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Recently, we have developed a method called “Symmetry Finder” (SF)
for hunting the reparametrization symmetry in the three-neutrino system
in matter. Here, we apply SF to the Denton et al. (DMP) perturbation the-
ory extended by including unitarity violation (UV), a possible low-energy
manifestation of physics beyond the νSM. Implementation of UV into the
SF framework yields the additional two very different constraints, which
nonetheless allow for remarkably consistent solutions, the eight DMP-UV
symmetries. Treatment of one of the constraints, the genuine non-unitary
part, leads to the key identity which entails the UV α parameter trans-
formation only by rephasing, which innovates the invariance proof of the
Hamiltonian. The quantum mechanical nature of the symmetry dictates
the both νSM and UV variables to transform jointly, through which the
response of the two sectors are related to reveal their interplay. Thus, the
symmetry can serve as a tool for diagnostics, probing the interrelation be-
tween the νSM and a low-energy description of new physics. The problem
of SF symmetry in vacuum is revisited to complete eight symmetries akin
to DMPs.
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1. Introduction

Symmetry positions in a deepest place in our understanding of quantum
mechanics and quantum field theory [1, 2]. Recently, we have studied the
reparametrization symmetry in neutrino oscillations in matter [3–5]. We
have constructed a machinery called “Symmetry Finder” (SF) for a system-
atic search for symmetries in the neutrino system in matter. SF has been
successfully applied to the Denton et al. (DMP) [6] and the solar-resonance
perturbation (SRP) [7] theories to uncover the “twin” [8] eight reparametriza-
tion symmetries of the 1–2 state-exchange type [3, 4], and the sixteen 1–3
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state-exchange symmetries [5] in the helio-perturbation theory [9]. Enrich-
ment of the symmetries in matter environment [10] is emphasized [4, 8]1. For
our frequent usage, we denote the reparametrization symmetry discussed in
these references as the “Rep symmetry” throughout this paper.

Despite the above-mentioned successes in symmetry hunting, we still
do not know the whole picture of the Rep symmetry. In particular, the
nature of the Rep symmetry has been the subject of scrutiny since the SF
search has been started. Invariance of the oscillation probability under a Rep
symmetry transformation implies that there is another way of parametrizing
the equivalent solution of the theory. It suggests a different characterization
of the Rep symmetry from the ones discussed in Refs. [1, 2]. Then, the
imminent questions would be:

— What is the Rep symmetry? Under which raison d’ être does it exist?

— In which way can a symmetry merely reparametrizing the same physics
be useful to understand the system?

While it is not practical to squarely tackle these questions at this moment,
we present our emphasis on quantum nature of the SF symmetry in matter
in Section 2 and some of the remaining questions in Section 10. We would
like to remind the readers that, in view of the state of the art summary of
our search for the Rep symmetry given in Ref. [4], we are still in a phase
of “experimental searches” for the Rep symmetry. In this paper, we will
fill the remaining hole by presenting six new SF symmetries in vacuum to
complement the existing two ones [11] to complete the eight 1–2 exchange
symmetries which are very similar to those of DMP and SRP.

The principal purpose of this paper is to examine the theory based on
the νSM but extended by including non-unitarity. Hereafter, the “νSM”
is a shorthand notation for the neutrino-mass-embedded Standard Model.
Incorporation of non-unitarity, or unitarity violation (UV)2, is one of the
promising ways to discuss physics beyond the νSM [12–16]. It turned out
that inclusion of the extra ingredients, non-unitarity, and the associated UV
sector into the theory facilitates to have an insight toward answering the
above utility question. For concreteness, we examine in this paper the DMP-
UV perturbation theory formulated in Ref. [17]. The DMP theory [6], the
unique “globally valid” [4] framework after the Agarwalla et al. perturbation

1 We remark that in this manuscript citation of the articles that are devoted to the
SF symmetry discussions includes the ones which appeared after version 1 of e-Print:
arXiv:2206.06474 [hep-ph]. This is to make our description of the Rep symmetry
up to date and to provide a less incomplete list of the references on the SF symmetry
within the scope of the present author.

