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Based on the gauge transformation between the corresponding Lax pair,
we derive a Darboux transformation of the coupled massive Thirring sys-
tem. As an application, using the Darboux transformation and the reduc-
tion technique, various exact solutions for the coupled massive Thirring
system and the classical massive Thirring model are obtained, including
one-soliton solution, two-soliton solution, periodic solution, and others.
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1. Introduction

Soliton equations are important models describing nonlinear phenomena
that occur in nature and have many applications in various fields of physical
science such as nonlinear waves, nonlinear optics, plasma physics, and mag-
netic fluids [1-3]. In all sorts of soliton models, the massive Thirring model
was proposed firstly by Thirring to study some features of relativistic field
theories [4]. In [5, 6], authors gave the connection between the classical mas-
sive Thirring model and the sine-Gordon model. The connection has made
numerous research of the classical massive Thirring model been conducted
smoothly, like the quasi-periodic solutions by employing the theory of alge-
braic curves and the periodic problem |7], soliton solutions by the inverse
scattering transform [8|, and multi-soliton solutions to the Thirring model
through the reduction method [9]. Recently, Darboux polynomial matrices
of the classical massive Thirring model has been obtained by introducing a
novel algorithm [10].
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It is known that the Darboux transformation is a powerful tool for solving
soliton equations. With the aid of all kinds of trivial solutions, the Darboux
transformation can produce another set of new solutions. This process can
be done continually and will usually yield a series of multi-soliton solutions
[11-14], which is its advantage over the inverse scattering transformation
[15], the direct method [16], the Backlund transformation [17], the algebro-
geometric method [18-22|, and others [23-26]. The aim of the present paper
is to construct a Darboux transformation for the coupled massive Thirring
system

gz + 21 (bpuv + Bo) q + 2iapu =0, 1, — 2i (bguv + fo) r — 2iagv =0,
ug + 2iq + iyt (1 —20g)ugr =0, v — 2ir —iag* (1 — 26p) vgr =0,
(1)
with the aid of a gauge transformation between the corresponding 2 x 2
matrix spectral problems, by which some explicit solutions of the coupled
massive Thirring system are given, where £y, ag, and Sy are three real con-
stants. As a reduction, a Darboux transformation of the generalized classical
massive Thirring model can be written as

qp + 21 (KOMQ + ﬂo) q + 2icgu =0,
ug + 2iq +iag (1 — 26p) ulg|* =0, (2)

and its explicit solutions are obtained. A systematic algebraic procedure is
given in detail to solve equations (1) and (2).

The present paper is organized as follow. In Section 2, based on the
introduced gauge transformation between two 2 x 2 spectral problems, we
derive a Darboux transformation with multi-parameters for the coupled mas-
sive Thirring system (1), from which the solutions of the coupled massive
Thirring system (1) are reduced to solving a linear algebraic system and
two first-order ordinary differential equations. In Section 3, as an applica-
tion of the Darboux transformation, we obtain various exact solutions of the
coupled massive Thirring system (1), such as one-soliton solution, periodic
solution, and plane wave solution. In Section 4, we arrive at a Darboux
transformation of the generalized classical massive Thirring model (2) by
means of the reduction technique. Furthermore, with the help of the Dar-
boux transformation, we obtain one-soliton and two-soliton solutions of the
generalized classical massive Thirring model (2).

2. Darboux transformation

In this section, we shall construct a Darboux transformation for the cou-
pled massive Thirring system (1), which can be derive from the compatibility
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condition

U -V, +[U,V]=0,

between the 2 x 2 matrix spectral problem

_ (A= (bouv + Bo) M
bz =UY, U_l( v =X+ (bpuv + Bo) ) (3)
and the auxiliary problem
1-2
apA ™! — > bo qr q
_ _; o
wt_qubv V=i 1 0 4 1_2@0 )
rA —QgAT T+ ——qr

(4)
where 1 = (1,/}1 wg)T, u=u(x,t), v =uv(z,t), ¢ = q(z,t), r = r(x,t) are
four complex potentials with two real independent variables x and t, A is
a constant spectral parameter, and ¢y, g, and 5y are three real constants
that are unrelated to A. Especially, Eq. (1) can be reduced to Eq. (2) as
r=¢* and v = u*.

