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We study umbilically synchronized space-times M . First, we show that
M with vanishing electric part of the Weyl tensor is conformally flat if either
dim M = 4 or spatial slices Σ are conformally flat. Next, for the vacuum
case, we show that the scalar curvature of spatial slices Σ is a non-positive
function of time t (this includes the case when M is Schwarzchild exterior
space-time), and if, in addition, M is geodesic (acceleration-free) and elec-
tric part of the Weyl tensor vanishes, then M is a Lorentzian cone over
a hyperbolic space which is, in dimension 4, an expanding hyperbolic cos-
mological model. Finally, we provide some characterizations of conformal
(including inheriting conformal) vector fields of an umbilically synchronized
space-time.
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1. Introduction

The standard Friedmann–Lemaitre–Robertson–Walker (FLRW) cosmo-
logical model is described by the space-time M with the line-element

ds2 = gαβ dx
α dxβ = −dt2 + a2(t)γij dx

i dxj , (1)

where α, β denote the space-time indices running over 0, 1, 2, 3, the spatial
indices i, j run over 1, 2, 3, time coordinate t = x0, the warping function
a(t) is the scale function, and γij is the fixed spatial metric of constant
curvature. We know that (i) M is conformally flat, (ii) the spatial slices Σ
(t = constant) have constant curvature and are homothetic to one another,
and (iii) Σ are umbilical in M and have constant mean curvature. A general
(n + 1)-dimensional space-time is described in the ADM (Misner, Thorne,
and Wheeler [1]) formalism by the metric gαβ with the line-element

ds2 = gαβ dx
α dxβ = −N2 dt2 + gij

(
dxi + Si dt

) (
dxj + Sj dt

)
, (2)

(2-A3.1)
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where the Greek indices α, β run over 0, 1, . . . , n and Latin indices i, j over
1, . . . , n; N is the Lapse function that depends on t and xi, and represents
the clock rates for an observer relative to a reference system of clocks, and
Si is a vector field on the n-dimensional slice Σ (t = constant) which rep-
resents two observers in relative motion with velocity Si. In this paper, we
assume that the shift vector Si is zero, i.e. the evolution vector field ∂

∂t is
orthogonal to the spatial slices Σ and also that Σs are totally umbilical in
M (which are true for the FLRW space-time). However, the mean curva-
ture need not be constant on any slice. Space-times foliated by such Σs
are called umbilically synchronized space-times (see Ferrando, Morales, and
Portilla [2]) and are shear-free and vorticity-free with respect to an observer
whose congruence is given by the unit vector n = 1

N
∂
∂t normal to Σ. The

acceleration vector field A = ∇̄nn need not vanish. Treciokas and Ellis [3]
have shown that the shear-free and vorticity-free time-like congruences con-
stitute a large class among the observers measuring an isotropic distribution
function obeying the Boltzmann equation. Conformally flat umbilical syn-
chronizations exist in any space-time admitting natural symmetric frames
(Coll and Morales [4]).

In this paper, we study umbilically synchronized space-times (M, g). We
note that these include the classical Schwarzschild exterior and FLWR space-
times. First, we derive the components of its Weyl conformal tensor in terms
of the geometric quantities of spatial slices Σ (t = constant). As FLRW
space-times are conformally flat, we obtain a condition for an umbilically
synchronized space-time (M, g) to be conformally flat, in terms of vanishing
of the electric components of the Weyl tensor. An example of a confor-
mally flat non-FLRW umbilically synchronized space-time is the spherically
symmetric Stephani model with a non-uniform pressure fluid as an exact so-
lution of Einstein’s field equations. This example is a special case discussed
in Theorem 1. Another example of a non-conformally flat (not FLRW) um-
bilically synchronized space-time with vanishing electric components of the
Weyl tensor can be constructed from Theorem 1, as the warped product
of the time-line with the product: S2 × S2 of two unit spheres, with met-
ric −dt2 + a2(t)(dθ21 + sin2 θ1dϕ