2 We are aware that in the physics literature, UV usually means “ultraviolet”. But,
in this paper, UV is used as an abbreviation for “unitarity violation” or “unitarity
violating”.

http://arxiv.org/abs/2206.06474
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theory [18], and its extensions have been studied in a variety of contexts,
e.g., in Ref. [19–21]. Our investigation will reveal the characteristically new
two features (visit Section 7 for more about the both items):

— All the eight νSM DMP symmetries [3] have UV extensions, with

extremely simple transformation property α̃ → Rep(X) α̃ Rep(X)† of
the non-unitarity variable α̃, where Rep(X) stands for the rephasing
matrix, diagonal one with entries ±1 = e±ikπ (k = 0, 1).

— The identity which will be born out from the study of the transforma-
tion property of the UV sector variables has an impact on our under-
standing of the Rep symmetry.

In a concurrently progressing work [4], the SF symmetry search has also
been undertaken by using the helio-UV theory [22], a UV extension of the
helio-perturbation theory [9]. Despite the parallelism between the SF treat-
ments in these two UV extended theories, we try to make our presentation
in this paper self-contained. This is preferable due to the difference between
the structure of symmetries, the eight 1–2 in DMP-UV, and the sixteen 1–
3 symmetries in the helio-UV theories. Nonetheless, we try to make our
description in this paper complementary to that of Ref. [4].

To the author’s knowledge, the first discussion of the Rep symmetry in
neutrino oscillation is given by Fogli et al. in Ref. [23]. In broader contexts,
the symmetries in theories of neutrino mixing and the closely related topics
had been investigated from various points of view, for which we can give
only a very limited list [24–33]. We hope that our approach contributes to
further advance the field.

There exists ample reason to consider theories with non-unitarity from
a physics point of view. It is a possible low-energy manifestation of new
physics beyond the νSM at a high (or possibly low) scale. The most well-
known example of high-scale UV is given by the active three neutrino sector
in the seesaw model of neutrino masses [34–38]. With three right-handed
heavy neutrinos, the whole active-sterile 6 × 6 system is unitary, but low-
energy description of the 3× 3 active neutrino subsystem is not. When the
UV effects coexist with the νSM, there arise many new features in the three-
neutrino system. Most notably, the UV effects could affect the determination
of the standard mixing parameters. Disentanglement of the UV effect from
the νSM ones is then required, the topics being extensively discussed, e.g.,
in Refs. [13, 39–44]. The other side of the coin is the correlations between
the νSM and UV parameters [13, 22, 39, 42, 45], which could enhance the
detection capability of the UV effect. It would be nice if our symmetry study
can shed light on the question of how the UV effect could be distinguished
from the νSM one. For an incomplete list of the additional references on
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non-unitarity, see e.g., Refs. [46–54]. We note that an even more generic
framework of adding “non-standard interactions” (NSI) [10] is vigorously
investigated as a possible description of physics beyond the νSM. See, e.g.,
Refs. [55–58] for reviews of NSI and Refs. [59–62] for constraints on NSI.

In Section 2, we introduce SF, discuss its quantum nature, and present
a full set of the SF symmetry in vacuum which is derived in Appendix A. In
Sections 3, 4, and 5, we set up the basics for our analysis framework of the UV
extended DMP, which can be skipped for the readers familiar with the theory
including the V matrix computation. Section 6 provides the pillar of our
symmetry search, the SF formulation of the DMP-UV perturbation theory,
through which the readers can move on to the solutions given in Sections 7
and 8. The readers who are really knowledgeable to our SF formalism [3–5]
may want to start from Table 3, and then go directly to Section 7 which
allows them to understand all essentials. For most of the readers, however,
the author recommends to go through the whole manuscript because it is
written in a self-contained way. Nature of the DMP-UV symmetries as a
Hamiltonian symmetry is revealed in Section 9. We conclude in Section 10
with discussions on some of the remaining issues including the questions
of νSM–UV inter-sector communications, how big is the symmetry, and a
possible extension of the Rep symmetry to cover the double beta decay
observable.

