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We present a new transformation method in the framework of higher-
dimensional relativistic Quantum Mechanics of the Klein–Gordon equation
for the generation of exactly solvable quantum mechanical potentials from
the already known exactly solvable centrally symmetric power-law poten-
tials. The method is based on a coordinate transformation supplemented
by a functional transformation along with a set of indispensable ansatzes.
The efficacy of our method is investigated by (re)generating two of the most
fundamental potentials — harmonic oscillator and Coulomb potentials in
D-dimensional Euclidean space. The pertinent issue of normalisability for
the generated wavefunctions can be elegantly examined in our formalism.
The present work reveals a relative parent–daughter family relationship
between the Coulomb and harmonic oscillator potentials in the relativistic
regime of higher-dimensional quantum mechanics.
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1. Introduction

The quest for exact solutions of differential wave equations in non-relativ-
istic and relativistic regimes has still remained an essential research area
since the birth of Quantum Mechanics (QM). Exact solutions always play
a decisive role in the development of QM, as they always set benchmarks
to test the accuracy and reliability of approximate/perturbative methods.
However, the number of Exactly Solvable Potentials (ESPs) is unfortunately
very small, and there lies the importance of the generation/construction of
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ESPs in QM. In the relativistic regime of QM, the Klein–Gordon (KG) equa-
tion for spin-0 particles is the most widely used wave equation for solving
various practical problems in nuclear physics [1], astrophysics [2, 3], laser
physics [4], particle and quarkonium physics [5–7]. The KG equation is
found to be solved exactly and very often quasi-exactly with both centrally
symmetric potentials (CSPs) and non-central potentials (NCPs) by employ-
ing various methods/techniques/approaches, e.g. Standard Method [8–14],
Nikiforov–Uvarov (NU) Method [15–22], Supersymmetric Quantum Mechan-
ics (SUSYQM) Approach [16, 21, 23–25], Asymptotic Iteration Method
(AIM) [26, 27], Path Integral Approach [28], Factorization Method [29],
Darboux Transformation Method [30], Laplace Transformation Method [31],
Algebraic Method of Matrix Recurrences [32], SU(1,1) Lie Algebraic Dy-
namical Symmetry Group Approach [33]. It is also noted that certain re-
searchers have intelligently utilized a finite-difference calculus approach to
conduct theoretical studies of QSs with both CSPs and NCPs in the rela-
tivistic QM [34–37]. Inspired by the work of Ahmed et al. [38–42] in the
non-relativistic QM, we present here a transformation method comprising
a coordinate transformation (CT) followed by a functional transformation
(FT) along with a set of ansatzes for the generation of centrally symmet-
ric Quantum Mechanical Exactly Solvable Potentials (QMESPs) from an
already known genuine centrally symmetric QMESP in the QM of KG equa-
tion. The three striking points in our transformation method are as follows:
(i) this method appears as a labour-saving technique, because it maps the
wavefunction of the parent quantum system (QS) to that of the generated
(daughter) QS in a straightforward manner; (ii) here, the transformation
carries the normalisability property from the parent genuine QS to the gen-
erated QS, because of which, the generated wavefunction is almost always
normalisable; and (iii) with this method, dimensional extension or dimen-
sional reduction of the generated QS is possible. Though the KG equa-
tion is solved analytically for centrally symmetric Coulomb and harmonic
oscillator potentials by various researchers using a number of techniques,
e.g. Large-N Expansion Approximate Method [43], Operator Analysis [44],
Levi-Civita Transformation [45], Snyder–de Sitter Algebra [46], Modified
Commutation Relation Approach [47], we here apply our transformation
method to (re)generate these two fundamental potentials along with their
wavefunctions and energy spectrums, where solving of differential equations
is not required at all, and consequently, it is found that a cyclic mapping
between these two fundamental potentials is possible via our method in
higher-dimensional relativistic QM of KG equation.

The organization of the paper is as follows. Section 2 is dedicated to the
formalism of our transformation method for generation of CSPs (power law)
in any desired dimensional Euclidean space from a genuine already known
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exactly solved CSP (power law) in the framework of relativistic QM of KG
equation. Then the normalisability of the generated wavefunctions is dis-
cussed. Section 3 and Section 4 are kept reserved for the investigation of the
efficacy of our method by applying it in two known QSs — Coulomb and
harmonic oscillator. The renormalisability of the generated wavefunctions
is also checked as per our formalism. Finally, a few discussions have been
made along with the concluding remarks in Section 5.

