passive capacitor, and an active memristor
with physical realization [4]. Buscarino et al. [5] applied two anti-parallel
HP memristors to generate a novel chaotic circuit and discussed its rich dy-
namics, Minati et al. [6] also used a SDC physical memristor to establish
a chaotic circuit. Kengne et al. [7] constructed a new jerk circuit with a
memristive diode bridge and found its symmetric coexisting chaos. To some
extent, a memristor can usually simplify the design of chaotic circuits with
fewer components and easily yield chaos with different types. In prelimi-
nary studies, scholars invested a lot of experience in applying a memristor
to upgrade and transform the existing classic chaotic circuits. The gen-
eral method was to add memristors to the circuits or replace the existing
nonlinear elements. With further research, the memristor was regarded as a
nonlinear control input introduced into any autonomous chaotic systems and
massive MCSs were created. Mezatio et al. [8] constructed 6D MCS without
equilibrium but with the ability to produce coexisting hidden hyperchaos.
Gu et al. [9] presented non-equilibrium MCS with a hidden double-wing
attractor. Lai et al. [10] proposed a new piecewise linear memristor and
applied it to yield multi-scroll MCS which can be broken into multiple one-
scroll attractors causing extreme multistability. Sun et al. [11] constructed
an MCS with hypermultistability and used it to design an image encryption
algorithm. Some chaotic maps with discrete memristors were conveniently
established. Ma et al. [12] constructed a hyperchaotic map by embedding
a discrete memristor into a 2D square map, which showed that a memristor
can strengthen the chaotic feature of the map. Lai et al. [13] applied a
discrete memristor to the Gaussian map for yielding a new MCS with in-
finite coexisting hidden hyperchaos, and studied its circuit realization and
application in image encryption. The memristor was used as a synapse or
electromagnetic radiation to construct a memristive chaotic neural network
or chaotic neuron [14, 15]. Previous studies have shown that a memris-
tor can drive the chaotic system to form complex and diverse dynamics,
including chaos, hyperchaos, multistability, hidden attractors, multi-scroll
attractors, and periodic bifurcation. Thereby, a growing number of scholars
have continued to be interested in the study of MCS [16–19].

The study of MCS is an emerging research field with significant scientific
value, yet there are many issues that require intensive study. The establish-
ment of new MCS and deep exploration of their dynamics have always been
important work remaining strong and extensive interest. Pertinently, this
paper is devoted to generate a new MCS with a simple structure and infi-
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nite equilibria, which performs abundant parameter-relied and initial-relied
dynamics. The infinite coexisting attractors and amplitude-control features
are discovered. To the best of our knowledge, the proposed MCS has never
been reported before. Compared with some existing chaotic systems, it has
a simple structure and is easy to implement by a circuit with fewer com-
ponents. The discovery of infinite chaotic attractors, parameter-relied and
initial-relied offset boosting, parameter-relied and initial-relied amplitude
control in the proposed MCS also distinguish it from some existing chaotic
systems. The dynamical analysis, circuit implementation, and NIST tests of
the system are given. This work will provide some reference for constructing
MCS with rich dynamical behaviors, and showing the important influence
of memristor on the dynamics of a chaotic system. Section 2 describes the
model of MCS. Section 3 and Section 4, respectively give the dynamical anal-
ysis, circuit implementation, and NIST tests of MCS. Section 5 summarizes
the conclusions of the paper.

2. Model description

Let us consider the VB19 system given in literature [20] whose mathe-
matical model is depicted by the following equations: ẋ = z2 − ay − byz ,

ẏ = cz ,
ż = x− dz ,

(1)

with variables x, y, z and parameters a, b, c, d. It has only one unstable
equilibrium and performs chaotic motion with parameters a = b = c = 1,
d = 0.8. Taking system (1) as a prototype and equipping an ideal flux-
controlled memristor, a new MCS is established that can be written as