2
1 + dθ22 + sin2 θ2dϕ

2
2), because S2 × S2 is

Einstein but does not have constant curvature. Next, for the vacuum case,
we show that the scalar curvature of spatial slices Σ is a non-positive func-
tion of time t (this includes the case when M is the Schwarzchild exterior
space-time), and if, in addition, M is geodesic (acceleration-free) and elec-
tric part of the Weyl tensor vanishes, then M is a Lorentzian cone over a
hyperbolic space which is, in dimension 4, an expanding hyperbolic cosmo-
logical model. Finally, motivated by the fact that FLRW space-times admit
a maximal conformal group, we provide some characterizations of conformal
(including inheriting conformal) vector fields of an umbilically synchronized
space-time.
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2. Basic equations

We denote the Levi-Cita connection, the Riemann curvature tensor, the
Ricci tensor, scalar curvature, and the Weyl tensor of the metric gij by
∇, Rijkl, Rij , R, and Cijkl. Corresponding quantities of the space-time
metric gαβ are denoted by bars over the corresponding symbols with Greek
indices α, β, γ, δ in lieu of the Latin indices i, j, k, l. As indicated earlier,
the unit vector field n = 1

N
∂
∂t is normal to Σ, and the acceleration vector

field A = ∇̄nn is tangential to the space-like slices Σ, and can be shown by
direct computation, to be equal to the spatial gradient of lnN . Denoting
the co-ordinate basis of the tangent space of Σ by ∂i, we have the second
fundamental form Kij of Σ defined by g(∇̄∂in, ∂j), where g is the space-time
metric.

Definition 1 A space-like hypersurface Σ of space-time (M, g) is said to be
umbilical if the second fundamental form Kij of Σ is pointwise proportional
to the induced metric tensor gij on Σ.

We are assuming that space-time is umbilically synchronized, i.e. space-
like slices Σ are umbilical in M , and hence we have

Kij = τgij , (3)

where τ stands for the mean curvature of Σ. It can be verified by an easy
computation (see Fischer and Marsden [5]) that

Kij =
1

2N
∂tgij . (4)

Equations (3) and (4) imply the linear differential equation ∂tgij = 2Nτgij
whose solution gij splits off a time-independent metric γij such that

gij = a2
(
t, xk

)
γij (5)

for a positive function a that depends on t and xk. Thus, the line-element
of the umbilically synchronized space-time assumes the following form:

−N2 dt2 + a2
(
t, xk

)
γij dx

i dxj .

In particular, for N = 1, a a function of only t, and γ any fixed time-
independent Riemannian metric, we get generalized Robertson–Walker
space-time (Alias, Romero, and Sanchez [6]) which becomes FLRW space-
time when γ is of constant curvature. Comparing equation (3) with (4) and
using (5) yields the relation

τ =
ȧ

aN
, (6)
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where the over-dot denotes partial differentiation with respect to t. The
classical Gauss and Codazzi equations for Σ are

R̄ijkl = Rijkl +KilKjk −KikKjl , (7)
R̄ijk0 = ∇jKki −∇iKkj . (8)

We also have the following mixed components as given in [5]:

R̄0i0j = N2

(
1

N
∂tKij −Kk

i Kkj −
1

N
∇i∇jN

)
. (9)

Next, using the umbilicity condition (3) and the above curvature components
in the definition R̄αβ = gγδR̄γαβδ, we obtain

R̄ij = Rij +

(
nτ2 +

τ̇

N

)
gij −

1

N
∇i∇jN , (10)

R̄i0 = (1− n)∇iτ , (11)
R̄00 = N

(
∆N −Nnτ2 − nτ̇

)
, (12)

R̄ = R+ 2
n

N
τ̇ + nτ2 + n2τ2 − 2

N
∆N . (13)

At this point, we recall that the Weyl conformal tensor C̄ of the (n + 1)-
dimensional space-time is given by the components

C̄αβγδ = R̄αβγδ −
1

n− 1

(
R̄βγgαδ − R̄αγgβδ + gβγR̄αδ − gαγR̄βδ

)
+

R̄

n(n− 1)
(gβγgαδ − gαγgβδ) .