In order to derive a Darboux transformation of the coupled massive
Thirring system (1), we introduce a gauge transformation of the spectral
problems (3) and (4)

=Ty, T—(é f’;) (5)

with

|_|

N— N
A=Ay ()\N + AM) ., B=Ay ZB,N,
k=0 k=1

| Nl 1 N-1
— N k
= Ay CrA D = AN</\ +EDM>
k=0 k=0

where Ay will be determined later. Let us assume that ¢ = (¢1, ¢2)7, ¢ =
(o1, p2)T are two basic solutions of the spectral problems (3) and (4), and
let us define a linear algebraic system

N— N N-1
S AN + ;> B =2 > (Cr 4 D) My = —ajAY
= k=0

with
b2 (Nj) — 752 (\g)

] N 7
o1 ) =01 (0 1<j<2N, (7)

a5 =
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where parameters A; (A\j # A\ as k # j) and 7; are suitably chosen such as
the determinant of the coefficients for (6) are non-zero. Then Ay, By, Ck, Dy,
(1<k<N-1), Ay, By, Coy, Dy are uniquely determined by (6), and Ay
will be given latter (see theorem 1 and theorem 2). It is easy to see from (6)
that

N-1 N-1 N N-1
(Aj-v + ) A,M?) (AjV +) DM?) => Y BCXET (8)

k=0 k=0 k=1 I=

which implies that A; ( 1 < j < 2N) are 2N roots of 2N*P-order polynomial
detT'. Hence, detT' can be written as

N-1 N-1 N N-1
detT = ()\N +) AM) ()\N +)° DM) =YY BropaEH

k=0 k=0 =1 =
2N
=TT =x) . (9)
j=1

With the help of the gauge transformation (5), the spectral problems (3)
and (4) are transformed into the following spectral problems of :

’(LZE = U’(Z)a 72115 = VQ/A), (10)
when A # A; (1 <j <2N), where
U= (T, +TU)T™, V=T +TV)I . (11)

It is not difficult to verify that A = A\;(1 < j < 2N) are removable iso-

lated singularities of U and V. Therefore, we can define U and V for all A
by analytic continuation. As shown in Ref. [11], a gauge transformation
of a spectral problem is called a Darboux transformation of the spectral
problem if it transforms the spectral problem into another spectral problem
of the same type. In what follows, we are going to prove that the gauge
transformation (5) is a Darboux transformation of (3) and (4).

Theorem 1. Suppose that Ay, By, Ck, Dp(1 < k < N —1), Ay, By, Co, Dy
are uniquely given by (6), and Ay is determined by the following first-order
ordinary differential equation

61 IIIAN :1(1 —260) (UCN_1 —UBN—2BNCN_1). (12)

Then the matriz U determined by the first equation of (11) has the same
form as U, i.e.

~ (A= (botd + Bo) i
U_1< Ov ’ —/\+(£0aﬁ+ﬁo))’ (13)
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where the transformation formulations from the old potentials u, v into new
ones are given by

i =uA% — 243By, 0= -5 +

(14)

Transformation (5) and (14): (¥, u,v) — (¥, @, 9) is a Darbouz transforma-
tion of the spectral problem (3).

Proof. Let T~1 = T*/det T and
s _ (J1(A) fi2(})
(Te + TUT" = <f21()\) f22(>\)> 7 (19)

It is obvious that fi1(\), fi2(A), Afer(A), faa(N) are (2N + 1)th-order poly-
nomials in A and the lowest order of fi1(\), fa1(\), fa2(N) is 0, the lowest
order of fi2(A) is 1. By using (3), (6), and (7), we arrive at

Qj oz = —i)\juajz- —2i [)\j — (Eouv + BO)] a; + v,
Az(Xj) = —Bx(Aj)aj — B(Aj) e,
Cx()\j) = —Dz(Aj)Oéj — D(/\j)Oéj@, (1 S j S QN) . (16)

It is easy to see that \; ( 1 < j < 2N) are roots of fu(X) (s, t = 1,2)
through (15) and (16). We have

