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A phenomenological optical potential is used to study the elastic angu-
lar distributions for the 19F + 208Pb system close to the Coulomb barrier.
This potential is constructed by taking into account the flexible potential
developed by Ginocchio. The fluctuations in the real and imaginary parts
of the optical model potential follow the trends of the threshold anomaly.
The set of optical potential parameters needed to analyze the fusion cross
sections of the same system are obtained through analysis of the scattering
cross sections. Theoretical fusion cross sections and results from four differ-
ent experimental groups well agree for a range of energies. Several fluorine
(F) isotopes are used as projectiles in this study of fusion cross sections by
slightly altering the radial parameter. It was found that the fusion process
occurs unfettered in the 19F+208Pb system below the Coulomb barrier but
is seriously hindered in the case of its isotopic projectiles.
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1. Introduction

To examine the various nuclear characteristics, the analysis of experi-
mental data from nucleus–nucleus scatterings using an optical model has
been proven successful. In optical model analysis, phenomenological nu-
clear potentials such as Woods–Saxon (WS), Gaussian, modified WS, and
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many more are employed. In heavy-ion elastic scatterings, the fluctuation in
the real and imaginary components of an optical potential is seen as a cru-
cial characteristic near the Coulomb barrier. The threshold anomaly (TA)
is an interesting phenomenon in the case of systems having heavy projec-
tiles, in which the real component of the potential is practically constant at
higher energies but rapidly increases as the incident energy gets closer to the
Coulomb barrier. When the incident energy is below the barrier, it slowly
starts to decline after reaching its maximum at the barrier. Around the
barrier, thus, the variation takes a bell-shape. The imaginary part, on the
other hand, shows nearly a constant magnitude at higher energies but de-
creases to a low value [1–10] around the barrier in the same vicinity. In other
words, when the collision energy rises above the top of the Coulomb barrier,
the strength of imaginary potential rises rapidly and then its value becomes
nearly constant. The maximum value of the real part can be twofold of
the constant value it assumes at higher energies [11]. This anomalous vari-
ation is caused by the coupling of several elastic and quasi-elastic response
channels. This is explicable by the dispersion relation developed by By-
ron and Fuller [12] using the causality principle. This study demonstrates
how the optical potential, which has an imaginary component that is no-
ticeably small, corresponds with TA occurrences and explains the fusion
cross section. In our discussions, we take into consideration a semi-classical
heavy-ion elastic collision system, 19F + 208Pb, whose experimental results
may be interpreted in terms of an optical model by employing a complex
potential with the appropriate parameterization. Lin et al. [13] carried out
experimental measurements and theoretical analyses of the system. The an-
gular distributions were observed with a fluorine beam (19F) at six energies
ranging from 80.6 MeV to 93.5 MeV in the center-of-mass frame. We ana-
lyze the outcomes for the same energy range to broaden our investigation of
elastic scattering with a focus on TA. For the TA analysis, mostly spherical
nuclei have been investigated [14]. We work on one that is deformed. A
sizable static 19F nucleus with deformation is present in the 19F+ 208Pb sys-
tem [15]. To explore the nuclear characteristics, 19F has also been utilized
as a projectile [16–20] for decades in several elastic scatterings with various
targets and incidence energies. All these facts motivate our team to choose
the projectile 19F and realize the versatility of our potential.

We use a phenomenological optical potential [21, 22] based on a short-
ranged, smooth, and analytically solvable asymmetric potential developed
by Ginocchio [23] that possesses the versatility to control the volume and
surface regions of the potential. The parameters dealt with in the optical po-
tential are significantly less in number. The experimental results of 16O+28Si
and 12C + 24Mg systems were fairly explained by Mallick et al. [21] over a
wide range of energy by using this potential. The interesting feature of
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our potential is the neck structure near the Coulomb barrier. This non-
trivial feature helps us match theoretical data with experimental data. The
potential agrees with the presence of ‘threshold anomaly’ due to the fast
rise of the imaginary part with the rapid fall of the real part of the poten-
tial as the incident energy rises above the Coulomb barrier. The optical
potentials used by most of the researchers deal with large imaginary parts.
The absorption of a major share of partial waves cannot be avoided in the
cases having large imaginary parts. The imaginary parts remain below 12%
of their corresponding real parts in Ref. [13] for incident energies of 80.6–
85.2 MeV but exceed 29% for 87.9–93.5 MeV. The fact that high imaginary
parts substantially destroy the resonance states generated by the volume
part of the effective potential cannot be ruled out. Hence, a small imaginary
part may be more convincing. In this work, we use the potential where the
imaginary part is very small as compared to its real part.