Using this definition along with equations (7)–(9) and (10)–(13), and after
a lengthy computations and arrangements, we obtain

C̄ijkl = Cijkl +
1

(n− 1)(n− 2)

[
gil

(
Rjk −

R

n
gjk

)
− gjl

(
Rik −

R

n
gik

)
+gjk

(
Ril −

R

n
gil

)
− gik

(
Rjl −

R

n
gjl

)]
+

1

N(n− 1)

[
gil

(
∇j∇kN − ∆N

n
gjk

)
− gjl

(
∇k∇iN − ∆N

n
gki

)
+gjk

(
∇i∇lN − ∆N

n
gil

)
− gik

(
∇j∇lN − ∆N

n
gjl

)]
, (14)

C̄ijk0 = 0 , (15)

C̄0i0j = − N2

n− 1

[
Rij −

R

n
gij +

n− 2

N

(
∇i∇jN − ∆N

n
gij

)]
. (16)
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3. A conformal flatness criterion

Let us recall (Stephani et al. [7]) that the electric part of the Weyl tensor
of the space-time with respect to n is Eij = C̄(∂i,n, ∂j ,n) =

1
N2 C̄i0j0. So,

if Eij = 0, then equation (16) provides

Rij −
R

n
gij +

n− 2

N

(
∇i∇jN − ∆N

n
gij

)
= 0 . (17)

If M is 4-dimensional, then Σ is 3-dimensional, and hence Cijkl = 0. Using
this in (14) shows that C̄ijkl = 0 and hence M is conformally flat. For
dimension M > 4, equations (14) and (17) imply C̄ijkl = Cijkl, and so
if Cijkl = 0, i.e. Σs are conformally flat, then C̄ijkl = 0, and hence M
is conformally flat. Converse is evident. We state these findings as the
following result.

Theorem 1 Let the electric part of the Weyl tensor of an umbilically syn-
chronized space-time M of dimension ≥ 4 be zero. If dimension M = 4,
then M is conformally flat. For dimension M > 4, M is conformally flat if
and only if Σs are conformally flat.

This result is a generalization of the classical result: “A generalized
Robertson–Walker space-timeM with metric: −dt2+a2(t)γij dx

i dxj (where
γ is a time-independent Riemannian metric) is conformally flat if and only if
γij has constant curvature (and hence conformally flat). More generally, the
electric part of the Weyl tensor of M is zero if and only if γij is Einstein.”
(Sharma and Duggal [8]).

4. Vacuum case

For umbilically synchronized space-times that are vacuum, i.e. R̄αβ = 0,
equations (10), (11), (12), and (13) provide

Rij −
R

n
gij =

1

N

(
∇i∇jN − ∆N

n
gij

)
, (18)

(1− n)∇iτ = 0 , (19)
∆N = n

(
τ̇ +Nτ2

)
, (20)

R = −2
n

N
τ̇ − nτ2 − n2τ2 +

2

N
∆N . (21)

Equation (19) immediately shows that the mean curvature τ =
TrKij

n of Σ is
a function of only t, i.e. the mean curvature of each spatial slice is constant
on that slice.
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Further, equations (20) and (21) imply that

R = −n(n− 1)τ2 (22)

showing that the scalar curvature of spatial slicesΣ is a non-positive function
of t.

