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We study umbilically synchronized space-times M. First, we show that
M with vanishing electric part of the Weyl tensor is conformally flat if either
dim M = 4 or spatial slices X are conformally flat. Next, for the vacuum
case, we show that the scalar curvature of spatial slices X' is a non-positive
function of time ¢ (this includes the case when M is Schwarzchild exterior
space-time), and if, in addition, M is geodesic (acceleration-free) and elec-
tric part of the Weyl tensor vanishes, then M is a Lorentzian cone over
a hyperbolic space which is, in dimension 4, an expanding hyperbolic cos-
mological model. Finally, we provide some characterizations of conformal
(including inheriting conformal) vector fields of an umbilically synchronized
space-time.
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1. Introduction

The standard Friedmann—Lemaitre-Robertson-Walker (FLRW) cosmo-
logical model is described by the space-time M with the line-element

ds? = gopdz® da? = —dt? 4 a®(t)y;j da’ da? (1)

where «, 8 denote the space-time indices running over 0, 1,2, 3, the spatial
indices 4,j run over 1,2,3, time coordinate t = 2, the warping function
a(t) is the scale function, and ~;; is the fixed spatial metric of constant
curvature. We know that (i) M is conformally flat, (i) the spatial slices X
(t = constant) have constant curvature and are homothetic to one another,
and (%i1) X are umbilical in M and have constant mean curvature. A general
(n 4 1)-dimensional space-time is described in the ADM (Misner, Thorne,
and Wheeler [1]) formalism by the metric gog with the line-element

ds? = gapda®da’ = —N?dt* + g;; (da’ + S'dt) (da’ + 57 dt) ,  (2)

(2-A3.1)
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where the Greek indices «, 8 run over 0,1,...,n and Latin indices i, j over
1,...,n; N is the Lapse function that depends on ¢ and z*, and represents
the clock rates for an observer relative to a reference system of clocks, and
S% is a vector field on the n-dimensional slice X (t = constant) which rep-
resents two observers in relative motion with velocity S*. In this paper, we
assume that the shift vector S? is zero, i.e. the evolution vector field % is
orthogonal to the spatial slices X' and also that X's are totally umbilical in
M (which are true for the FLRW space-time). However, the mean curva-
ture need not be constant on any slice. Space-times foliated by such X's
are called umbilically synchronized space-times (see Ferrando, Morales, and
Portilla [2]) and are shear-free and vorticity-free with respect to an observer
whose congruence is given by the unit vector n = %% normal to Y. The
acceleration vector field A = V,,n need not vanish. Treciokas and Ellis [3]
have shown that the shear-free and vorticity-free time-like congruences con-
stitute a large class among the observers measuring an isotropic distribution
function obeying the Boltzmann equation. Conformally flat umbilical syn-
chronizations exist in any space-time admitting natural symmetric frames
(Coll and Morales [4]).

In this paper, we study umbilically synchronized space-times (M, g). We
note that these include the classical Schwarzschild exterior and FLWR space-
times. First, we derive the components of its Weyl conformal tensor in terms
of the geometric quantities of spatial slices X' (¢ = constant). As FLRW
space-times are conformally flat, we obtain a condition for an umbilically
synchronized space-time (M, g) to be conformally flat, in terms of vanishing
of the electric components of the Weyl tensor. An example of a confor-
mally flat non-FLRW umbilically synchronized space-time is the spherically
symmetric Stephani model with a non-uniform pressure fluid as an exact so-
lution of Einstein’s field equations. This example is a special case discussed
in Theorem 1. Another example of a non-conformally flat (not FLRW) um-
bilically synchronized space-time with vanishing electric components of the
Weyl tensor can be constructed from Theorem 1, as the warped product
of the time-line with the product: S? x S? of two unit spheres, with met-
ric —dt? + a?(t)(d6? + sin? 01d¢? + df3 + sin? 62d¢2), because S? x S? is
Einstein but does not have constant curvature. Next, for the vacuum case,
we show that the scalar curvature of spatial slices Y is a non-positive func-
tion of time ¢ (this includes the case when M is the Schwarzchild exterior
space-time), and if, in addition, M is geodesic (acceleration-free) and elec-
tric part of the Weyl tensor vanishes, then M is a Lorentzian cone over a
hyperbolic space which is, in dimension 4, an expanding hyperbolic cosmo-
logical model. Finally, motivated by the fact that FLRW space-times admit
a maximal conformal group, we provide some characterizations of conformal
(including inheriting conformal) vector fields of an umbilically synchronized
space-time.
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2. Basic equations