2. Formalism

The KG equation for spin-0 particle of rest mass M0 (in atomic unit
ℏ = c = 1) (

2D+1 +M2
0

)
ϕ(t, r⃗ ) = 0 (1)

in (D+1) dimensional spacetime gets transmutated to the following equation
[10] with the consideration of interaction described by the vector potential
V (t, r⃗ ) and scalar potential S(t, r⃗ ) as

[
−∇⃗2

D + {M0 + S(t, r⃗ )}2
]
ϕ(t, r⃗ ) =

[
i
∂

∂t
− V (t, r⃗ )

]2
ϕ(t, r⃗ ) . (2)

For the time-independent potentials, the time sector in the above KG equa-
tion can be separated out by writing Φ(t, r⃗ ) = e−iEtΨ(r⃗ ) [11], where E
is the relativistic energy, to have a time-independent KG equation for an
interacting spin-0 particle in arbitrary D dimensions as[

−∇⃗2
D + {M0 + S(r⃗ )}2

]
Ψ(r⃗ ) = [E − V (r⃗ )]2 Ψ(r⃗ ) . (3)

Here, r⃗ = r⃗(r,Ω), Ω denotes a set of D − 1 angular variables. If the po-
tentials are centrally symmetric, the separation of variable method can be
implemented successfully by considering

Ψ(r⃗ ) = Ψ(r,Ω) = ψ(r)Y (Ω) ,

where ψ(r) is the radial wavefunction and Y (Ω)=Y
(lD−1=l)
l1,l2,...lD−2

(θ1, θ2, . . . θD−1)

is the normalised hyperspherical harmonics [10]. Applying

∇⃗2
D =

∂2

∂r2
+
D − 1

r

∂

∂r
− L2

r2
, (4)

where L2 is the square of angular momentum operator such that L2Y =
l(l+D−2)Y [43], in equation (3) and then simplifying, we get the following
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time-independent radial KG equation for a spin-0 particle inDA-dimensional
Euclidean space (DA ≥ 3) for a QS, hereafter called parent QS-A, as

ψ′′
A(r) +

DA − 1

r
ψ′
A(r)

+

[
{EA − VA(r)}2 − {M0 + SA(r)}2 −

lA(lA +DA − 2)

r2

]
ψA(r) = 0 , (5)

where the normalised radial eigenfunction ψA(r) and relativistic eigenenergy
EA are supposed to be known exactly for the QS-A.

It can be shown that there exist mathematical similarities between the
non-relativistic radial Schrödinger equation and relativistic radial KG equa-
tion under the condition of equal vector and scalar potentials, while the po-
tential term is scaled from 2VA(r) to VA(r). With the assumption SA(r) =
+VA(r), equation (5) can be shaped into the following Schrödinger-like equa-
tion:

ψ′′
A(r) +

DA − 1

r
ψ′
A(r) +

[
ẼA − ṼA(r)−

lA(lA +DA − 2)

r2

]
ψA(r) = 0 . (6)

Here, in the line of Schrödinger QM, ṼA(r) = (EA +M0)VA(r) is defined
as the modulated potential, and ẼA= (E2

A −M2
0 ) is the redefined energy

corresponding to the modulated potential ṼA(r) for the parent QS-A.
Now applying the following CT, which is the primary part of the whole

transformation method,
r → gB(r)

into equation (6), the following intermediate auxiliary differential equation
has been structured

ψ′′
A(gB)+

DA − 1

gB
ψ′
A(gB)+

[
ẼA − ṼA(gB)−

lA(lA +DA − 2)

g2B

]
ψA(gB) = 0 ,

(7)
where the prime denotes differentiation with respect to the argument. Here,
the transformation function gB(r) is a differentiable function of at least class
C2 and its importance in the transformation method lies in the fact that it
helps us to generate a new potential function VB(r) for the daughter QS-B
through one of the ansatzes in equation (13).
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In the second part of the transformation, the following FT is applied in
equation (7):

ψB(r) = f−1
B (r)ψA(gB(r)) , (8)

which is the radial wavefunction for the newly generated QS-B. The mod-
ulating function f−1

B (r) plays a vital role in choosing dimensionality for
Euclidean space where the QS-B is going to be generated.