Remark 1 For Schwarzschild exterior space-time metric: −(1 − 2m
r )dt2 +

(1 − 2m
r )−1dr2 + (r2)(dθ2 + sin2 θdϕ2), we know that the spatial slices Σ

are totally geodesic (τ = 0) in the space-time, R = 0, and N = (1− 2m
r )1/2

depends only on spatial coordinate r and hence ∆N = 0 (i.e. N is a harmonic
function), from equation (20). Consequently, (18) assumes the form Rij =
1
N (∇i∇jN). From this, it follows by a straightforward computation that the
only non-zero components of the Ricci tensor of Σ are R1

1 = −2m
r3

, R2
2 = m

r3
,

R3
3 = m

r3
, and hence Σ is asymptotically flat, which is well known.

At this point, we assume that (M, g) is also geodesic, i.e. the acceleration
vector A vanishes. Thus, N depends only on t and hence can be taken equal
to 1 by time-rescaling. Thus, equation (20) reduces to τ̇ = −τ2 and hence
integrates as τ = 1/t. The use of (6) in the foregoing equation and time
integration gives a = tX, where X is an arbitrary function of xk and can
be absorbed in γij . Consequently, the space-time metric on M becomes
the Lorentzian cone: −dt2 + t2γij dx

i dxj and Rij = −n−1
t2
gij . Hence, gij

is Einstein, and from (16) the electric components of the Weyl tensor of
M vanish. For dim M = 4, Σ are 3-dimensional and hence of constant
negative curvature, consequently, M is Minkowski. Thus, it represents the
expanding hyperbolic model in the Minkowski space-time (Misner, Thorne,
and Wheeler [1]). This leads to the following result.

Theorem 2 If a vacuum umbilically synchronized space-time (M, g) is
geodesic (acceleration-free), then it is a Lorentzian cone over a negatively
Einstein manifold. If the dimension of M is 4, then it represents the ex-
panding hyperbolic cosmological model.

5. Conformal vector fields

Let us recall the fact that FLRW-space-time admits a maximal conformal
group (Maartens and Maharaj [9]). Intrigued by this, we would like to
examine a 1-parameter group of conformal motions generated by a conformal
vector field V defined by

£V g = 2ψg , (23)
where £ denotes the Lie-derivative operator and ψ a smooth function called
the conformal-scale function. We divide our analysis into the following three
modules.
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5.1. Module I

Let us first consider a conformal vector field V in the direction of the unit
vector field n orthogonal to spatial slices Σ of an umbilically synchronized
space-time (M, g), i.e. V = fn for a function f on M . Substituting it into
(23), we have

g
(
∇̄X̄fn, Ȳ

)
+ g

(
∇̄Ȳ fn, X̄

)
= 2ψg

(
X̄, Ȳ

)
, (24)

where X̄ and Ȳ are arbitrary vector fields on M . Now, denoting arbitrary
tangent vector fields on Σ by X,Y , taking (n,n), (X,n), and (X,Y ) pro-
jections of (24), we obtain the following relations:

nf = ψ , (25)
Xf = fX lnN , (26)

and
fτ = ψ , (27)

where nf is understood as the action of the vector field n as a differential
operator on the function f . It follows from equations (6), (25), and (27)
that ∂t ln f = ȧ

a which easily integrates as f = aX for an arbitrary positive
function of spatial coordinates. However, X can be absorbed by the fixed
time-independent metric γij defined by (5). Thus, we have

f = a . (28)

Next, integrating equation (26) gives

f = N/T , (29)

where T is a function only of t. Consequently, using (29), we find that

V = (1/T )∂t . (30)

Thus, the conformal vector field along ∂t is completely time-dependent. Also,
equation (27) provides the conformal scale function

ψ =
ȧ

N
. (31)

In particular, for the FLRW-space-time, N = 1, and hence (28) and (29)
show that a = 1/T , and hence (30) yields the well-known time-like conformal
vector field V = a∂t with conformal scale function ψ = ȧ.
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Let us consider the special case when V is homothetic, i.e. ψ is constant.
The use of equations (27), (28), and (29) provides ȧ

a = ψT which integrates
to a = Y eψ

∫
(T )dt, where Y is a function of only the spatial coordinates and

hence can be absorbed by a. Thus, a = eψ
∫
(T )dt, and hence depends only

on t. Now, equations (28) and (29) show that a = N/T . As a and T depend
only on t, therefore so does N . By time-rescaling, we can therefore take
N = 1. Consequently, it follows from (25) that ȧ = ψ which integrates to
a = ψt + c for a constant c. By rescaling and translating t, we can have
a = t. Also, from (28), we have f = t. As a result, the line-element becomes
−dt2 + t2γij dx

i dxj , i.e. the Lorentzian cone, and the homothetic vector
field along ∂t becomes t∂t.