P21 D33’ A + Pog
(17)
where pglt) and pg (s,t = 1,2, | = 0,1) are independent of A. Therefore,
Eq. (15) can be written as

(1) (0)
(Tx + TU)T* — (det T)P()\)’ P()\) — ( 11 A +P11 (1)>\P12 (0)> ’

T, +TU = PINT. (18)
Equating the coefficients of ANt and AV in (18), we find
. : . i(v+2CN— .
P = ol =1, pi2 =14% (u—2By) = id, pa = <AQNN1) =i0,(19)
p12CN—1

P =0 Ay + (i —p)) Ao + By - —i(foww + o) ,(20)

A
O — 9, In Ay —pa1 A% By +iuCn—_1— (pt) +1) D i (4 21
Doy e In Ay —pa1 A By +HiuCn—1 — ( pyy +1) Dy—1+i (bouv+ o) - (21)
Substituting (19) into (20) and (21) yields

0 0
Pgl) = —ng) :
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Finally, inserting (12) and (19) into (20) and through tedious calculations,
one can achieve

PV = —pl = —i[ly (u — 2By) (v + 2Cn_1) + Bo] = —i (botii + Bo) . (22)
0

Theorem 2. Assume the hypotheses of Theorem 1. Suppose that the time
dependence of Ax obey the following first-order ordinary differential equation
with respect to the variable t

i(1—20y) (—qAoCo + rB1Dg + 200B1C))

8t lnAN = AODO

. (23)

Then the matriz V defined by the second equation of (11) has the same form
as V', in which the old potentials q and r are mapped into the new ones §
and 7 where the transformation formulations are given by

A?\f (QAO — QCM()Bl) P (T‘Do + 20[000)

, 24
Do Ao A2, (24)

q=
Transformation (5), (14), and (24): (Y, u,v,q,7) — (@Z,&,@,Q,f) is a Dar-
boux transformation of the two spectral problems (3) and (/).
Proof. Let T~' = T*/det T and

T = (G0 ) @

It is easy to note that gi1(A\), g12(N), Ag21(A), gaa(A) are 2Nth-order poly-

nomials in A and the lowest order of g11(A), g21(\), gaa(A) is —1, the lowest
order of gi2(A) is zero. From (4), (6), and (7), we see that

—iga? — 1 [208A71 — (1 —20) qr| L +irA7t, 1< j<2N,

aj7t = j ao
At (Aj) = —Bt ()\]) Ozj — B(/\j)ozji s
Ci(Nj) = —De (M) aj — D (Aj) oyt - (26)

It can be verified that A\; (1 < j < 2N) are roots of gs(A) (s, t =1,2) by
using (25) and (26). Therefore, we get

511))\ T4 q%?) q12
Ty +TV)T* = (det THQ(N),Q(\) = )
( ¢ ) ( ) ( ) ( ) (121/\71 qg))\fl—i‘q;g)
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where q(? and gs (s,t = 1,2, [ = 0,1) are independent of A. Therefore,

S
Eq. (25) can be written as

T,+TV =Q\T. (27)
By comparing the coefficients of A=!, A% and AV in (27), we find

1 _ 143 (qAo — 209 B1)

PN

(1)
1

117 = —4y9 = iag , q12 = D =14,
0
i(?”Do + 204000) ~
pr— f— 7"
qz21 AoA?V ,
and
igr (1 — 2¢,
¢V =gl =g m Ay - =0 (2 ). (28)
Qo
By using (23) and (28), we can arrive at
0) 0) 1(260 — 1) (qu — 204031) (T’D() + 2@000) o 260 —-1.
A1 = =G0 = = 1qr.
20(0AOD0 2@0
O

Based on Theorems 1 and 2, transformations (5), (14) and (24) transform
the Lax pair (3) and (4) into another Lax pair of the same type in view of
(11). Naturally, both of the Lax pairs lead to the same (1). Therefore,
transformation (14) and (24) is also called a Darboux transformation of the
coupled massive Thirring system (1). We get immediately the following fact.

Theorem 3. Every solution (u,v,q,r) of the coupled massive Thirring sys-
tem (1) is mapped into a new solution (4,0,q,7) of the coupled massive
Thirring system (1) under the Darbouz transformation (14) and (24), where
Ao, B1, By, Co,Cn—1, and Dqy are given by the linear algebraic system (6),
and Ay is given by the two first-order ordinary differential equations (12)
and (23) uniquely.