We extend the applicability of our optical potential in fusion as well.
We use the potential to analyse fusion cross-section data obtained from four
different experiments performed by Hinde et al. [24], Back et al. [25], Rehm
et al. [26], and Zhang et al. [27] for the same collision system 19F+208Pb but
over different energy ranges. The analysis of fusion cross sections involves
mostly the same set of parameters used for the analysis of elastic scattering
cross sections.

As far as fusion hindrance at sub-barrier energies for drip-line nuclei
is considered, the periodic table expanded (to now include 118 elements),
and super heavy elements (SHE) were made available to humankind due to
conceptual and experimental developments in physics. According to con-
ventional content, elements with more than 104 protons should not exist
since the element would undergo spontaneous fission if the fission barrier
had been zero. Yet again, the stabilization of these elements and the for-
mation of SHEs with distinct features are caused by quantum shell effects.
Even though the fusion process between massive nuclei has been well studied
thus far, the fusion probability between massive nuclei is dependent on the
charge product ZPZT of the projectile and the target. This is because when
the charge product grows, the Coulomb repulsion between them grows, de-
creasing the likelihood of fusion. Nevertheless, nuclear processes involving
heavy ions are utilized to produce SHEs. The formation of SHEs involves
the use of both cold fusion and hot fusion nuclear processes.

The doubly magic 208Pb nucleus is employed as a target in cold fusion
reactions together with the suitable projectile. The one-dimensional barrier
penetration model, which takes into consideration the coupling of inelastic
excitations, has been noted to accurately represent the fusion cross section
for charge products smaller than 1800. On the other hand, in contrast to
the model’s calculated results, the fusion cross section is hampered when the
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charge product is greater than 1800 [28]. In addition to the charge prod-
uct, other factors that affect nuclear fusion between heavy nuclei include
the nuclear structures of the projectile and target. According to reports,
the fusion probability is significantly influenced by the number of valence
nucleons outside of a major shell closure [28, 29]. In the fusion processes,
130Xe + 86Kr and 136Xe + 86Kr, where the nucleus 136Xe has a closed neu-
tron shell N = 82 and the neutron number of the nucleus 130Xe is 76, six
neutrons fewer than the closed shell, the evaporation residue cross sections
were determined by Oganessian et al. [30] in 1987. They discovered that, in
the vicinity of the Coulomb barrier, the measured evaporation residue cross
sections for the fusion process 136Xe + 86Kr are about two to three orders
of magnitude greater than those for the 130Xe + 86Kr fusion reaction. The
enhancement of the evaporation residue cross sections near the Coulomb
barrier region between the double closed shell nuclei 208Pb and 48Ca is also
pointed out by Oganessian et al. [31] in 2001. The dependence of fusion on
the nuclear shell structure was investigated by Satou et al. [32] in 2002 for
the two reaction systems, 82Se + 138Ba and 82Se + 134Ba, where the nucleus
138Ba has a closed neutron shell N = 82, while the nucleus 134Ba has a neu-
tron number N = 78; four neutrons less than the closed shell. The fusion
reaction 82Se+ 138Ba takes place without hindrance, but 82Se+ 134Ba fusion
is significantly hindered, as is typically observed in major reaction systems
with the charge product ZPZT ≥ 1800 of the projectile and target. These
results suggest that a crucial part of the low-energy fusion process involves
the shell structure. We analyse the isotopic dependence in the 19-23F+208Pb
systems to realize how the nuclear shell structure affects the fusion process.

The paper is organized to discuss the formulation of the optical model
based on the Ginocchio potential in Section 2. Section 3 explains the appli-
cation of our optical potential to the elastic scattering of the tightly bound
projectile 19F by the 208Pb target at energies near the Coulomb barrier and
TA phenomena thereof. The fusion cross sections for this system are also
presented and compared with the data from the various experiments. Fi-
nally, the summary and conclusions are presented in Section 4.