ẋ = z2 − ay − byz ,
ẏ = cz ,
ż = xM(w)− dz ,
ẇ = x ,

(2)

where w and M(w) are the internal variable and memductance of the mem-
ristor. Here, we let M(w) = p + q|w|, then the model of memristor can be
given as

i = M(w)x , ẇ = x , (3)

where i, x, w are respectively considered as the current, voltage, and flux of
the memristor. Inspired by such a memristor, system (2) will exhibit more
diverse and interesting dynamics than system (1), which will to some ex-
tent enhance its potential application values. The structure and dynamics
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of system (2) and system (1) are different. System (2) is four-dimensional
with an additional nonlinear term and infinite equilibria, while system (1)
is three-dimensional with only one equilibrium. Although they have simi-
lar chaotic attractor shape for some fixed parameter values, their Lyapunov
exponents and Lyapunov dimensions are different, which indicate their es-
sential differences. In system (1) exists chaos and parameter-relied offset
boosting, while system (2) has more rich dynamical behaviors including
infinite coexisting attractors, parameter-relied and initial-relied amplitude
control features, parameter-relied and initial-relied offset boosting. Thus,
the establishment of system (2) enhances the structural and dynamical com-
plexity of the original system (1). It is an effective example of combining
low-dimensional chaotic systems with memristors.

Denote O(x̃, ỹ, z̃, w̃) as the equilibrium of system (2), then we can com-
pute that x̃ = ỹ = z̃ = 0 and w̃ can be any real number. It means that
system (2) has infinite equilibria determined by w̃. The Jacobian at O is
obtained as

E =


0 −a 0 0
0 0 c 0

M(w̃) 0 −d 0
1 0 0 0


and its characteristic equation based on |λI − E| = 0 is calculated as

λ
[
λ3 + dλ2 + cM(w̃)λ+ acM(w̃)

]
= 0 . (4)

Obviously, λ1 = 0 is a root of Eq. (4). If a > 0, b > 0, c > 0, d > 0,
M(w̃) > 0, and d > a, then all the roots of λ3+dλ2+cM(w̃)λ+acM(w̃) = 0
have negative real parts. Thus, the O is critically stable according to the
Routh–Huwritz criterion otherwise, O is unstable as at least one root of
Eq. (4) has a positive real part.

3. Dynamical analysis

This section provides a comprehensive and detailed observation of the
parameter-relied and initial-relied dynamical properties of system (2) via
some numerical means. The infinite coexisting chaos, period-doubling bi-
furcation, and amplitude control features of system (2) are revealed. All
the simulation results in this section are carried out by the Matlab software
platform. The equations of system (2) are solved by the fourth–fifth-order
Runge–Kutta method with a fixed step size ∆t = 0.01 and an absolute error
bound of 10−6 at each step. The simulation time is set to t ∈ [0, 1000].
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3.1. Period-doubling bifurcation

It is universally acknowledged that period-doubling bifurcation is an im-
portant path to chaos for autonomous systems. Here, we will visually display
the period-doubling bifurcation of system (2) for revealing the process of its
chaos generation. Assuming b = c = d = 1, p = 0.8, q = −0.1, and varying
a ∈ [0.2, 1.2], we can plot the bifurcation diagram and Lyapunov exponents
(LEs) for the initial value (1, 1, 1, 1) illustrated in Fig. 1, which indicates
that system (2) experiences period-doubling bifurcation in pace with the
parameter a and finally generates chaos. The phase portraits of periodic-1,
periodic-2, periodic-4, and chaotic attractors of system (2), respectively,
with a = 0.2, 0.3, 0.42, 0.5 shown in Fig. 2 intuitively verify the existence of
period-doubling bifurcation as well.
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Fig. 1. Bifurcation diagram and LEs with parameter a ∈ [0.2, 1.2] for the initial
value (1, 1, 1, 1).