After applying the FT in equation (7), we have

ψ′′
B(r) +

(
d

dr
ln
f2Bg

DA−1
B

g′B

)
ψ′
B(r) +

[(
d

dr
ln fB

)(
d

dr
ln
f ′Bg

DA−1
B

g′B

)

+g′2B

{
ẼA − ṼA(gB)−

lA(lA +DA − 2)

g2B

}]
ψB(r) = 0 . (9)

To cast equation (9) in the form of a Schrödinger-like equation similar to
equation (7) for the generated QS-B in an arbitrarily chosenDB-dimensional
Euclidean space, we, at first, require the coefficient of the first-order deriva-
tive of ψB equal to DB−1

r , i.e.

d

dr

(
ln
f2Bg

DA−1
B

g′B

)
=
DB − 1

r
,

which fixes fB(r) and its derivative as functions of gB(r). As it is found
from the above equation that

fB(r) = gB(r)
′ 1
2 gB(r)

−DA−1

2 r
DB−1

2 , (10)

using fB(r) in equation (9), we move forward to

ψ′′
B(r) +

DB − 1

r
ψ′
B(r)

+

[
1

2
{gB, r} −

DA − 1

2

DA − 3

2

(
g′B
gB

)2

+
DB − 1

2

DB − 3

2

(
1

r2

)

+g′2B

{
ẼA − ṼA(gB)−

lA(lA +DA − 2)

g2B

}]
ψB(r) = 0 , (11)

where {gB, r} =
g′′′B
g′B

− 3
2

(
g′′B
g′B

)2
is the Schwartzian derivative [38].
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For the successful implementation of the combined transformation of
CT and FT, it is mandatory to invoke the following set of two ansatzes
in equation (11) so as to retrieve the Schrödinger-like equation similar to
equation (7) which will be conceived with a potential and its corresponding
energy for the QS-B:

g′ 2B ṼA(gB) = −ẼB (12)

and
g′ 2B ẼA = −ṼB(r) , (13)

where ṼB(r) = (EB + M)VB(r) is the modulated potential and ẼB =
(E2

B −M2) is the redefined energy corresponding to the modulated poten-
tial ṼB(r) for the generated QS-B. By putting the transformation function
gB(r), which is obtained from the ansatz in equation (12), in the ansatz in
equation (13), the modulated potential function ṼB(r), and hence VB(r) are
also generated for the QS-B in our formalism.

After using the ansatzes from equations (12) and (13) in equation (11),
we get the following differential equation:

ψ′′
B(r) +

DB − 1

r
ψ′
B(r)

+

[
ẼB − ṼB(r)−

{
− 1

2
{gB, r}+

DA − 1

2

DA − 3

2

(
g′B
gB

)2

−DB − 1

2

DB − 3

2

(
1

r2

)
+ g′ 2B

lA(lA +DA − 2)

g2B

}]
ψB(r) = 0 . (14)

The quantities inside the pair of big curly brackets can be moulded to give
the correct form of the ‘centrifugal barrier’ term in the DB-dimensional
space, whenever the parent potential VA(r) is a power-law type [38], i.e.

−1

2
{gB, r}+

DA − 1

2

DA − 3

2

(
g′B
gB

)2

− DB − 1

2

DB − 3

2

(
1

r2

)
+g′ 2B

lA(lA +DA − 2)

g2B
=
lB(lB +DB − 2)

r2
. (15)

Hence equation (14) yields the following exact form of a Schrödinger-like
equation for the generated QS-B:

ψ′′
B(r)+

DB − 1

r
ψ′
B(r)+

[
ẼB − ṼB(r)−

lB(lB +DB − 2)

r2

]
ψB(r) = 0 . (16)
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Normalisability of the generated wavefunction ψB(r) can be checked el-
egantly by using the general expressions in equations (8), (10), and (12)
as follows. If the radial wavefunction ψB(r) for DB-dimensional QS-B is
normalisable, then [10]

I(∞, 0) =

∞∫
0

ψ∗
B(r)ψB(r)r

DB−1dr = finite . (17)

Since the integral

I(∞, 0) =

∞∫
0

(
gB(r)

′ 1
2 gB(r)

−DA−1

2 r
DB−1

2

)−2

ψ∗
A(gB)ψA(gB)r

DB−1 dr

dgB
dgB

=

gB(∞)∫
gB(0)

g′−2
B ψ∗

A(gB)ψA(gB)g
DA−1
B dgB

=

gB(∞)∫
gB(0)

ψ∗
A(gB)

[
− ṼA(gB)

ẼB

]
ψA(gB)g

DA−1
B dgB

= constant

∞∫
0

ψ∗
A(r)VA(r)ψA(r)r

DA−1dr

= constant ⟨VA(r)⟩ ,

and ⟨VA(r)⟩ always exists for the genuine parent QS-A, I(∞, 0) takes a finite
value, and hence ψB(r) is normalisable.