2. Reparametrization (Rep) symmetry: New progress
in understanding and its quantum nature

A framework for the systematic search for symmetry, which we call “Sym-
metry Finder” (SF), started from the one in vacuum [11]. The underlying
principle of SF in vacuum as well as in matter is very simple. Suppose
that the flavor basis state (i.e., wave function) ν allows the two different
expressions by the mass eigenstate ν̄ in vacuum as [3]

ν = U (θ23, θ13, θ12, δ) ν̄ = U
(
θ′23, θ

′
13, θ

′
12, δ

′
)
ν̄ ′ , (2.1)

where U ≡ UMNS denotes the usual unitary νSM flavor mixing matrix [63],
see Section 3 for its explicit expressions. The quantities with “prime” im-
ply the transformed ones, and ν̄ ′ may involve eigenstate exchanges and/or
rephasing of the wave functions. If it is in matter, the U matrix in Eq. (2.1)
must be replaced by the one, so-called the V matrix [64], see Section 5. The
mixing angles and the CP phase are often elevated to the matter-dressed
variables, as it is the case of θ12 and θ13 in DMP. As Eq. (2.1), or its mat-
ter version, represents the unique flavor state by the two different sets of
physical parameters, it implies a symmetry. This is nothing but the key
statement of SF [3–5, 11].



Symmetry in Neutrino Oscillation in Matter with Non-unitarity 6-A1.5

2.1. Reparametrization (Rep) symmetry in vacuum revisited

In a series of our previous and concurrently progressed works on the SF
symmetries in matter reported in Refs. [3–5, 8], we have always referred in
our nomenclature only to Symmetry IA- and IB-vacuum as the 1–2 exchange
Rep symmetries in vacuum [11]. If it has left an impression that there
exist only the two symmetries in vacuum, this is neither correct nor what
it was meant. While the statement itself is useful as it was done in the
context of heuristic discussion of the SF method, we prefer to straighten out
the problem of SF symmetry in vacuum. In Appendix A, we conduct an
explicit reanalysis of the SF equation to show that there exist the eight 1–2
state-exchange symmetries in vacuum, which we call Symmetry X-vacuum
(X= IA, IB, . . . , IVB). Here, we only present the resulting Rep symmetries
in Table 1.

Table 1. The eight SF symmetries in vacuum, Symmetry X-vacuum where X= IA,

IB, . . . , IVB. The symmetries in the upper and lower row correspond to the up-

per and the lower solutions in Table 2. s12 etc. are the simplified notations for

sin θ12 etc.

Symmetry Vacuum mixing parameter transformation

IA m2
1 ↔ m2

2, c
′

12 = −s12, s′12 = c12

m2
1 ↔ m2

2, c
′

12 = s12, s
′

12 = −c12
IB m2

1 ↔ m2
2, c

′

12 = s12, s
′

12 = c12, δ
′ = δ + π

m2
1 ↔ m2

2, c
′

12 = −s12, s′12 = −c12, δ′ = δ + π

IIA m2
1 ↔ m2

2, c
′

12 = s12, s
′

12 = c12, s
′

23 = −s23
m2

1 ↔ m2
2, c

′

12 = −s12, s′12 = −c12, s′23 = −s23
IIB m2

1 ↔ m2
2, c

′

12 = −s12, s′12 = c12, s
′

23 = −s23, δ′ = δ + π

m2
1 ↔ m2

2, c
′

12 = s12, s
′

12 = −c12, s′23 = −s23, δ′ = δ + π

IIIA m2
1 ↔ m2

2, c
′

12 = s12, s
′

12 = c12, s
′

13 = −s13
m2

1 ↔ m2
2, c

′

12 = −s12, s′12 = −c12, s′13 = −s13
IIIB m2

1 ↔ m2
2, c

′

12 = −s12, s′12 = c12, s
′

13 = −s13, δ′ = δ + π

m2
1 ↔ m2

2, c
′

12 = s12, s
′

12 = −c12, s′13 = −s13, δ′ = δ + π

IVA m2
1 ↔ m2

2, c
′

12 = −s12, s′12 = c12, s
′

23 = −s23, s′13 = −s13
m2

1 ↔ m2
2, c

′

12 = s12, s
′

12 = −c12, s′23 = −s23, s′13 = −s13
IVB m2

1 ↔ m2
2, c

′

12 = s12, s
′

12 = c12, s
′

23 = −s23, s′13 = −s13, δ′ = δ + π

m2
1 ↔ m2

2, c
′

12 = −s12, s′12 = −c12, s′23 = −s23, s′13 = −s13, δ′ = δ + π

In fact, the eight Rep symmetries in vacuum have identical structure
to those of the eight symmetries in DMP, as one recognizes by comparing
Table 1 with Table 3 (first three columns only for νSM DMP) in Section 6.
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We will also see that the solutions for the phases in the SF equation are
identical to those of DMP in Table 2. These features may suggest the picture
of vacuum symmetry as a vacuum limit of the DMP symmetry. Nonetheless,
in Appendix A where we show that Symmetry X-vacuum is the Hamiltonian
symmetry, we will see that the vacuum symmetry is not a simple vacuum
limit of the DMP symmetry.