3. Explicit solutions of the coupled massive Thirring system

In this section, we show the explicit solutions of the coupled massive
Thirring system (1) by using the Darboux transformations (14) and (24).
Substituting the trivial solution u = v = ¢ = r = 0 of the coupled massive
Thirring system (1) into (3) and (4), two basic solutions ¢(A) and ¢(\) are
chosen as

iw(A—fo)+50* 0
¢(>‘) = (e 0 . ) , 900\) = <_e—ix(>\—ﬂo)—m§’t> . (29)
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For N = 1, according to (6), we can get

A1A2 (’YQteAal S 2ihe _ 71621;20t+2i)\2x>

AO - 2iag 2iagt . )
<>\1716 A2 +21A2x_)\272e o +21)\1x>
A1+
)\2 B /\1) 21[7a0t§\11>\: 2) 4 g(— 50+)\1+/\2)]
b= A0t 4 9idow 200 L girz )
A1yie 2= dgyee ™ !
9%
o — Ao) y172€%P0%
0 — R )
(7 62‘§§t+2m2x B 7262‘;*10%21)@)
2iagt . 2t .
</\1’V1e S 2w Aoyae 2 +21)\1m>
DO = 2iagt 2\ 21a0t 21\
o€ N +21 1I_71€ 421 ox

With the help of Egs. (12), (23) and through complex calculations, we can
obtain
2i(A1 —A2) (A1 Aaz—agt)

2001 71— 72e A1A2
A= plAl 0, VAVIES 2i(A1—A2) (A haz—agt) (30)
1A — Y2A2e Az
where p; is a complex constant of integration. From Egs. (14), (24), and
(30), one can arrive at explicit solution of the coupled massive Thirring

system (1) (see Figs. 1 and 2)
()\1 . A2) 2 fQiBQxAlllfo—Q

2iag 2iagt .
<’)’1>\1€ M —2i\1x _ ’72/\26_ e —2idox

U=

29192 (A1 — Ag) e2ifor A2=4b0

. . )
i (eomar )]
1

U=

q = - -
2iagt . 2iagt .
- —2iX — —2iA
()\2’}/26 A2 et Aiyie M 1ALE

2007172 (A2 — Ay) 207 A} 740

2iagt 2\ 2iagt 2\ '
I:)q)qp%( 1€ A2 T2 — Y2€ A1 +2Aw
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Fig. 1. Single-hump soliton solution (31): ag = 0.7,80 = 2,4y = 0.5,p1 = 3, A1 =
i7)‘2 = _iv’Yl = 2772 =i

Fig. 2. Periodic soliton solution (31): ap = 0.1,8p = 1,9 = —0.6,p1 = —1,\; =
1,)\2 = 2,’)’1 = 4,’)/2 =1.

For N = 2, let Ao = —A1, A3 = 2\, Ay = —2A\1, 73 = —1, and

Y4 = —y9 for convenience. Similarly, we can get another explicit solution of
the coupled massive Thirring system (1) (see Figs. 3 and 4)

iagt

= —12p§A§e0_2A§_“0ei[%12”””()‘1_50)] <e o _|_e2i)\1x>

iagt .
x (71 + e M +6lm> ,

[2at
= 12’7172)\1/)2_2A;_4‘0Agfo—%l[ S0 +22(Bo+ ) |

>

>
|

iagt 3iagt 8i\ diagt 6i) .
X [ —yie™ +")/2€7>‘1 +381 1:16_'_2726—)\1 +6iA1z _2,)/1621)\1x ,

. Lot .
i= —6a0p§)\1_1A§£0_1A§440e1[ 30120 (\ — o)

X | —2me M1 4 2ve M + y2e M —y

9

iagt 3lagt | giniz Lioot | ging e 1621)\190)

.Japgt it .
= —120[0")/1")/2p2_2A2_4£0Aéeo_lel[%“‘%«"(ﬂo-l-)\l)] (e>\? 4 e21)\1x>

3iagt 6i)
X (/‘Yl +f)/2e A1 +61 1m) \

(32)
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where

2iagt iagt

. 2 iagt .
4 0 (0] .
Ay = 712 —Y172€ M Mz (Qe A+ 16e M A + 9e4‘)‘1’”)

Giagt .
2 +12iAx
+72°e M ,

2iagt 2iagt

. iant . .
Az = %+ yrypee o AT (th 4206 TANT 9e4“1x)

Giagt .
2 +12i\x
+fyz e M 1 s

and py is a complex constant of integration.