2. Formulation of theory

The phenomenological optical potential used here is based on a short-
ranged, smooth, and analytically solvable asymmetric potential developed
by Ginocchio [23] and used by others [21, 22, 33–35] which possesses the
versatility to control the volume and surface regions. A potential to describe
nucleus–nucleus interaction usually consists of Coulomb potential VC(r) due
to electric charges of two nuclei and nuclear potential VN(r). Taking the
centrifugal force into account, the effective potential Veff(r) for the nucleus–
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nucleus collision with the reduced mass µ and orbital quantum number l
can be described by Eq. (1) in which the last term represents the potential
owing to centrifugal force

Veff(r) = VN(r) + VC(r) +
l(l + 1)ℏ2

2µr2
. (1)

The nuclear part VN(r) is an optical potential. It is taken from Ref. [23]
by considering the value of parameter λ = 1, where the λ parameter is
responsible for the flatness of the potential. The nuclear potential VN(r)
is the most important part of the effective potential which is not uniquely
described to date. However, VN(r), as has been argued in many articles,
takes a complex form to describe the experimental observations. We also
consider VN(r) to be complex and represented as VN(r) = Vn(r) + iWn(r).
The variable µ represents the reduced mass of the projectile–target system
and is defined as µ = mP×mT

mP+mT
, where mP and mT are the masses of projectile

and target respectively.
Following the potential developed in Ref. [23], which is further simplified

in Ref. [22], we consider the real part Vn(r) of the potential as given in
Eq. (2) by putting λ = 1

Vn(r) =







−VB

B1

[

B0 + (B1 −B0)
(

1− y21
)]

if 0 < r < R0 ,

−VB

B2

[

B2

(

1− y22
)]

if r ≥ R0 .

(2)

On substitutions of y = tanh ρn, ρn = (r−R0)bn, and VB = V01B1 = V02B2,
we find

Vn(r) =















−V01

[

B0 +
(B1−B0)

cosh2 ρ1

]

if 0 < r < R0 ,

−V02

[

B2

cosh2 ρ2

]

if r ≥ R0 .

(3)

Here, VB is the height of the barrier. The slope parameter bn is given by

bn =
√
2µVB

ℏ2Bn
in which n = 1 or 2. The radial distance R0 in the surface

region is close to the radial position of the effective S-wave barrier potential.
The depth of potential at the origin and R0 are controlled by the parameters
B0 and VB respectively. Slope parameter bn on either side of R0 depends
on Bn and VB. Parameters B0 and B1 specify the potential for r ≤ R0. V01
specifies the strength in that region and is given by V01 = VB

λ2
1
B1+

1−λ2
1

2

= VB

B1

for λ1 = 1. The parameter λ1 controls the flatness of the potential in the
region for r ≤ R0. Similarly, the parameters B2 and VB specify the potential
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for the region of r > R0, where R0 is a sum of radii of two interacting

nuclei, i.e., R0= r0(A
1

3

P +A
1

3

T) = R1 + R2. The quantities ρ1 and ρ2 are

the transformed distance variables and are given by ρn = (r−R0)
√
2mVB

ℏ2Bn
=

(r−R0)bn. With the above consideration, the real part Vn(r) of the optical
potential for the collision system 19F + 208Pb is depicted in Fig. 1. The
potential has two regions; volume and surface. Two parts of the potential
corresponding to the volume region and surface region are connected at
r = R0 satisfying the analytic continuity. Unlike monotonous fall with r in
a nuclear potential of a standard Woods–Saxon form, our optical potential
shows a neck-formation near r = R0. The optical potential consists of
two analytically solvable regions, namely, the volume region and the surface
region. The regions are smoothly joined near r = R0 forming a neck-like
structure. We refer the location to an analytic junction [34, 35], where
the two regions of the potential meet each other. As the name suggests,
the junction is analytically solvable and the Schrödinger equation can be
solved there. The structure appears unusual, but our consideration ensures
indifference in two parts of potential and keeps the respective derivatives
(concerning r) the same at the meeting point satisfying analytic continuity.
This new feature helps us suitably explain the differential scattering cross
sections and fusion cross sections over a wide range of energies. The feature
also enables us to apprehend the effects of frictional forces, resonance in
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Fig. 1. The plot of the real part Vn(r) of optical potential for the 19F + 208Pb

system at the incident energy Ecm = 87.9 MeV. Values of parameters are taken to

be R0 = 12.5 fm, B0 = 118 MeV, B1 = 7.0, B2 = 0.6, and VB = 2.6 MeV. The

curve shows a neck formation at R0.



Simultaneous Study of Scattering and Fusion Hindrance Near . . . 4-A1.7

the formation of a composite binuclear system, and transfer of one or a
cluster of nucleons from the target to the projectile and/or vice versa in this
configuration, when the bombarding nuclei touch each other in the surface
region around r = R0.