If we elevate the system to the one diagonalized exactly in matter as-
suming the uniform density [65], it implies the existence of eight symmetries,
Symmetry X-ZS (X= IA, IB, . . . , IVB). See Ref. [3] for the definition of the
ZS symmetry including the replacement of the vacuum variables by the
matter-dressed ones.

2.2. Reparametrization symmetry as a vacuum-matter hybrid symmetry

Since our SF search for the symmetry has been initiated, the nature of
the Rep symmetry has been the subject of scrutiny. In this section and
Section 2.3, we shall try to give a partial answer to the question: “what is
the Rep symmetry?”.

Let us start with a typical, and very frequently raised question: Is not
it merely a part of the reparametrization of the neutrino mixing matrix? If
this is essentially the case, the probability is trivially invariant, and we learn
nothing new but what is well known. However, a glance over a few examples
of the DMP Rep symmetries in Table 3, again with the nomenclature of
Ref. [3], reveals incongruity with the “mere reparametrization” picture:

IIA-DMP: θ23 → −θ23, θ12 → −θ12, λ1 ↔ λ2, cψ → ±sψ, sψ → ±cψ,

IIIA-DMP: θ13 → −θ13, θ12 → −θ12, λ1 ↔ λ2, ϕ→ −ϕ, cψ → ±sψ, sψ → ±cψ,

IVA-DMP: θ23 → −θ23, θ13 → −θ13, λ1 ↔ λ2, ϕ→ −ϕ, cψ → ∓sψ, sψ → ±cψ,

(2.2)

In Eq. (2.2), θij (ij = 1, 2, 3) is the mixing angle in vacuum, and ϕ
and ψ denote, respectively, θ13 and θ12 in matter [6], often denoted as the
“matter-dressed” θ13 and θ12 in this paper. sφ ≡ sinϕ and sψ ≡ sinψ,
etc. These matter-dressed variables are the “dynamical variables” that arise
when (dominant part of) the Hamiltonian is diagonalized. As emphasized
in Ref. [3], a dynamical symmetry is the symmetry that has no hint in the
original Hamiltonian of the system, but the one which indeed arises after
the system is solved.

Therefore, our Rep symmetry can be characterized as the vacuum- and
dynamical-variables hybrid symmetry. The crucial feature is that the vac-
uum variables’ transformations are determined in tight correlation with the
matter variables’ ones, and the correlated choice of the vacuum and matter
variables pair is different in each symmetry. Unless symmetry respects the
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correlation, it never leaves the probability invariant. Thus, our characteri-
zation of the Rep symmetry is based on the fact that the three-generation
neutrino system exists with the lepton flavor mixing [63] and in matter
environment [10] whose effect is treated as a background. Within this treat-
ment, neutrino evolution is enriched by the resonant or other enhanced flavor
transformations [10, 66–68], which entails a variety of the Rep symmetries,
as stressed in Ref. [8].

2.3. Quantum nature of the Rep symmetry

In all the eight DMP symmetries [3], see Table 3, the eigenvalue exchange
λ1 ↔ λ2 is involved, where λi/2E denote the eigenvalues of the Hamiltonian
of the eigenstate νi (i = 1, 2, 3) [6]3. But none of them involves the vacuum
mass exchange m2

1 ↔ m2
2. It may be puzzling that the 1–2 state exchange is

not accompanied by the mass exchange, but this is what the solution to the
SF equation dictates. We should note here that the vacuum mass exchange is
indeed involved in all the SF symmetries in vacuum as tabulated in Table 1.

We argue below that absence of the vacuum mass exchange in the DMP
symmetries comes out naturally given the fact that our theory is based
on quantum mechanics and the state space on which the Rep symmetry
generator acts has no mi dependence. We span the physical state space by
the eigenbases of the diagonalized Hamiltonian H̄(0) in Eq. (4.12). Since we
work under the approximation that neutrinos undergo no inelastic scattering,
no absorption, and do not decay, the state space we construct is a direct
product of the one that has definite neutrino energy E. Then, our system has
only the three component states, the neutrino flavor states [νe, νµ, ντ ]

T , or
the mass eigenstates [ν1, ν2, ν3]

T , which is analogous to the spin-1 system. In
this analogy, our treatment of the three-neutrino system looks similar to the
quantum theory of angular momentum. The flavor mixing matrix U which
acts on the three-component state is nothing but the matrix representation
of the “rotation” operator which is composed of the Gell-Mann matrix [1],
instead of the Pauli matrix for a spin-12 , two-component system.