Fig.3. Double-hump soliton solution (32): ag = 2, By = 0.9, { = 0, p2 =
1'57 )\1 = i7 M= 17 Y2 = i

Flg 4. Solution (32) ap = 1, ﬂo = 0, f(] = 1, P2 = 1, )\1 = i, Y1 = 1 —|—17 Y2 = —i.
i, ¢ are two double-hump solitons, v is the collision of two double-hump solitons
and 7 is four-hump soliton.

4. The reduction of Darboux transformation
and explicit solutions

In this section, we will derive a Darboux transformation of the general-
ized classical massive Thirring model (2) through the reduction technique
and its explicit solutions. We choose the two solutions of (3) and (4)

(N = (e1(N), 2N, eV = (Ags(X) =T (A )T, (33)
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when v = u*, r = ¢*. Furthermore, suppose that
A2j = A1, 725 A;] 1'723 1: I<j<N. (34)

It is easy to prove that ag; = —)\5] 11a§] 11, Cy; = —Bpt1, Df = A, (1<
j< N, 0<k<N-—1). Here, apj—1 can be expressed as

®2 (A2j—1) + 12j-197 <)‘§j—1)
¢1 (A2j—1) — Y251 A25-105 ()‘Ej—l)

Functions Ay and Byy1 (0 < K < N — 1) are determined by the following
linear algebraic system:

042]‘_1 = (35)

N-1

ZAIC)\QJ 1T agj— 1ZBk)\2] 1= )\2g 15

k=0 k=1

N-1

Z (a§j71Ak — Bk+1>>\§§71 = —03; A5 1, (1<j<N).(36)
k=0

Therefore, we obtain the following assertion.

Theorem 4. Assume that (u,q) is a solution of the generalized classical
massive Thirring model (2). Suppose that An be a solution of the two first-
order ordinary differential equations
dxIn Ay = 2i(1—26) [-Re (u*Bn) + |Bn|?] ,
2i (1 — 24y) [Re (Ao B}) — ag| B1 2
oAy = 20 =20)] eﬁj,g D= aolBi] (37)
0

and |An| = 1, where Re stands for real part. Then (u,q) determined by the
Darbouz transformation

A3 (qAo — 200 By)
Aj ’

0 =uAd% —24%By, = (38)

is a new solution of the generalized classical massive Thirring model (2).

In fact, |Ax| = 1 implies that the constant of integration for In Ay is
selected to be purely imaginary and A} = AJ_Vl. Hence, we can arrive at

. v 2CN-1 . #2 o -
U:AT—FT:U AN2—2A]\%BN:<UA%V—2A%VBN) u
N N
. (rDo 4 200Co) AR (¢ Aj—200B7)  [AX (q¢Ao— 204031) .
T AA D; N Do -1

This means that the result of Theorem 4 holds.
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In the following, we shall apply the Darboux transformation to give
explicit solutions of the generalized classical massive Thirring model (2).
Substituting the trivial solution v = ¢ = 0 of (2) into (3) and (4) when
v = u* and r = ¢*, we still select the basic solutions (29), which also
satisfies (33). Therefore, (35) and (37) can be written as

iz Mos_1—Bp)— 2ot
042]'_1 :72]'_16 iz ( 2j-1 50) Agj—1 , (39)
~ 2iag (1 = 24o) |B1?
| Ao|? ‘
For N =1, v3 = 1 and Ay = i, we obtain from the linear algebraic
system (36) that

