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The initial time-dependence of a state in circumstances where it makes
transitions to, or decay to, a second state has been investigated. In classical
stochastic processes, the observed time-dependence of transition or decay
proportional to t2 is attributed to the noise with memory. In contrast
to quantum mechanics, the quadratic form of initial decay is unable to
decelerate the evolution of the system.
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1. Introduction

In many stochastic processes, the survival probability S(t) attracts con-
siderable attention [1–5]. The standard exponential decay law S(t) = e−t/τ

is never exact. For short times, t ≪ τ , the decay law is typically quadratic

S (t) ≃ 1−

(

t

τ

)2

. (1)

Obviously, a central part of such an analysis is the use of the t2 factor (or,
at last in principle, tα with α > 1) to produce a slowing down of decay by
measurement. As a consequence, for frequently repeated measurements at
very small time intervals, the Zeno effect, that is the freezing of state in its
unstable initial configuration, takes place [6–8]. If S (t) oscillates around the
exponential decay law, also the inverse Zeno effect, that is an increased decay
rate by measurements, is possible [9]. Finally, at large times t ≫ ατ , a power
law sets in, S(t) ≃ t−α, where α > 0 depends on the details of the interaction
that rules that particular decay [10]1. It is the fact that t2-dependence for
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1 Non-exponential decay of unstable systems can also be understood and described in
a most economical and adequate way in terms of non-extensive statistics [11].

(2-A2.1)

https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=54&aid=2-A2


2-A2.2 M. Rybczyński, Z. Włodarczyk

the quantum case leads to the quantum Zeno prediction, and should be
regarded as the quantum mechanical norm. There is, thus, a fundamental
mismatch between quantum physics and classical physics, both in the very
specific point of the t2-dependence versus the t-dependence for short time,
and in the more general point that decay processes are exponential in the
classical case, but not in the quantum one. In this work, we discuss classical
processes influenced by the noise with memory, which show t2-form of initial
decay, and we show that the Zeno effect vanishes in this case.

In Section 2, we recall the standard analysis of quantum decay. In Sec-
tion 3, we construct a master equation with stochastic noise the solution
of which for small enough t shows t2-form. Then, we discuss the obtained
solution (Section 4), and finally, we advocate in Section 5 that memory de-
stroys independence and in a classical system, an unstable particle observed
continuously decays quasi-exponentially (the Zeno paradox does not exist).
Section 6 summarizes and concludes our work.

2. Quantum Zeno paradox

A simple derivation of the quantum Zeno effect is possible by considering
time behaviour of the state vector [12]. Let the state vector at time t be
e−iHt|Φ⟩, where |Φ⟩ is the state vector at time t = 0 and H is the Hamiltonian
in units where the reduced Planck’s constant is set to unity, ℏ = 1. For t
small enough, it is possible to make a power series expansion: e−iHt ≃
1− iHt−H2t2/2 + . . . The survival probability is

S(t) =
∣

∣⟨Φ|e−iHt|Φ⟩
∣

∣

2
≃ 1− (∆H)2t2 , (2)

where
(∆H)2 = ⟨Φ|H2|Φ⟩ − ⟨Φ|H|Φ⟩2 (3)

is the variance of Hamiltonian.
Interrupting the interval [0, t] by n independent sequential measurements

at times t/n, the survival probability is

S(t) ≃

[

1− (∆H)2
(

t

n

)2
]n

(4)

and approaches 1 for n → ∞. It illustrates the situation that an unstable
particle, if observed continuously, will never decay. The Zeno effect is a
result of (a) a t2-form of initial decay, which is the normal quantum case (cf.
Eq. (2)), and (b) the independence of sequential measurements (cf. Eq. (4))
due to the fact that in quantum mechanics, measurements generally change
the state of the system being measured [13].
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3. Non-local master equation with memory

In the classical case, we consider the time-dependence of a state in cir-
cumstance where it may make a transition to, or decay to, a second state.
The rate of change of the non-decay probability P (t) at time t and depen-
dence on its history (starting at t = 0) is given by the non-local master
equation

dP (t)

dt
= −

t
∫

0

κ(t− s)P (s) ds+ η(t) , (5)

where η is the stochastic noise2. The memory effects are taken into account
through the introduction of the memory kernel

κ(t, s) = ⟨η(t)η(s)⟩ = γf(t− s) (6)

with γ = (∆η)2 = ⟨η2⟩ − ⟨η⟩2 being variance of η (notice that ⟨η⟩ = 0). We
assume that η is a Lorentzian noise with spectrum

G(ω) =
〈

η2
〉 τ

1 + ω2τ2
(7)

with correlators given by3

f(t) = e−|t|/τ (8)

and τ being the memory time since it sets the time scale over which time
correlations of noise decay4.