But, in our case, unlike the case of angular momentum, the “rotation
angles” themselves undergo the transformation. That is, the vacuum and
matter-dressed mixing angles transform at the same time when the state
exchange is performed. In such quantum mechanical formulation, the mixing
matrix U ≡ UMNS [63] and the V matrix [64], see Eq. (5.1) for the definition,
must be elevated to the operator-valued U and V matrices, respectively. Or
in other words, the U and V matrices are the matrix representations of U

3 In this paper, the state ν1 denotes the one with the largest νe component. The
state ν2 is the one that is separated from the state ν1 by the mass squared difference
m2

2 −m2
1 ≡ ∆m2

solar ≃ 7.5× 10−5 eV2 > 0.
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and V , respectively, which act on the unique ground state. To generate the
mixing angles’ transformations, such as cψ → ∓sψ and sψ → ±cψ, there
must be generators to produce the Rep symmetry transformations by acting
onto the operator V matrix.

The V matrix, the matrix representation of V , will be calculated to the
first order in Section 5. Then, we confirm that the V matrix has no mi de-
pendence, and hence the masses do not transform under the SF symmetry
transformations in DMP. In vacuum, on the other hand, m2

i can transform
because the state space is spanned by the eigenstate of the vacuum Hamilto-
nian Hvac ≡ U diag(m2

1/2E,m
2
2/2E,m

2
3/2E) U † with the eigenvalues to be

elevated to the operators. Due to the difference in the state space structure,
it is unlikely that the vacuum SF symmetry can be regarded as the vacuum
limit of the DMP symmetry. This point will be revisited in Appendix A.

2.4. Utility of the Rep symmetry?

As raised in Section 1, the symmetry we discuss here implies reparameter-
ization of the same physics, which may sound that no new physical insights
will be gained by studying it. Despite that the suspect may be legitimate,
we would like to show in this paper that this naive view is not supported by
the results obtained by our treatment. In a nutshell and in simple terms, it
appears that the Rep symmetry sheds light on the interplay between νSM
and UV sectors of the theory.

In the seesaw model of neutrino masses [34–38], the connection between
the low-mass active neutrinos and high-scale new physics with the heavy
sterile states is explicitly visible. But the connection is model dependent. In
the usual treatment of non-unitarity [12], the high-energy sector is integrated
out, which makes the interplay between the νSM and UV sectors of the
theory model independent. Then, the inter-connection between the two
sectors ceases to be visible, or it becomes rather obscured. Is it still possible
to probe the interplay between the νSM and UV sectors of the theory in a
model-independent manner?

Our approach to answering this question is through the symmetry. As
we discussed above, the Rep symmetry resides deep in quantum mechanics,
see also Ref. [20], which of course governs universally both the νSM and UV
sectors of the theory. Then, it is conceivable that the quantum-mechanics-
rooted Rep symmetry reveals how the νSM and UV sectors of the theory
are mutually correlated or communicate with each other. This is nothing
but what we will see in Sections 7 and 8. We even bravely speculate on a
picture of inter-sector communications between the two sectors through the
phases in Section 10.
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3. Three-active-neutrino system with non-unitary
flavor mixing matrix

This section is to define the system of three active neutrinos propagat-
ing under the influence of non-unitary flavor mixing matrix and the matter
potential. In our formalism, the three-active-neutrino evolution in matter
in the presence of a non-unitary flavor mixing is based on the Schrödinger
equation in the vacuum mass eigenstate basis [14, 16], the “check basis”,

i
d

dx
ν̌=

1

2E








0 0 0
0 ∆m2

21 0
0 0 ∆m2

31


+N †



a− b 0 0
0 −b 0
0 0 −b


N



 ν̌≡Ȟν̌ .