OxIn Ay =2i (1—20)|By|?, OInAy= (40)

ie4aot+2i,30x + e2(i,30+2)x 2e2a0t+2$
Ap=— . —57 ; By = - - - , (41)
—edaot+2ifox _ 162(2,30—1—2)1: jetaot+2iBor _ 62(1B0+2)w
which together with system (40) implies that
A = eip3+2i(1—2€0)arctan(e“*“"‘o’f) (42)

where p3 is a real constant of integration. One-soliton solution (Fig. 5) of
the generalized classical massive Thirring model (2) is obtained with the
help of the Darboux transformation (38)

4evy [e4a0t+2i(,30+i)z _ ieQz—i—Qiﬂow] o1

(e4a0t + ie4z) [e4a0t+2i(ﬁo+i)x 4 ie2x+2i,80x]

. 4oy .
mw = - =
e4w _ ie4aot ) q

, (43)

where o = e2[ip3+aot+2i(1—250) arctan(e4z_4”‘0t)—iﬂom+x]'

Fig. 5. One-soliton solution (43): ap = 0.2, By = 0.4, p3 =0.3, £y = 5.

For N =2, v4v =3 =1, Ay = i, and A3 = 24, one can arrive at a
two-soliton solution (Fig. 6) of the generalized classical massive Thirring
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model (2) with the aid of the Darboux transformation (38)

= 12 (—e3°‘°t — 2je0tt8T | gedaottir 4 Qieﬁx) o9/03,

q = 12iag (2e™0F 87 — g3aol 4 glaott2r _4ebr) 5 5% /03 (44)
where
3e2a0t+4z(_8ea0t+2z+692a0t+4z+3)
2ipa+aot+4i(1—2¢4p) arctan oot goi%w —2iBpz+2x
g9 = € s
o5 = _ieﬁaot + 982a0t+4:c . 24e3aot+6w + 1864a0t+8x + 2iel2x ’

and py4 is a real constant of integration.

Fig. 6. Two-soliton solution (44): ag = 0.15, fp = 0.3, ps = 0.6, ¢n = 3.

For N =2, v =1, 73 = 2, Ay = i, and A3 = 2i, one can arrive at a
double-hump soliton solution (Fig. 7) of the generalized classical massive
Thirring model (2):

a = 12i (ie3°‘°t — 8eo0tt8e 4 yelaottlr | 4ie6w) o4/0s5 ,

12ay (ie?’aot + g0t F8r | gelaott2z 2ieﬁz) 0405 /03, (45)

L=
Il

where

) ) ge2a0t+4z Se2a0t+4z+1
2ips+apt+4i(1—2£p) arctan

o4 = €
o5 = eﬁaot 4 9162a0t+4m _ 16€3a0t+6$ 4 72ie4a0t+81 _ 8612x ,

B0t _1ge300t 62 _gel2a —2ifor+2x

)

and ps is a real constant of integration.
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1412

-5

Fig. 7. Double-hump soliton solution (45): ag = 0.3, Bo =0, ps =0, £y = 4.5.

For N=2 v =~ =1, Ay =1+1i, A3 = =1 +1i, and ¢y = 0.5, one
can arrive at a breather solution (Fig. 8) of the generalized classical massive
Thirring model (2)

4 = (4+41)0_7 |:ie2a0t _ (1 +i)e2ia0t+(4+4i)x +e(2+2i)a0t+4ix+ (1+1)e4a:] /0_6 ,

§ = dagor {(1 _ i)e4m _ je2a0t _ (1+ i)e2iaot+(4+4i)x 1 ie(2+2i)agt+4im]

x [ + 2e2i(e0t20) (g8 _ gty | [ (46)
where
o = (1 o i)e(2+4i)(a0t+21) o (1 4 i)e2a0t+4x o 262ia0t+(8+4i)1‘ 4 e(4+2i)a0t+4im
+4ie(2+2i) (aot+2x)

o7 = e2ip6+(1+i)a0t—2i,801+(2+2i)z,

and pg is a real constant of integration.

la1"2

Fig. 8. Breather solution (46): ag =3, By =2, pg = 1.5.
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5. Conclusion

In this study, we have constructed a Darboux transformation for the

coupled massive Thirring system (1) by means of the zero-curvature equation
and the polynomial expansion of the spectral parameter. On this basis, a
DT for its reduction (2) have been obtained by resorting to the reduction
technique. Furthermore, we have displayed their soliton, breather, and so

on.
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