The non-decay probability P (t) is by itself a random variable depending
on the field fluctuations [17]. We define the survival probability as the
expectation value of the non-decay probability. Averaging probability over
ensemble, for the survival probability S(t) = ⟨P (t)⟩, we have

dS(t)

dt
= −

t
∫

0

γf(t− s)S(s) ds . (9)

Differentiating both sides of Eq. (9), we have

d2S(t)

dt2
+

1

τ

dS(t)

dt
+ γS(t) = 0 (10)

2 This approach to the evolution of a statistical system is based on the Mori–Zwanzig
formalism in which memory effects are taken into account through the introduction
of the memory kernel κ (t) [14]. This means that the rate of changes of the state
P (t) at time t depends on its history (starting at t = 0). Recently, the Langevin
equation in approach given by Eq. (5) was considered in the description of particles
motion [15].

3 ⟨η(0)η(t)⟩ =
∫∞

0
G(ω) eiωtdω = ⟨η2⟩ e|t|/τ .

4 For f(t−s) = δ(t−s), we have the standard exponential decay law, S(t) = e−t/τ [16].
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which, with two initial conditions,

S (t = 0) = 0 and
dS (t)

dt

∣

∣

∣

∣

∣

t=0

= 0 ,

allows simply to solve the problem analytically. The survival probability is
given by

S(t) =
e−t(1+A)/(2τ)(−1 +A)

2A
+

e−t(1−A)/(2τ)(1 +A)

2A
(11)

with A =
√

1− 4γτ2 (for the formal solution of Eq. (5), see Appendix A).
Time dependence of the survival probability S(t) for different parameters
A is shown in Fig. 1. Only for large t, we observe exponential behaviour,
S(t) ∼ exp[−t(1−A)/(2τ)]. For t small enough, we have

S(t) ≃ 1−
1

2
γt2 = 1−

1

2
(∆η)2t2 (12)

with the same behaviour as S(t) given by Eq. (2). Comparison of the
parabolic-dependence given by Eq. (12) with the initial time-dependence
of S (t) is shown in Fig. 2. The variance of noise, characterized by (∆η)2/2
term, corresponds to (∆H)2, and the survival probability S(t) also exhibits
1− t2 form [17].
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Fig. 1. Survival probability S(t) given by Eq. (11) for different A parameters.
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Fig. 2. Initial time-dependence of the survival probability S(t) given by Eq. (11)

for parameter A = 0.3 (broken line) in comparison with approximate parabolic

behaviour given by Eq. (12), with γ = (1−A2)/(4τ2) (solid line).

4. Some remarks

Usually, the memory kernel K(t−s) can lead to non-Markovian dynamics
depending on the structure and time scale of the processes. Also, Markovian
stochastic processes (where the time correlation ⟨η(t)η(s)⟩ ∼ e−|t−s|/τ as
is given by Eq. (6)) can lead to non-Markovian dynamics of the system
that is coupled to. In general, Markovianity or non-Markovianity are not
just features of the noise but of the dynamics of the system coupled to the
noise [17].

The survival probability given by Eq. (11) formally is the superposition

S (t) = ωa exp
−t

τa
− ωb exp

−t

τb
, (13)

with weights ωa = (1 +A) / (2A), ωb = (1−A) / (2A), and time constants
τa = (2τ) / (1−A) and τb = 2τ (1 +A). For t small enough, we have

S (t) ≃ (ωa − ωb) +

(

ωb

τb
−

ωa

τa

)

t+

(

ωa

2τ2a
−

ωb

2τ2b

)

t2 . (14)

From normalization, S(t = 0) = 1, we have ωa − ωb = 1. For ωa/τa = ωb/τb
and τa > τb, we observe the t2-form of initial decay (as given by Eq. (12)).
However, for ωa/τ

2
a = ωb/τ

2
b and τa < τb, we have “normal” behaviour with

S(t) ≃ 1− (ωb/τb − ωa/τa)t.
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The above discussion applies to 4γτ2 < 1 cases, nevertheless 4γτ2 > 1
is not excluded. Differential equation (10) corresponds to damped harmonic
oscillator. For 4γτ2 > 1, the system oscillates with amplitude gradually
decreasing to zero (under-damped oscillator). The frequency of oscillations

is given by ω2 = γ −
(

4τ2
)−1

and amplitude decay with 1/2τ rate5.

5. Memory destroy independence

Consider the survival probability S(t) ≃ 1−at2, as given by Eqs. (2) and
(12), where the time interval [0, t] is interrupted by n measurements at times
t/n, 2t/n, . . . , t. The width of bins is δ = t/n. The conditional probability
for ith bin is

Si = S (ti = iδ|ti−1 = (i− 1)δ) =
S(iδ ∩ (i− 1)δ)

S((i− 1)δ)

=
S(iδ)

S((i− 1)δ)
=

1− aδ2i2

1− aδ2(i− 1)2
(15)

and is not the same as S(δ) = 1 − aδ2, contrary to the memory-less expo-
nential S(t) for which Si = S(δ) = e−δ. For δ → 0, the survival probability
in each one of bins Si → 1. Nevertheless, the survival probability for n
measurements is

S(t = nδ) =
n
∏

i=1

1− aδ2i2

1− aδ2(i− 1)2
= 1− at2 (16)

and is not dependent on the number of measurements (in particular, S(nδ)
is the same when n → ∞). Contrary to arguments justifying the quantum
Zeno effect, in the classical system, an unstable particle observed continu-
ously decays “normally”.