We denote the Levi-Cita connection, the Riemann curvature tensor, the
Ricci tensor, scalar curvature, and the Weyl tensor of the metric g;; by
V, Rk, Rij, R, and Cjj. Corresponding quantities of the space-time
metric gog are denoted by bars over the corresponding symbols with Greek
indices «, 3,7, in lieu of the Latin indices i, j,k,l. As indicated earlier,
the unit vector field n = %% is normal to X', and the acceleration vector
field A = V,n is tangential to the space-like slices Y/, and can be shown by
direct computation, to be equal to the spatial gradient of In N. Denoting
the co-ordinate basis of the tangent space of X by 0;, we have the second
fundamental form K;; of X defined by g(V,m, d;), where g is the space-time

metric.

Definition 1 A space-like hypersurface X of space-time (M, g) is said to be
umbilical if the second fundamental form K;; of X is pointwise proportional
to the induced metric tensor g;; on X.

We are assuming that space-time is umbilically synchronized, i.e. space-
like slices X are umbilical in M, and hence we have

Kij = 71gij, (3)

where 7 stands for the mean curvature of X. It can be verified by an easy
computation (see Fischer and Marsden [5]) that

1
Hu =N

Equations (3) and (4) imply the linear differential equation 0,g;; = 2N 7g;;
whose solution g;; splits off a time-independent metric v;; such that

gij = a (t,xk> Vij (5)

for a positive function a that depends on ¢ and z*. Thus, the line-element
of the umbilically synchronized space-time assumes the following form:

01 9ij - (4)

—N%dt? + a? (t, l’k) Vij daz® da? .

In particular, for N = 1, a a function of only ¢, and v any fixed time-
independent Riemannian metric, we get generalized Robertson—Walker
space-time (Alias, Romero, and Sanchez [6]) which becomes FLRW space-
time when 7 is of constant curvature. Comparing equation (3) with (4) and
using (5) yields the relation

TZW? (6)
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where the over-dot denotes partial differentiation with respect to t. The
classical Gauss and Codazzi equations for X are

Rijro = V;jKy; — ViKj; . (8)

We also have the following mixed components as given in [5]:
. 2 (1 k 1
Roio; = N N@Kij - KKy — sz‘vjN . 9)

Next, using the umbilicity condition (3) and the above curvature components
in the definition R,3 = gW‘Sng(;, we obtain

_ ' 1
RZ'() = (1 — n)ViT, (11)
Ryy = N (AN — Nnr* —nt) , (12)
_ 2
= R+224 +nr2+ 022 — AN, (13)

N N

At this point, we recall that the Weyl conformal tensor C of the (n + 1)-
dimensional space-time is given by the components
_ _ 1 _ _ _ _
Caﬁ’y& = Raﬁ’y& - m (Rﬁ'ygazS - Ra'yg,b’é + gﬁ'yRa(S - gcwR,B(S)
n(n_ 1) 9v9as — Gavy986) -

Using this definition along with equations (7)—(9) and (10)—(13), and after
a lengthy computations and arrangements, we obtain

1 R R
Cijkl = Cijkl + m [gil <Rjk - ank:) — 95l <Rik - nQikz)

R R
+9jk <Ril - nQil) — Gik (le - ngjzﬂ
1 AN AN
+m {gu <VijN - ank) — 95 (VkviN — ani)
AN AN
+9jk (ViVlN - ngil> — ik <VleN - ngjl)] , (14)
Cijko = 0, (15)

- N? R n—2 AN
Coioj = ——7 [Rij 9t (ViVjN - ngij):| : (16)
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3. A conformal flatness criterion

Let us recall (Stephani et al. [7]) that the electric part of the Weyl tensor
of the space-time with respect to n is E;; = C(0;,n,0;,n) = #Ciojo. So,
if E;; =0, then equation (16) provides

n—2 AN
Rij - ggi]’ + 7]\7 (VZ'V]'N — ngij> =0. (17)
If M is 4-dimensional, then X is 3-dimensional, and hence Cj;i; = 0. Using
this in (14) shows that Cjjp = 0 and hence M is conformally flat. For
dimension M > 4, equations (14) and (17) imply Cjjr = Cijm, and so
if Cijir = 0, i.e. Xs are conformally flat, then C’ijkl = 0, and hence M
is conformally flat. Converse is evident. We state these findings as the
following result.