The form of the imaginary part Wn(r) is similar to that of the real part,
but its strength differs. The imaginary part is weaker than that of the real
part, i.e., the real part with a larger value is very deep, and the imaginary
part with a smaller value is comparatively weak. With substitution V0nW =
VBW

Wn
, the imaginary part is given by Eq. (4) and its behaviour is plotted in

Fig. 2 with a suitable set of parameters

Wn(r) =















−V01W

[

W0 +
(W1−W0)

cosh2 ρ1

]

if 0 < r < R0W ,

−V02W

[

W2

cosh2 ρ2

]

if r ≥ R0W .

. (4)

The parameter W0 represents the depth of imaginary potential at the origin
and VBW controls the depth of potential at R0W . The other two parameters,
namely, W1 and W2 are slope parameters. The parameter W1 specifies the
potential for r ≤ R0W , whereas W2 specifies the potential for r > R0W . We
use a set of these parameters to represent the imaginary part in Fig. 2. The
Coulomb potential for the projectile nucleus and target nucleus interacting
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Fig. 2. The imaginary part Wn(r) of optical potential for the 19F + 208Pb system

at the incident energy Ecm = 87.9 MeV. Values of parameters are R0W = 12.8 fm,

W0 = 1.5 MeV, VBW = 0.6 MeV, W1 = 1.4, and W2 = 0.001.
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system is given by Eq. (5) as follows:

VC(r) =











ZPZTe
2

2R3

C

(

3R2
C − r2

)

if r < RC

ZPZTe
2

r if r > RC

. (5)

Here, RC = rC(A
1/3
P +A

1/3
T ); AP andAT being the mass numbers of projectile

and target nuclei respectively. ZP and ZT are the atomic numbers of those
nuclei. The value of the Coulomb radius parameter rC is taken to be 1.33 fm.
Neglecting the centrifugal term with orbital quantum number l = 0, Eq. (1)
describes effective potential as

Veff(r) = Vn(r) + iWn(r) + VC(r) . (6)

The real part of the effective potential Veff(r) is depicted in Fig. 3 with a set
of parameters considered earlier for the real part in Fig. 1. With the above
effective potential for the various partial waves (l), we solve the following
Schrödinger equation to obtain the total scattering amplitude f(θ)

[

−ℏ
2

2µ
∇2 + Veff(r)

]

ψ(r⃗ ) = Eψ(r⃗ ) . (7)
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Fig. 3. The plot of the real part of effective potential Veff(r) for l = 0 of the
19F + 208Pb system at energy 87.9 MeV in the centre-of-mass frame. Values of

parameters are R0 = 12.5 fm, B0 = 118 MeV, B1 = 7.0, B2 = 0.6, and VB =

2.6 MeV. The curve retains the neck structure at R0.
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Total scattering amplitude f(θ) is expressed as the sum of Coulomb scatter-
ing amplitudes fC(θ) and nuclear scattering amplitude fN(θ), respectively,
thus,

f(θ) = fC(θ) + fN(θ) . (8)

The amplitudes fN(θ) and fC(θ) have expansions as follows:

fN(θ) =
1

2ik

∑

l

(2l + 1) e2iσl

(

e2iδ̄l−1
)

Pl(cos θ) , (9)

fC(θ) =
1

2ik

∑

l

(2l + 1)
(

e2iδ̄l−1
)

Pl(cos θ) . (10)

Here, k is the magnitude of wave vector k⃗, σl is the Coulomb phase
shift due to scattering, and δ̄l is the nuclear phase shift. The ratio of the
measured elastic scattering cross section to Rutherford’s scattering cross
section is given by

dσel
dσRuth

=

∣

∣

∣

∣

f(θ)

fC(θ)

∣

∣

∣

∣

2

. (11)

For the lth partial wave and its S-matrix Sl, the elastic scattering cross sec-
tion σel and the reaction cross section σr are given by Eq. (12) and Eq. (13),
respectively as follows:

σel =
π

k2
(2l + 1)|1− Sl|

2 , (12)

σr =
π

k2
(2l + 1)Tl(E) =

π

k2
(2l + 1)

(

1− |Sl|
2
)

. (13)

Here, Tl(E) = (1−|Sl|
2). This is known as the transmission coefficient for

the orbital angular momentum l. The fusion cross section is given by σfus =
π
k2
(2l + 1)PF

l , where PF
l is the fusion (absorption) probability. The wave

function, in the case of fusion, is expected to be completely absorbed inside
the barrier; hence the fusion probability can be assumed to be close to the
probability that the incident current reaches the point of total absorption.
Therefore, the fusion probability, i.e., PF

l ∼ Tl(E) = (1 − |Sl|
2). Thus, we

have, σr = σfus. Based on the above theory and potential, the results of
elastic scattering and fusion are discussed.