System (2) also has initial-relied period-doubling bifurcation. Figure 3
gives the bifurcation diagram and LEs versus initial value (1, 1, 1,m) with
m ∈ [−1, 2] under parameter conditions a = 0.5, b = c = d = 1, p = 0.8, q =
−0.1. Evidently, system (2) enters into a chaotic state via period-doubling
bifurcation and traverses the chaotic state via period-doubling bifurcation
and then returns to the periodic state with the change of initial value. It can
be directly illustrated by plotting the phase portraits with fixed values of
m = −1,−0.5, 0, 0.8, 1.7, 2, as shown in Fig. 4. It implies that the system’s
final state is highly dependent on the initial value, thereby system (2) yields
coexisting attractors. If the bifurcation diagram continues to change along
with m, then infinite coexisting attractors will appear in system (2).
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Fig. 2. Phase portraits of system (2) related to period-doubling bifurcation:
(a) periodic-1 for a = 0.20; (b) periodic-2 for a = 0.30; (c) periodic-4 for a = 0.42;
(d) chaotic for a = 0.50.
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Fig. 3. Bifurcation diagram and LEs versus the initial value (1, 1, 1,m) with m ∈
[−1, 2] for parameters a = 0.5, b = c = d = 1, p = 0.8, q = −0.1.
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Fig. 4. Phase portraits of system (2) related to period-doubling bifurcation:
(a) periodic-1 for m = −1; (b) periodic-2 for m = −0.5; (c) periodic-4 for m = 0;
(d) chaotic for m = 0.8; (e) periodic-4 for m = 1.7; (f) periodic-2 for m = 2.

3.2. Infinite coexisting attractors

Fixing the parameters a = 0.5, b = c = d = 1, p = 2.5, q = −0.1, and
changing the initial value (1, 1, 1,m) with m ∈ [−8, 8], we can generate the
bifurcation diagram of system (2) as shown in Fig. 5 (a), which shows the
evolution of final states of system (2) with respect to initial values and verifies
the coexistence of infinite chaotic attractors of system (2). Selecting m =
−4,−3,−2,−1, 0, five attractors with similar shapes and chaotic properties
are observed in system (2) which are distributed along the w-axis, as their
projections on x–w, z–w and time series of w are shown in Fig. 5 (b)–(d).
It can be evidently inferred from Fig. 5 that system (2) has initial-relied offset
boosting forming infinite coexisting attractors as the initial value changes
with the continuous increase of m. When a = 0.5, b = 1.5, c = d = 1,
p = 2, and q = −0.1, system (2) will generate infinite periodic attractors
from initial values with different values of m. Figure 6 (a) shows six periodic
attractors in system (2) for m = −9,−8,−7,−4,−3,−2. If we reset b = 1,
then we can observe coexisting two chaotic and two periodic attractors in
system (2) for m = −5,−2, 2, 6 as given in Fig. 6 (b). Various types of
coexisting attractors can emerge in system (2) for other given parameter
conditions.



12-A2.8 H.-Y. Cao, Q. Tu

−5 0 5
−10

−5

0

5

10

m

w

(a)

−3 −2 −1 0 1 2
−6

−5

−4

−3

−2

−1

0

1

2

x

w

 

 

m=−4

m=−3

m=−2

m=−1

m=0

(b)

−2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

2

z

w

 

 

m=−4

m=−3

m=−2

m=−1

m=0

(c)

0 500 1000 1500 2000
−6

−5

−4

−3

−2

−1

0

1

2

t

w

 

 

m=−4

m=−3

m=−2

m=−1

m=0

(d)
Fig. 5. Coexisting chaotic attractors of system (2) for the initial value (1, 1, 1,m):
(a) bifurcation diagram with m ∈ [−8, 8]; (b) projections on x–w for m =

−4,−3,−2,−1, 0; (c) projections on z–w for m = −4,−3,−2,−1, 0; (d) time series
of w for m = −4,−3,−2,−1, 0.
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Fig. 6. Coexisting attractors of system (2) for the initial value (1, 1, 1,m): (a) six
periodic attractors for b = 1.5 and m = −9,−8,−7,−4,−3,−2; (b) two chaotic
and two periodic attractors for b = 1 and m = −5,−2, 2,−6.
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3.3. Amplitude control features