If the transformation function gB(r) is not badly behaved, so far as its
local and asymptotic properties, i.e. g(0) = 0 and g(∞) = ∞, are concerned,
the transformation always carries forward the normalisability property from
the genuine parent QS-A to its daughter (generated) QS-B [42].

3. Generation of harmonic oscillator potential
in DB-dimensional Euclidean space

We start with considering the Coulomb potential as the known genuine
QS-A in three-dimensional Euclidean space (DA = 3) [11] for which VA(r) =
zA
r , where zA is the charge coupling parameter proportional to the product

of the charge number and the fine structure constant; the wavefunctions are

ψA(r) = CAr
lA e

−1
2
ρArF (−nr, 2(lA + 1), ρAr) , (18)
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where CA is the normalisation constant, nr(=0, 1, 2 . . .) is the radial quantum
number, lA(= 0, 1, 2 . . . ) is the orbital quantum number, F (−nr, 2(lA+1),
ρAr) is the confluent hypergeometric function [11], and

ρA = −zA
(
EA +M0

nA

)
; (19)

the energy eigenvalues are

EA =M0

(
n2A − z2A

4

n2A +
z2A
4

)
(20)

with nA = nr + lA + 1 as the principal quantum number for the QS-A.
A simple integration of equation (12) taking VA(gB) = zA

gB
along with

the local property of the transformation function gB(0) = 0 yields

gB(r) = σBr
2 , (21)

where

σB =

(
E2

B −M2
0

)
4zA (EA +M0)

. (22)

After putting the transformation function gB(r) from equation (21) into
equation (13), and using the following judicious assumption:

M0ω
2

2
= −

4σ2B
(
E2

A −M2
0

)
(EB +M0)

, (23)

the generated potential for the QS-B is fixed as the well-known harmonic
oscillator, i.e.

VB(r) =
M0ω

2r2

2
. (24)

Now using equations (10), (18), and (21) in equation (8), and lB = 1
2(4lA +

4 − DB) by equation (15), and defining the principal quantum number
nB = 2nr+ lB, the radial wavefunction of the QS-B (harmonic oscillator) is
generated as

ψB(r) = CBr
lB e

−1
2
ρBr2F

(
−nr,

1

2
(2lB +DB), ρBr

2

)
, (25)

where CB is the normalisation constant and ρB = − E2
B−M2

0

2(nB+
DB
2

)
.
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After simplifying equation (23) with the help of σB from equation (22),
we have obtained the relativistic energy spectrum in the form of an irrational
equation for the QS-B (harmonic oscillator) in DB-dimensional space as

(EB −M0)

√
(EB +M0)

2M0
= ω

(
nB +

DB

2

)
, (26)

which agrees with the already published result [11] for DB = 3.
Since the normalisation integral in equation (17) is found to be propor-

tional to the expectation value of the genuine Coulomb potential VA(r), the
generated radial wavefunction ψB(r) is normalisable.

4. Generation of Coulomb potential
in DC-dimensional Euclidean space

Repeating the transformation on equation (16) for harmonic oscillator
potential as mentioned in equation (24) considering QS-B as a parent QS in
DB-dimensional space with wavefunction given by equation (25) and the en-
ergy spectrum given by equation (26), Coulomb potential in DC-dimensional
space is generated as follows.