3. Results

While analysing angular distribution cross sections of the elastic scatter-
ing 19F+208Pb, Lin et al. [13] used the Woods–Saxon-based optical potential
in which imaginary potential depths are approximately 29–60% or more of
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the real part to get the best fit of data for energy span of 87.9–94.0 MeV.
The minimum value of the real part differs by 21% from the maximum
value, and the difference is more than 96% in the case of imaginary parts for
the same range of incident energy. Scattered values may raise uncertainty
to conclude the threshold anomaly and higher imaginary values concerning
real parts may suppress resonance states of the system generated by the
effective potential. We use a substantially small imaginary-part-to-real-part
ratio to measure angular distribution cross sections at different incident en-
ergies. The success story of the potential generated by using the Ginocchio
potential [21–23] catalyses us to explain the experimental data in this op-
tical model analysis. The variations in real and imaginary parts near the
Coulomb barriers are studied to realize threshold anomaly. The results are
presented in the following sub-sections.

3.1. Analysis of scattering cross sections

The laboratory energies for elastic scattering of the collimated 19F beam
by the 208Pb target are taken at 88, 91, 93, 96, 98, and 102 MeV, which
are equivalent to 80.6, 83.4, 85.2, 87.9, 89.8, and 94.0 MeV, respectively,
in the center-of-mass frame. The 19F + 208Pb system has the Coulomb
barrier at about Ecm = 84 MeV. Energy-dependent parameters (both real
and imaginary) of the optical potential are presented in Table 1 for the best
fit. The calculated angular distribution of elastic cross sections is compared
with experimental values in Fig. 4 for the given range of incident energies.
The experimental values digitized with GSYS-2.4 are obtained from the
source http://nrv.jinr.ru.

Table 1. Energy-dependent parameters of the optical potential.

Ecm VB W2 VBW B1

[MeV] [MeV] [MeV]

80.6 2.2 2.5 0.06 2.5

83.4 2.4 2.2 0.1 6.0

85.2 2.5 1.2 0.3 6.0

87.9 2.6 0.001 0.6 7.0

89.8 2.3 2.5 0.7 2.0

94.0 2.2 3.0 1.2 1.0

http://nrv.jinr.ru
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Fig. 4. Comparison of the calculated angular distribution of elastic scattering cross

sections with experimental data for six incident energies of the 19F + 208Pb sys-

tem. The dark circles (green) represent experimental data and the solid curve

(red) represents theoretical calculations. The experimental data for Ref. [13] are

downloaded from the site http://nrv.jinr.ru. The values of the six independent

parameters are found R0 = 12.5 fm, R0W = 12.8 fm, B2 = 0.6, B0 = 118 MeV,

W1 = 1.4, and W0 = 1.5 MeV for all incident energies.

http://nrv.jinr.ru
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Six number of parameters show energy independence. The radial dis-
tance in the surface region R0 is kept constant with energy. The values of
the independent parameters are R0 = 12.5 fm, R0W = 12.8 fm, B2 = 0.6,
B0 = 118 MeV, W0 = 1.5 MeV, and W1 = 1.4, while matching theoretical
results with experimental outcomes for the entire range of energies. Four
parameters, namely, B1, VB, W2, and VBW mentioned in Table 1 vary with
collision energies. We keep the Coulomb radius parameter rC at 1.33 fm
following the referred literature [13]. The theoretical data (solid line curve
in red colour) are compared with the experimental data (dark circles filled
with green colour) obtained from Ref. [13]. Theoretical calculations fairly
agree with the experimental values.

It is worth mentioning that the best fit takes a smaller imaginary part
in comparison to the corresponding real part of the potential which ensures
less suppression of resonance states generated by the effective potential. The
real parts of the potential are taken the same, i.e., 118.0 MeV for all the six
incident energies. The imaginary parts are also kept small and the same, i.e.,
1.5 MeV in comparison to their counterpart’s real potential. Thus, the ratios
of imaginary parts to real parts remain the same, i.e., 0.0127 for all colliding
energies. Such a small imaginary-to-real ratio will help not to substantially
destroy the resonance states generated by the volume part of the effective
potential. The need for a small imaginary part in an optical potential is
explained with supporting graphs in Subsection 3.4.