The parameter-relied and initial-relied amplitude control features of sys-
tem (2) are studied in this subsection. It shows that the oscillation ampli-
tudes variables of system (2) will increase or decrease with the variations
of parameters and initial values when the system is in a chaotic or periodic
state. Fixing the initial value (1,1,1,1) and parameters a = 1, c = d = 1,
p = 2, q = −0.1, we can plot the projections on z–w and time series of
w of system (2) with b = 0.9, 1.0, 1.3, 1.8, as illustrated in Fig. 7 (a)–(b).
Obviously the chaotic signals are shrunk with the increase in b, causing
the appearance of amplitude control in system (2). Resetting a = 0.2,
p = 0.8, the amplitude control of periodic signals can be observed by vary-
ing b = 0.5, 0.8, 1.2, 1.8, 2.5 as shown in Fig. 7 (c)–(d). The amplitude ad-
justment phenomenon can also be observed by controlling the parameters
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Fig. 7. Amplitude control with the parameter b: (a) and (b) chaotic attractors and
time series of w for b = 0.9, 1.0, 1.3, 1.8; (c) and (d) periodic attractors and time
series of w for b = 0.5, 0.8, 1.2, 1.8, 2.5.
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c and p. Figure 8 shows the chaotic attractors and time series of y for the
parameter values c = 4.5, 4.0, 3.5, 3.0, 2.0 and p = 2.7, 2.6, 2.4, 2.0, under
conditions a = b = d = 1, p = 2, q = −0.1, and initial value (1, 1, 1,−1) and
a = b = c = d = 1, q = −0.1, and initial value (1, 1, 1, 5), respectively. It can
be seen that the attractors and time series are decreased with the increase of
c or p, which implies the occurrence of parameter-relied amplitude control
in system (2). By setting a = b = c = d = 1, p = 2, q = −0.1, we can
illustrate the change of attractors and variables for initial values (1, 1, 1,m)
with m = 1, 4, 7, 9 by using phase portraits and time series, as given in
Fig. 9. It is noticeable that the positions of chaotic attractors are shifted in
phase space and the oscillation amplitudes of time series decrease while the
m increases, which indicates the appearance of initial-relied offset amplitude
control in system (2).
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Fig. 8. Amplitude control with the parameters c and p: (a) and (b) chaotic attrac-
tors and time series of y for c = 4.5, 4.0, 3.5, 3.0, 2.0; (c) and (d) chaotic attractors
and time series of y for p = 2.7, 2.6, 2.4, 2.0.
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Fig. 9. Amplitude control for initial values (1, 1, 1,m) with m = 1, 4, 7, 9: (a) cha-
otic attractors; (b) time series of z.

4. Circuit realization and NIST tests

This section presents the circuit realization of system (2) with the help of
software and hardware circuit platforms, and studies the National Institute
of Standards and Technology (NIST) tests to estimate the randomness of
the chaotic sequences. Taking the simulation results shown in Fig. 2 as an
example, we will use the electronic circuit to perfectly reproduce these results
for physically demonstrating the existence of system (2). The equivalent
analog circuit of memristor (3) with an absolute value function is shown
in Fig. 10. Based on the basic principles and design methods of circuits,
the circuit diagram of system (2) is given in Fig. 11 and its model can be
transformed into the following circuit equations:

RC1V̇x = − R
R4

(
−V 2

z

)
− R

Ra
Vy − R

Rb
VyV ,

RC2V̇y = − R
Rc

(−Vz) ,

RC3V̇z = −
(

R
R9

(
R(Rq+R)
Rq(Rp+R)

)
− R

Rq

∣∣V 2
W

∣∣) (−Vx)− R
Rd

Vz ,

RC4V̇w = − R
Rf

(−Vx) ,

(5)

where R = R4 = R9 = Rf = 10 kΩ, C1 = C2 = C3 = C4 = 100 nF
and R/Ra = a, R/Rb = b, R/Rc = c, R/Rd = d, R/Rq = q, R(Rq +
R)/Rq(Rp+R) = p. When a = 0.20, 0.30, 0.42, 0.50, b = c = d = 1, p = 0.8,
q = −0.1, then we can calculate Ra = 50 kΩ, 33.333 kΩ, 29.809 kΩ, 20 kΩ,
Rb = Rc = Rd = 10 kΩ, Rp = 3.75 kΩ, Rq = 100 kΩ, and the same periodic
and chaotic attractors given in Fig. 2 can be observed by running the circuit
in Fig. 11.
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Fig. 10. Equivalent analog circuits of (a) absolute value function and (b) memris-
tor (3).
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Here, the circuit simulation results are based on the Multisim 14 software
platform with interactive simulation settings. The initial values of the circuit
simulation are automatically set by the software. The step size is fixed as
10−5. The circuit output results are given in Fig. 12 and are highly consistent
with the numerical simulation results. Also, we implement system (2) by the
microcontroller-based hardware circuit and obtain the corresponding output
results as shown in Fig. 13. For other dynamics of system (2) with different
parameter conditions, the circuit in Fig. 11 is available as well.