5.2. Module II

Next, let us consider a spatial conformal vector field V such that V ⊥ n.
Taking the (n,n)-component of the conformal equation (23), we have

g
(
∇̄nV,n

)
= −ψ .

But g(V,n) = 0. Therefore, the above equation assumes the form g(∇̄nn, V )
= ψ. As we pointed out in Section 2 that ∇̄nn is the spatial gradient of
lnN , we find that V lnN = ψ. Thus, we obtain the following result.

Proposition 1 Let V be a conformal vector field on an umbilically synchro-
nized space-time such that V is tangential to the spatial slices Σ. If the lapse
function N is constant along V , then V is Killing.

The above result is a generalization of the well-known result that confor-
mal vector fields tangential to the space-like slices of an FLRW space-time
are Killing [9], because the lapse function N = 1 for an FLRW space-time.

5.3. Module III

Finally, we find inheriting conformal vector fields on an umbilically syn-
chronized space-time. Following Coley and Tupper [10], a conformal vector
field is said to be an inheriting conformal vector field, if it preserves the flow
lines along the unit time-like vector field up to a function multiple. In our
context, let the conformal Killing vector field be decomposed as V = αn+U ,
where U is the component of V tangential to the spatial slices Σ. The (n,n)
projection of the conformal Killing equation (23) provides the relation

g
(
∇̄nU,n

)
= nα− ψ . (32)
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For an arbitrary vector field X tangent to Σ, we take the (X,n)-projection
of (23) and use the umbilicity condition ∇̄Xn = τX in order to get

∇̄nU = τU + βn+ND
( α
N

)
, (33)

where D is the spatial gradient operator. Using (32) in the above readily
gives β = ψ−nα. Also, noting that ∇̄Un = τU (as U is tangent to Σ) and
using it in (33) gives [U,n] = (nα − ψ)n − ND( αN ). Hence, we compute
£V n = [αn + U,n] = −(nα)n + [U,n] = −ψn − ND( αN ). From this, it
follows that £V n is a multiple of n if and only if D( αN ) = 0, i.e. α = NT ,
where T is a function of only t. In this case, the inheriting conformal vector
field assumes the form of V = NTn + U = T∂t + U and £V n = −ψn.
Also, for X,Y tangent to Σ, the (X,Y )-projection of the conformal Killing
equation (23) gives (£Ug)(X,Y ) = 2(ψ − ατ)g(X,Y ). Summing up these
findings, we obtain the following characterization of an inheriting conformal
vector field on an umbilically synchronized space-time.

Theorem 3 A conformal vector field V on an umbilically synchronized
space-time is an inheriting conformal vector field with respect to the flow lines
determined by the unit time-like vector field n if and only if V = NT (t)n+U ,
where N is the lapse function, T (t) is a function of only t, and U is orthog-
onal to n.

Remark 2 Considering a time-like conformal vector field V = αn for a
scalar function α, we obviously see that V is an inheriting conformal vector
field. These vector fields arise (see Israel [11]) as the inverse temperature
function (1/T )ua (here u = n and T is the temperature). Their existence has
been further supported by Stephani [12] in terms of complete exact reversible
thermodynamics and argued in favor by Tauber and Weinberg [13] in terms
of the isotropy of the cosmic microwave background.

The author is immensely grateful to the referee for extremely valuable
suggestions for the improvement of this work.
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