3.2. Phenomenon of threshold anomaly

While reproducing the experimental results using theoretical calculations
of the potential, we find variations in the real and imaginary parts of the
potential near the Coulomb barrier. The variations are described in Fig. 5.
When we proceed from the lower energy of the collision, the real part first
increases and then decreases in the vicinity of the Coulomb barrier, and ul-
timately saturates around 2.2 MeV at higher energies away from the barrier.
On the other hand, the imaginary part remains almost constant at 1.2 MeV
at higher energies but decreases in the vicinity of the Coulomb barrier as we
move from higher to lower values of incident energy. The variation in the
real part follows a bell-shaped dashed line (upper plot), whereas the vari-
ation in the corresponding imaginary part follows an L-shaped dashed line
(lower plot). The bell-shaped and L-shaped curves are obtained by the dis-
persion relations in Ref. [13], which describes the threshold anomaly. Thus,
theoretical calculations fairly agree with the TA phenomenon described in
the reference.
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3.3. Analysis of fusion cross sections

Along with the angular distribution, the present analysis is extended
with the potential to check the fusion cross sections. The experimental data
of the fusion cross section (σfus) with the 19F+208Pb system are available by
different groups from independent experiments. Back et al. [25] measured
the fission fragment angular distributions in 1985 by using the Argonne
Superconducting LINAC in the energy range from 100.8 to 174.0 MeV in
the center-of-mass frame. The fission cross sections and angular distribu-
tions were measured in 1990 by Zhang et al. [27] with the HI-13 tandem
Van de Graff accelerator at bombarding energies from 75.51 to 137.5 MeV.
The fusion–fission cross sections were also measured in 1998 by Rehm et al.
[26] by using the ATLAS superconducting linear accelerator for the reaction
at energies from 77.68 to 99.6 MeV. In 1999, Hinde et al. [24] were able
to measure fission fragment cross sections and angular anisotropies to high
accuracy for the reaction by using the 14UD tandem electrostatic acceler-
ator and LINAC in the energy range from 76.0 to 144.7 MeV. The experi-
mentally measured fusion cross-section values digitized with GSYS-2.4 are
downloaded from the website http://nrv.jinr.ru.

To explain the data of the fusion cross section, we use the same pa-
rameters except for R0W and W2 of the optical potential obtained while
matching theoretical calculations with the corresponding angular distribu-

http://nrv.jinr.ru
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tions in the scatterings of the system at the incident energy of 94 MeV in
the center-of-mass frame. The value of R0W has been altered from 12.8 MeV
to 8.2 MeV and that of W2 from 3.0 to 0.8 to explain fusion data. Thus,
the set of parameters to reproduce fusion cross sections is R0 = 12.5 fm,
R0W = 8.2 fm, B1 = 1.0, B2 = 0.6, VB = 2.2 MeV, VBW = 1.2 MeV,
B0 = 118 MeV, W0 = 1.5 MeV, W1 = 1.4, and W2 = 0.8. The set of param-
eters fairly explains the experimental values of four independent experiments
performed for different energy ranges. The results are shown in Fig. 6 with
fusion cross sections (expressed in mb) as the function of the center-of-mass
energy (taken in MeV). It is challenging to find a unique potential that can
address both of these phenomena simultaneously. R0W in the case of fusion
is considered to be 8.2 fm, which is less than the Coulomb barrier position
(RB = 12.8 fm) keeping the imaginary W0 unchanged at 1.5 MeV to observe
the structure phenomena. The value of R0W (< RB) confirms that the fu-
sion takes place only after the barrier has been fully penetrated. The other
parameter W2 was reduced from 3.0 to 0.8 to observe the fusion phenomena.
Finally, we get the required fusion cross section which is plotted in Fig. 6.
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Fig. 6. The plot of fusion cross sections as a function of colliding energy in the

centre-of-mass frame. The solid curve (blue) represents the theoretical values of

fusion cross sections. The experimental values obtained from Back et al. [25] are

represented by rhombus, Hinde et al. [24] by red circles, Rehm et al. [26] by

triangles, and Zhang et al. [27] by green circles. The experimental data are

downloaded from the site http://nrv.jinr.ru. The set of taken parameters is:

R0 = 12.5 fm, R0W = 8.2 fm, B1 = 1.0, B2 = 0.6, VB = 2.2 MeV, VBW = 1.2 MeV,

B0 = 118 MeV, W0 = 1.5 MeV, W1 = 1.4, and W2 = 0.8.
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The structure effect is also visible here because 208Pb is a double magic and
shell closure nucleus and 19F is a relatively stable projectile. The binding
energy per nucleon value of 19F is higher compared to other isotopes such as
21F and 23F. We do not find hindrances below the Coulomb barrier due to
the shell closure of both the projectile and target. As we move toward the
neutron drip-line, we see the hindrance phenomena as described in Fig. 7.
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Fig. 7. Plots of fusion cross sections with different isotopes of fluorine projectile.