After applying the CT
r → gC(r)

and the FT
ψC(r) = f−1

C (r)ψB(gC(r)) , (27)

into equation (16), we have the following equation similar to equation (9):

ψ′′
C(r) + ψ′

C(r)

(
d

dr
ln
f2Cg

DB−1
C

g′C

)
+

[(
d

dr
ln fC

)(
d

dr
ln
f ′Cg

DB−1
C

g′C

)]

+g′2C

[
ẼB − ṼB(gC)−

lB(lB +DB − 2)

g2C

]
ψC(r) = 0 . (28)

To cast equation (28) in the form of a Schrödinger-like equation similar to
equation (16) for the generated QS-C in an arbitrarily chosen DC-dimen-
sional Euclidean space, we need to call equation (10)

fC(r) = gC(r)
′ 1
2 gC(r)

−DB−1

2 r
DC−1

2 , (29)
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with which equation (28) converts to

ψ′′
C(r) +

DC − 1

r
ψ′
C(r)

+

[
1

2
{gC , r} −

DB − 1

2

DB − 3

2

(
g′C
gC

)2

+
DC − 1

2

DC − 3

2

(
1

r2

)

+g′ 2C {ẼB − ṼB(gC)−
lB(lB +DB − 2)

g2C

]
ψC(r) = 0 . (30)

After applying the following ansatzes as stated in equations (12) and (13),
i.e.

g′ 2C ṼB(gC) = −ẼC , (31)

and
g′ 2C ẼB = −ṼC(r) , (32)

we get the following differential equation:

ψ′′
C(r) +

DC − 1

r
ψ′
C(r)

+

[
ẼC − ṼC(r)−

{
− 1

2
{gC , r}+

DB − 1

2

DB − 3

2

(
g′C
gC

)2

−DC − 1

2

DC − 3

2

(
1

r2

)
+ g′ 2C

lB(lB +DB − 2)

g2C

}]
ψC(r) = 0 , (33)

where ṼC(r) = (EC + M)VC(r) is the modulated potential and ẼC =
(E2

C −M2) is the redefined energy for generated QS-C. To introduce the
‘centrifugal barrier term’ for DC-dimensional Euclidean space into the above
equation, we adopt [38]

−1

2
{gC , r}+

DB − 1

2

DB − 3

2

(
g′C
gC

)2

− DC − 1

2

DC − 3

2

(
1

r2

)
+g′ 2C

lB(lB +DB − 2)

g2C
=
lC(lC +DC − 2)

r2
. (34)

Thus, the final Schrödinger-like equation for the QS-C becomes

ψ′′
C(r)+

DC − 1

r
ψ′
C(r)+

[
ẼC − ṼC(r)−

lC(lC +DC − 2)

r2

]
ψC(r) = 0 . (35)
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Integrating equation (31) with VB(gC) =
M0ω2g2C

2 along with the local prop-
erty of the transformation function gC(0) = 0, the transformation function
for QS-C is obtained as

gC(r) = σC
√
r , (36)

where

σC =

[
−8
(
E2

C −M2
0

)
M0ω2(EB +M0)

] 1
4

. (37)

Using the above gC(r) along with the following physically relevant assump-
tion:

zC = −
σ2C
(
E2

B −M2
0

)
4(EC +M0)

, (38)

equation (32) yields the generated potential for the QS-C as

VC(r) =
zC
r
,

which is the well-known Coulomb potential with its characteristic constant zC .
This Coulomb potential is (re)generated in a DC-dimensional Euclidean
space from a harmonic oscillator potential in DB-dimensional Euclidean
space via our transformation method as described in Section 2.

Using equations (25), (29), and (36) in equation (27), the wavefunction
of the QS-C is generated as

ψC(r) = CCr
lC e

−1
2
ρCrF (−nr, (2lC +DC − 1), ρCr) , (39)

where, CC is the normalisation constant, lC = DB−2DC+2lB+2
4 by equa-

tion (34) and ρC = ρBσ
2
B = 2

√
E2

C −M2
0 .

Combining equations (26), (37), and (38), we get the relativistic energy
spectrum for Coulomb potential in the generated QS-C in DC-dimensional
space as

EC =M0

{
nC + DC−3

2

}2
− z2C

4{
nC + DC−3

2

}2
+

z2C
4

, (40)

defining nC = nr + lC + 1 as the principal quantum number for the QS-
C. It resembles the energy spectrum of the 3-D Coulomb system as in
equation (20).