(a) 

(c) 

(b)

(d)

Fig. 12. Software circuit output of system (2): (a) periodic-1 for Ra = 50 kΩ;
(b) periodic-2 for Ra = 33.333 kΩ; (c) periodic-4 for Ra = 23.809 kΩ; (d) chaotic
for Ra = 20 kΩ.
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Fig. 13. Hardware circuit output of system (2): (a) periodic-1 for Ra = 50 kΩ;
(b) periodic-2 for Ra = 33.333 kΩ; (c) periodic-4 for Ra = 23.809 kΩ; (d) chaotic
for Ra = 20 kΩ.

Denote the chaotic sequence yielded by system (2) as X = {x1, x2, . . . xn},
and then convert each of the output xn to be a 52-bit binary stream XBn by
using the IEEE 754 float standard. Thereby, the digital numbers from 16th

to 23rd in a binary stream are taken as the pseudo-random numbers (PRNs)
that can be written as ϑi = XBn(16:23). The randomness of the proposed
pseudo-random number generator (PRNG) corresponding to system (2) is
verified via NIST SP800-22. 120 sets of binary sequences are tested, each
with a length of 106. The NIST test results are given in Table 1. It is clear
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that all the pass rates and P-valueT are respectively greater than 0.9628 and
0.0001, which implies that system (2) can generate pseudo-random numbers
with a high degree of randomness. To some extent, the feasibility of encryp-
tion application of system (2) is demonstrated.

Table 1. NIST test results of the random numbers.

No. Sub-tests
Pass rate P-valueT Result
≥ 0.9628 ≥ 0.0001

01 Frequency 0.9917 0.8755 pass
02 Block frequency 0.9917 0.5852 pass

03
Cum. Sum* (F) 0.9917 0.2041 pass
Cum. Sum* (R) 0.9833 0.5174 pass

04 Runs 0.9833 0.4528 pass
05 Longest runs 0.9917 0.4071 pass
06 Rank 0.9833 0.5174 pass
07 FFT 0.9917 0.9885 pass
08 Non-Ovla. Temp.* 0.9667 0.1005 pass
09 Ovla. Temp. 0.9917 0.1626 pass
10 Universal 0.9917 0.2873 pass
11 Appr. Entropy 0.9833 0.4846 pass
12 Ran. Exc.* 0.9730 0.2475 pass
13 Ran. Exc. Var.* 0.9730 0.0424 pass

14
Serial (1st) 0.9750 0.9411 pass
Serial (2nd) 0.9917 0.8755 pass

15 Linear complexity 0.9833 0.6718 pass
Success No. 15/15 15/15 15/15

* Nonoverlapping template test, Random excursions test, and Random excursions variant
test contain 148, 8, 18 sub-tests. The worst results are reported for multiple subtests.

5. Conclusions and discussions

This work established a new MCS with infinite unstable equilibria and
various interesting dynamics including chaos, period-doubling bifurcation,
infinite coexisting attractors, and amplitude control. The dynamical evo-
lution concerning parameters and initial values was investigated by using
bifurcation diagrams and phase portraits. It was shown that the proposed
MCS can yield period-doubling bifurcation with the variation of parameters
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or initial values, infinite coexisting chaos in phase space inspired by infinite
initial values, and amplitude control which refers to the amplification or re-
duction of variables by means of changing the parameter values. Moreover,
the circuit realization whose output results exactly match the simulation
results was given to test the flexibility of the system. So far, the research
on MCS has attracted widespread interest and numerous research results of
MCS have been obtained. However there are also many issues that need to
be further explored. How to design MCS with complex dynamics and how to
implement its specific engineering applications are still key tasks that need
to be considered and studied. In the future, we will be committed to the
construction of new memristor models and used them to design new MCS
with different dynamics, such as mutiscroll chaos, hidden chaos, hyperchaos,
extreme multistability, amplitude control, etc. More theoretical and numeri-
cal methods will be used to give a full evaluation of the performance of MCS.
The high-security secure communication and encryption technologies based
on MCS will be studied. The rich dynamical connotations often determine
the application potential of the system, thus it is of great significance to
persist in constructing MCS with rich dynamics and delving deeply into its
dynamical evolution laws.
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