The figure shows the structure effect due to presence of double magic and shell

closure nucleus.

It is commonly known that a projectile’s binding energy has a significant
impact on how easily it fragments into smaller parts, which has an impact
on the fusion of weakly bound projectiles. It is difficult to calculate the
dynamic polarization potential theoretically, thus up to now, TA has only
been studied experimentally. Most of the examined systems are spherical or
very close to spherical shape. The implications of nuclear structure on well-
deformed systems have received very little attention in research. Lin et al.
[13] used the 19F + 208Pb system to investigate the role of deformed nu-
clei in fusion and TA responses. The projectile nucleus 19F possesses [36]
quite large static deformations (β2 = 0.44 and β4 = 0.14). The results of
the fusion reaction [13] for the system have been carefully examined. We
analyse the cross sections of fusion reactions for the fluorine isotopes with
the double shell closure of 208Pb. The nucleus of a nearby projectile with
double shell closure is 16O. In the case of 19F, one half-filled valence proton
and two valence neutrons are present, and the same is evident for 21F and
23F nuclei. As we approach the drip-line nuclei, the two-neutron separation
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energy (S2n) of fluorine continues to decrease. The magnitudes of S2n for
the isotopes 19F, 21F, and 23F are 19.582 MeV, 14.742 MeV, and 12.81 MeV
respectively [37]. Moreover, the corresponding binding energies per particle
(B.E./A) are 7.779 MeV, 7.738 MeV, and 7.622 MeV respectively. Again,
Z = 82 and N = 126 in the target nucleus are double magic numbers. The
isotopes of fluorine (F) could split into 16O and neutron clusters due to the
valence neutrons’ low binding energy.

Again, it is observed that the presence of magic shells in the entrance
channel increases the probability of fusion [38], because magic nuclei are dif-
ficult to excite, which lowers energy dissipation and facilitates the creation
of a more compact di-nuclear system. Thus, when we go away from the shell
closure, the 2n, 4n, and 6n evaporation residue cross sections may indeed
be enhanced close to the Coulomb barrier, which might account for the hin-
drance of the fusion cross section shown in Fig. 7. Nevertheless, it is beyond
the scope of our approach to demonstrate the entire reaction cross section,
including quasi-fission and evaporation residues. We have just displayed the
fusion cross section here. Due to quasi-fission, the fusion probability could
well be significantly suppressed below the Coulomb barrier, which might be
the cause of the fusion hindrance [39]. Hence, the fusion of weakly bound
projectiles is affected by the breakup channel coupling. Figure 7 illustrates
how the breakup channel coupling affects the 19-23F + 208Pb systems de-
pending on the valence nucleon separation energy. As per expectation, the
breakup cross section grows as the binding and separation energies fall, mak-
ing the breakup of a weakly bound nucleus more feasible. As the structure
of interacting nuclei influences the mechanism of the fusion and other pro-
cesses leading to the absorption of particles from the elastic channel, then
it is natural to expect that the optical model parameters should vary from
one system of colliding nuclei to another one. The parameter R0 is altered.
Thus, the potential barrier and hence the fusion cross section increase. We
demonstrate the effects of only charge and mass on the fusion phenomenon.
Nuclear shell structures, deformation, and orientation are additional factors
that influence the fusion processes in addition to charge and mass [28–30].

3.4. Need for a small imaginary part in the optical potential

The scattering process in a nuclear collision is sensitive to the nature of
the potential on the surface region. On the contrary, the fusion process is an
interior activity. It is quite difficult to find a unique nuclear potential that
can take care of both phenomena.

It is a common assumption that fusion takes place only after the barrier
has been fully penetrated [40, 41]. Based on this concept that the fusion
of two nuclei occurs in the region interior to the radial position (RB) of
the Coulomb barrier, the region 0 < r < RB is expected to account for
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the experimental data of fusion cross section as the total reaction cross sec-
tion includes the cross section for different reaction channels of which the
fusion channel is predominant in the low-energy collision activities. The val-
ues of fusion radius and the Coulomb radius used in the heavy-ion collision
19F+208Pb system agree with the fact that fusion is an interior phenomenon,
whereas the surface phenomenon is attributed to scattering and other pe-
ripheral, less absorptive direct reaction processes.