The exponential decay law, being memory-less, obeys for the conditional
survival probability S(t|t1) the relation S(t = t1 + t2|t1) = S(t2). Due
to independence, we have S(t1 + t2) = S(t1)S(t2) (in particular, such an
assumption leads to Eq. (4)). This is not valid for dependent variables, and

S(t = t1 + t2) ̸= S(t1)S(t2) . (17)

For dependent variables (due to the noise correlation), we have chosen to
use the joint survival probability, in the form of (in analogy to the power
expansion of multivariate normal distribution)

5 Exponentially damped oscillating modes in decay of unstable quantum systems were
widely discussed in [18–20].
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S(t1, t2, . . . , tn) = 1−

n
∑

i=1

n
∑

j=1

titjCi,j , (18)

where Ci,j = ⟨η(ti)η(tj)⟩ − ⟨η(ti)⟩⟨η(tj)⟩ and for noise η(t) we can write
Ci,j = C. Even for the non-correlated noise, Ci,j = 0 for i ̸= j, we have
S(t1, t2, . . . , tn) = 1−

∑n
i t

2
iCi,i ̸= S(

∑n
i tt).

Interrupting the interval [0, t] by n measurements at times δ = t/n, the
survival probability is

S(δ1, δ2, . . . , δn) = 1− C
n
∑

i=1

n
∑

j=1

(

t

n

)2

= 1− Ct2 (19)

and the Zeno paradox does not exist6.

6. Summary

The dynamical evolution of the statistical system is always influenced
by their environment which exhibits time-correlated random fluctuations
which can lead to non-Markovian dynamics [22, 23]. By studying the time-
correlated noise, we have shown how the survival probability depends on the
time scale of the noise correlations. The time correlations in the noise field
determine how fast the survival probability converges to its exponential law
behaviour. Approximations, considering only one variable survival proba-
bility S(t), do not take into account all memory effects. The assumption of
S (

∑n
i=1 ti) =

∏n
i=1 S(ti), that leads to the conclusion expressed by Eq. (4),

is not valid in classical physics. Independence of sequential measurements
in quantum mechanics arises due to the fact that, unlike in classical physics,
measurements generally cannot be done without changing the state of the
measured system. In contrast, in classical physics where measurements can
be carried out without affecting the state of the system, there is no Zeno
effect even for the quadratic form of the survival probabilities.

This research was supported by the National Science Centre, Poland
(NCN) grant 2020/39/O/ST2/00277 (M.R.). In preparation of this work we
used the resources of the Center for Computation and Computational Mod-
eling of the Faculty of Exact and Natural Sciences of the Jan Kochanowski
University of Kielce.

6 The absence of the Zeno effect in dynamics with classical evolution was considered
recently in Ref. [21].
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Appendix A

Formal solution of Eq. (5)

The formal solution of Eq. (5) can be obtained by means of the Laplace
transform, namely,

P (t) =
1

2πı

σ+ı∞
∫

σ−ı∞

P0 +N (s)

s+K (s)
estds , (A.1)

where P0 = P (t = 0), and K (s) and N (s) denote the Laplace transforms
of the memory kernel and the noise, respectively. The integral is understood
on a Bromwich contour, where σ is a vertical contour in the complex plain
chosen so that all singularities are to the left of it.

We can evaluate the following averages:

S (t) = ⟨P (t)⟩ = P0
1

2πı

σ+ı∞
∫

σ−ı∞

1

s+K (s)
estds , (A.2)

and

〈

(P (t)− ⟨P (t)⟩)2
〉

= L−1

[

⟨N (s)N (s′)⟩

(s+K (s)) (s′ +K (s′))

]

(

t, t′
)

, (A.3)

where L−1 [h] (t, t′) is the two-dimensional inverse Laplece transform of h (s, s′)
that depends on t and t′. The Laplace transform of the memory kernel, given
by Eq. (6) with the noise correlator (8), is

K (t) =
τγ

τs+ 1
, (A.4)

and
〈

N (s)N
(

s′
)〉

=
γ (2 + τs+ τs′)

(s+ s′) (1 + τs) (1 + τs′)
. (A.5)

From Eqs. (A.2) and (A.4), considering that the zeros of s +K (s) are the
solutions of the equation s+τs2+γ = 0, we get Eq. (11) by a straightforward
application of the residues theorem.
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