Theorem 1 Let the electric part of the Weyl tensor of an umbilically syn-
chronized space-time M of dimension > 4 be zero. If dimension M = 4,
then M is conformally flat. For dimension M > 4, M is conformally flat if
and only if Xs are conformally flat.

This result is a generalization of the classical result: “A generalized
Robertson—Walker space-time M with metric: —dt?+a?(t)y;; dz’ da? (where
7 is a time-independent Riemannian metric) is conformally flat if and only if
7ij has constant curvature (and hence conformally flat). More generally, the
electric part of the Weyl tensor of M is zero if and only if 7;; is Einstein.”
(Sharma and Duggal [8]).

4. Vacuum case

For umbilically synchronized space-times that are vacuum, ¢.e. Raﬁ =0,
equations (10), (11), (12), and (13) provide

R 1 AN
i — —9ij = 7 | ViViN ——ugij | , 1
R n Jii N<VVJ nQ]) (18)
(1-n)V;m =0, (19)
AN = n (¥ +N7?), (20)
oM. 9 92, 2
R = 2NT nt —nt +NAN. (21)

Equation (19) immediately shows that the mean curvature 7 = % of Xis
a function of only ¢, i.e. the mean curvature of each spatial slice is constant
on that slice.
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Further, equations (20) and (21) imply that
R=—n(n—1)7? (22)

showing that the scalar curvature of spatial slices X is a non-positive function
of t.

Remark 1 For Schwarzschild exterior space-time metric: —(1 — 2Tm)dt2 +

(1 — 22)=1dr? 4 (r?)(d6? + sin? 0d¢?), we know that the spatial slices X
are totally geodesic (1 =0) in the space-time, R =0, and N = (1 — 277”)1/2
depends only on spatial coordinate r and hence AN = 0 (i.e. N is a harmonic
function), from equation (20). Consequently, (18) assumes the form R;; =
%(ViVjN). From this, it follows by a straightforward computation that the

only non-zero components of the Ricci tensor of ¥ are R} = _33m, R} = =T

R3 = -5, and hence X' is asymptotically flat, which is well known.

At this point, we assume that (M, g) is also geodesic, i.e. the acceleration
vector A vanishes. Thus, N depends only on ¢t and hence can be taken equal
to 1 by time-rescaling. Thus, equation (20) reduces to + = —72 and hence
integrates as 7 = 1/t. The use of (6) in the foregoing equation and time
integration gives a = tX, where X is an arbitrary function of z* and can
be absorbed in 7;;. Consequently, the space-time metric on M becomes
the Lorentzian cone: —dt? + tzvij dz’dz? and R;; = —"t—glgij. Hence, g;;
is Einstein, and from (16) the electric components of the Weyl tensor of
M vanish. For dim M = 4, X' are 3-dimensional and hence of constant
negative curvature, consequently, M is Minkowski. Thus, it represents the
expanding hyperbolic model in the Minkowski space-time (Misner, Thorne,
and Wheeler [1]). This leads to the following result.

Theorem 2 If a vacuum umbilically synchronized space-time (M,g) is
geodesic (acceleration-free), then it is a Lorentzian cone over a negatively
Einstein manifold. If the dimension of M 1is 4, then it represents the ex-
panding hyperbolic cosmological model.

5. Conformal vector fields

Let us recall the fact that FLRW-space-time admits a maximal conformal
group (Maartens and Maharaj [9]). Intrigued by this, we would like to
examine a 1-parameter group of conformal motions generated by a conformal

vector field V' defined by
Lyvg=2yg, (23)
where £ denotes the Lie-derivative operator and ¢ a smooth function called

the conformal-scale function. We divide our analysis into the following three
modules.
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5.1. Module I

Let us first consider a conformal vector field V' in the direction of the unit
vector field n orthogonal to spatial slices X' of an umbilically synchronized
space-time (M, g), i.e. V = fn for a function f on M. Substituting it into
(23), we have

9(Vxfn.Y) +g(Vyfn,X) =209 (X.Y) (24)

where X and Y are arbitrary vector fields on M. Now, denoting arbitrary
tangent vector fields on X' by X, Y, taking (n,n), (X,n), and (X,Y) pro-
jections of (24), we obtain the following relations:

nf =1, (25)

Xf = fXlN, (26)
and

JT=19, (27)

where nf is understood as the action of the vector field n as a differential
operator on the function f. It follows from equations (6), (25), and (27)
that O;In f = % which easily integrates as f = aX for an arbitrary positive
function of spatial coordinates. However, X can be absorbed by the fixed
time-independent metric ~;; defined by (5). Thus, we have

f=a. (28)
Next, integrating equation (26) gives
f=N/T, (29)
where T is a function only of ¢. Consequently, using (29), we find that
V=01/T)0. (30)