In this study, we identify two crucial aspects of our potential: (i) the
real component with a larger magnitude, and (ii) the imaginary part with
a smaller value. Thus, in contrast to light-ion systems, this potential has a
less absorptive character. Due to its less absorptive nature, standing waves
are formed in the nuclear well, which allows shape resonances to survive in
the collision process. As a result, these resonances produce the oscillatory
structures in the fusion (total reaction) cross section, σfus (σr) as a function
of colliding energy Ecm. Although the resonances exist, it is very difficult to
detect the resonances experimentally through direct observations [42].

In the potential scattering theory, these resonances are manifested clearly
as maxima in the results of reaction cross section (σr) at the respective res-
onance energies [43, 44]. This small value of the imaginary part further
indicates that the fusion only occurs when the barrier has been completely
penetrated [41, 45, 46]. Due to the potential’s smaller absorption capacity,
standing waves in the nuclear well might occur, which would allow shape res-
onance states (which have not been experimentally detected) [42] to survive
the collision process. As a result, these resonances take on the role of being
the cause of the oscillatory structure in the barrier distribution, D(Ecm)
findings as a function of Ecm [45, 46]. When the potential is made more
absorbed by considering a bigger imaginary part W0, the width of the reso-
nance caused by the real part of the potential widens. Consequently, larger
width leads to the extinction of the corresponding resonance in the collision
process. In this study, we have considered a deep real potential associated
with a relatively weak imaginary strength W0. As explained above, the res-
onances are visible in the form of peaks in the partial wave trajectories for
a smaller value of W0, but the oscillation in σr vanishes for a larger value
of W0, which is shown explicitly by taking W0 = 1.5 MeV and 15 MeV in
Fig. 8. The cumulative effect of all these resonances is primarily responsible
for the oscillation in the reaction cross section (σr). The fusion radius is
found to be more than the Coulomb radius when a larger value of W0 is
considered in the case of heavy-ion collisions.

The amplitudes of oscillation increase with increasing l-values for a par-
ticular low imaginary potential. This is verified by changing the variation
of resonance structures for different ls with a particularly low value of W0

as shown in Fig. 9. The plots in Fig. 9 explain how the amplitudes of
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Fig. 8. Comparison of the reaction cross-section curve at W0 = 1.5 MeV with the

reaction cross-section curve at W0 = 15 MeV keeping other parameters unaltered.

Resonances are shown in the case of a lower W0 value (blue curve).
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lation increases with the increase of l-values of partial waves.
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oscillation increase with increasing l-values for a particular low imaginary
potential. Here, the imaginary depth is kept low at W0 = 1.5 MeV and the
oscillations with increasing amplitudes are shown for different values of l,
i.e., l = 10, 20, 30, 50.

4. Conclusions

We use the optical potential taken into consideration in the paradigm of
the Ginocchio potential to explain the angular distributions of elastic scat-
tering of the 19F+ 208Pb system for the center-of-mass energies Ecm = 80.6,
83.4, 85.2, 87.9, 89.8, and 94.0 MeV. At the surface of nucleus, the potential
has a particular deformation effect. We calculate the fusion cross sections for
the same system and compare these values with various independent findings
from four distinct experiments carried out by the researchers in Refs. [24–27].
A theoretical calculation provides a good explanation for the data showing
the threshold anomaly close to the system’s Coulomb barrier. To ensure
that resonance states are not too suppressed, the imaginary components of
the potential employed in the current study are kept relatively modest in
comparison to the real parts. Due to the shell closure of both interacting
nuclei, no hindrance phenomenon is seen in the 19F + 208Pb system.

As shown in Fig. 7, a weakly bound nucleus significantly impacts the fu-
sion due to the increased possibility of dissociation. Thus, it may be argued
that although the Coulomb repulsion is stronger, the existence of neutron
shell closure and breakup probability in the entrance channel favours fu-
sion hindrance just below the Coulomb barrier. More studies are needed to
understand the dynamics in the sub-barrier area and to identify additional
influencing elements that may further favour or hinder the likelihood of fu-
sion, such as deformation of the colliding partners, projectile direction upon
striking the target, isospin asymmetry of the colliding partners, and shell en-
ergy [47] etc. Therefore, it has not only the kinematical origin governed by
the atomic mass and charge number, but it could be due to shell structures,
deformation, and shell energy [31, 32, 47]. The adaptability of the potential
with less energy-dependent parameters encourages further analysis of more
pertinent systems.
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