Normalisability of the generated radial ψC(r) wavefunction here is also
easily tested as earlier by using equation (17). Since the normalisation in-
tegral for QS-C is proportional to the expectation value of the harmonic
oscillator potential, it is finite, indicating that ψC(r) is normalisable.
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5. Discussion and conclusion

This paper deals with a new transformation method for (re)generation
of QMESP from an already known genuine exactly solved CSP (power law)
in the relativistic framework of the KG equation. The radial KG equation
in equation (5) is the basis of the treatment along with CT followed by FT
plus an indispensable set of ansatzes as stated in equations (12) and (13).
Starting with a centrally symmetric genuine Coulomb potential for the par-
ent QS-A in three-dimensional (DA = 3) Euclidean space, it is found that
this transformation quite efficiently generates the centrally symmetric har-
monic oscillator potential for daughter QS-B in any desired DB-dimensional
Euclidean space (DB ≥ 3). The generated wavefunctions and the derived ex-
pression for energy spectrum in equations (25) and (26), respectively, for the
generated harmonic oscillator agree with the relevant expressions in Ref. [11]
in three-dimensional Euclidean space, which ascertains the reliability of our
transformation method for the generation of CSPs (power law).

It is observed in our work that the repetition of the method on QS-B
with the centrally symmetric harmonic oscillator potential yields again a
Coulomb potential (QS-C) in any desired DC-dimensional Euclidean space.
Thus, as a by-product, our transformation method reveals a seamless cyclic
mapping establishing a relative parent–daughter family relationship between
the two most fundamental potentials, Coulomb and harmonic oscillator, in
the higher-dimensional QM of the KG equation in a more general way com-
pared to the work in [45]. Our method does not require solving of any
differential equations, it simply maps the wavefunction from a QS (parent)
to its daughter QS. In that sense, our transformation is a labour-saving
method compared to the other works reported in Refs. [43–48].

In our formalism, we find out a general procedure, as described in the
last part of Section 2, to address the essential issue of normalisability for
the generated wavefunctions in the QM of the KG equation irrespective of
the dimensions of Euclidean space. The proposed normalisability checking
procedure vividly shows that if the parent QS is a physical one, the wave-
functions for the generated QS are almost always normalisable. Thus, the
transformation acts as a smart carrier for the ‘DNA’ responsible for the
normalisability character from the parent to its daughter QS. It means in-
directly that our transformation method in principle has the capability to
map one physical QS-A with a CSP (power law) in DA-dimensional Eu-
clidean space to another physical one with a new CSP (power law) in DB

(DB = DA, DB ̸= DA) dimensional Euclidean space with the possibility of
dimensional extension and reduction as per the situation demands.
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The generating function g(r) which is obtained by the application of one
of the ansatzes in equation (12) plays a key role in mapping one QS to an-
other one, provided g(r) would be an invertible and differentiable function
of at least class C2, and also not a badly behaved function so far as its local
and asymptotic properties, i.e. g(0) = 0 and g(∞) = ∞, are concerned. It
is observed from our work that if someone starts with the Coulomb-like po-
tential V (r) ∼ 1

r (parent system), the ansatz in equation (12) always yields a
transformation function g(r) ∼ r2 in equation (21) which will invariably lead
us to a harmonic oscillator potential V (r) ∼ r2 (daughter system) through
the ansatz in equation (13), and if someone repeats the procedure start-
ing with harmonic oscillator as the parent system, then the transformation
function g(r) ∼

√
r in equation (36) generates none other than a Coulomb-

like system, immaterial about what the dimensions of Euclidean space are
for the parent and daughter QSs. The learning is that our transformation
stringently maps a Coulomb to harmonic oscillator and vice versa, which
therefore seems to be an inherent constriction of this method. To break this
cyclic mapping, we will need to formulate a new ansatz in lieu of the one in
equation (12) so that suitable transformation functions other than g(r) ∼ r2

(if we start with Coulomb) and other than g(r) ∼
√
r (if we start with har-

monic oscillator) can be obtained so as to arrive at exactly solvable/solved
CSPs other than harmonic oscillator and Coulomb, respectively.

The major inbuilt strength of our transformation method is its ability
to generate genuine/physical QSs from already exactly solved genuine QSs
with CSPs in the higher-dimensional QM of KG equation with equal vector
and scalar potentials. As such, we are currently investigating the possibility
of generating new and genuine CSPs (power law and non-power law) from
already known CSPs (non-power law) with our transformation method, and
the results attained hereafter will be communicated in our forthcoming pub-
lications.

The authors would like to thank the referee for positive and precious
suggestions which have improved the manuscript greatly.
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