Thus, the conformal vector field along 0; is completely time-dependent. Also,
equation (27) provides the conformal scale function

P=—. (31)

In particular, for the FLRW-space-time, N = 1, and hence (28) and (29)
show that @ = 1/T", and hence (30) yields the well-known time-like conformal
vector field V = ad; with conformal scale function ¢ = a.
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Let us consider the special case when V' is homothetic, 4.e. ¢ is constant.
The use of equations (27), (28), and (29) provides ¢ = 4T which integrates

toa=Ye?/ (M)At where Y is a function of only the spatial coordinates and
hence can be absorbed by a. Thus, a = ¥ J (1At and hence depends only
on t. Now, equations (28) and (29) show that a = N/T. As a and T depend
only on t, therefore so does N. By time-rescaling, we can therefore take
N = 1. Consequently, it follows from (25) that @ = ¢ which integrates to
a = Yt + ¢ for a constant c. By rescaling and translating ¢, we can have
a =t. Also, from (28), we have f = ¢. As a result, the line-element becomes
—dt? + tQ%-j da?da?, i.e. the Lorentzian cone, and the homothetic vector
field along 9; becomes td;.

5.2. Module 11

Next, let us consider a spatial conformal vector field V' such that V' L n.
Taking the (n,n)-component of the conformal equation (23), we have

g (vnVa n) =—1.
But g(V,n) = 0. Therefore, the above equation assumes the form G(Van,V)
= 1. As we pointed out in Section 2 that V,n is the spatial gradient of
In N, we find that V In N = 4. Thus, we obtain the following result.

Proposition 1 Let V' be a conformal vector field on an umbilically synchro-
nized space-time such that V is tangential to the spatial slices X. If the lapse
function N is constant along V', then V is Killing.

The above result is a generalization of the well-known result that confor-
mal vector fields tangential to the space-like slices of an FLRW space-time
are Killing [9], because the lapse function N =1 for an FLRW space-time.

5.3. Module 111

Finally, we find inheriting conformal vector fields on an umbilically syn-
chronized space-time. Following Coley and Tupper [10], a conformal vector
field is said to be an inheriting conformal vector field, if it preserves the flow
lines along the unit time-like vector field up to a function multiple. In our
context, let the conformal Killing vector field be decomposed as V = an+U,
where U is the component of V' tangential to the spatial slices X'. The (n,n)
projection of the conformal Killing equation (23) provides the relation

g (VaU,n) =na—1. (32)
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For an arbitrary vector field X tangent to X, we take the (X, n)-projection
of (23) and use the umbilicity condition Vxn = 7X in order to get

ValU =7U + fn + ND (%) , (33)
where D is the spatial gradient operator. Using (32) in the above readily
gives 3 = 1 — na. Also, noting that Vyn = 7U (as U is tangent to X)) and
using it in (33) gives [U,n] = (na — ¢¥)n — ND(§;). Hence, we compute
Lyn = [an +U,n| = —(na)n + [U,n] = —Yn — ND(5 ). From this, it
follows that £yn is a multiple of n if and only if D(§) =0, i.e. « = NT,
where T is a function of only ¢. In this case, the inheriting conformal vector
field assumes the form of V.= NIm +U = T0; + U and £yn = —yYn.
Also, for X, Y tangent to X, the (X,Y)-projection of the conformal Killing
equation (23) gives (£Lyg)(X,Y) = 2(¢ — ar)g(X,Y). Summing up these
findings, we obtain the following characterization of an inheriting conformal
vector field on an umbilically synchronized space-time.

Theorem 3 A conformal vector field V on an umbilically synchronized
space-time is an inheriting conformal vector field with respect to the flow lines
determined by the unit time-like vector field n if and only if V.= NT (t)n+U,
where N is the lapse function, T(t) is a function of only t, and U is orthog-
onal to n.

Remark 2 Considering a time-like conformal vector field V = an for a
scalar function o, we obviously see that V' is an inheriting conformal vector
field. These vector fields arise (see Israel [11]) as the inverse temperature
function (1/T)u® (here w = n and T is the temperature). Their existence has
been further supported by Stephani [12] in terms of complete exact reversible
thermodynamics and argued in favor by Tauber and Weinberg [13] in terms
of the isotropy of the cosmic microwave background.

The author is immensely grateful to the referee for extremely valuable
suggestions for the improvement of this work.
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