(3.1)

In Eq. (3.1), which also defines the check-basis Hamiltonian Ȟ, N denotes
the 3× 3 non-unitary flavor mixing matrix which relates the flavor neutrino
states to the vacuum mass eigenstates as

να = Nαiν̌i . (3.2)

In Eq. (3.2) and hereafter, the Greek subscript indices α, β, or γ run over
e, µ, τ , and the Latin indices i, j run over the mass eigenstate indices 1,
2, and 3. E is neutrino energy and ∆m2

ji ≡ m2
j − m2

i . The usual phase
redefinition of the neutrino wave function is done to leave only the mass
squared differences. Notice, however, that doing this phase redefinition or
not (see Eq. (9.1)) does not affect our symmetry discussion in this paper.

The functions a(x) and b(x) in Eq. (3.1) denote the Wolfenstein mat-
ter potentials [10] due to charged current (CC) and neutral current (NC)
reactions, respectively,

a(x) = 2
√
2GFNeE ≈ 1.52× 10−4

(
Yeρ

g cm−3

)(
E

GeV

)
eV2 ,

b(x) =
√
2GFNnE =

1

2

(
Nn

Ne

)
a , (3.3)

where GF is the Fermi constant. Ne and Nn are the electron and neutron
number densities in matter. ρ and Ye denote, respectively, the matter density
and number of electrons per nucleon in matter. These quantities except for
GF are, in principle, position dependent.

We use so-called the α parametrization [13] for the non-unitary flavor
mixing matrix N

N = (1− α)U =



1−



αee 0 0
αµe αµµ 0
ατe ατµ αττ






U , (3.4)
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where U ≡ UMNS denotes the usual unitary νSM mixing matrix [63]. The
α parametrization originates from Refs. [69, 70]. In fact, the definitions of
U and α matrices are convention dependent [22]. In Eq. (3.4) we have used
the Particle Data Group (PDG) convention [71].

For convenience of our discussion, following Ref. [3], we use the solar
(SOL) convention for the U and α matrices. They are defined by the phase
redefinition of those of the PDG convention

USOL =




1 0 0
0 e−iδ 0
0 0 e−iδ


UPDG




1 0 0
0 eiδ 0
0 0 eiδ




=




1 0 0
0 c23 s23
0 −s23 c23






c13 0 s13
0 1 0

−s13 0 c13






c12 s12e
iδ 0

−s12e−iδ c12 0
0 0 1




≡ U23(θ23)U13(θ13)U12(θ12, δ) ,

αSOL =




1 0 0
0 e−iδ 0
0 0 e−iδ


α




1 0 0
0 eiδ 0
0 0 eiδ


 ≡



α̃ee 0 0
α̃µe α̃µµ 0
α̃τe α̃τµ α̃ττ


 ,

(3.5)

with the obvious notations sij ≡ sin θij etc., δ for the lepton analogue of the
quark CP violating Kobayashi–Maskawa (KM) phase δ [72], and α̃βγ for the
SOL convention α parameters which we use4. The third line in Eq. (3.5)
defines the rotation matrices in the 2–3, 1–3, and 1–2 spaces in order.

4. DMP-UV perturbation theory in a nutshell

To present our formulation of the DMP-UV perturbation theory, an ex-
tension of DMP to include non-unitarity, we rely on the basic formulation
given in a previous paper [17], which will be referred to for details. On the
other hand, we have to go beyond the treatment of Ref. [17] for the following
three reasons:

(1) While we remain in the first-order treatment in a most part of this
paper, we have to keep the second-order UV term in the Hamilto-
nian when we attempt to give an all-order proof of the symmetries in
Section 9.

(2) In the SF framework, we need the V matrix method [64], which will
be formulated for our theory in Section 5.

4 The other useful form of the U matrix is the one with the atmospheric (ATM) con-
vention used, e.g., in Refs. [6, 9, 22] in which the phase factor e±iδ is attached to s23
as opposed to s12 in the SOL convention.
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(3) We take the eigenvalue-renormalized basis for the eigenstate in matter,
which is slightly different from the one in Ref. [17].

The DMP-UV perturbation theory has two kinds of the expansion pa-
rameters, ϵ and the UV α̃ parameters. ϵ is defined as

ϵ ≡ ∆m2
21

∆m2
ren

, ∆m2
ren ≡ ∆m2

31 − s212∆m
2
21 , (4.1)

where ∆m2
ren is the “renormalized” atmospheric ∆m2 used in Ref. [9]. The

same quantity is known as the effective ∆m2
ee in the νe → νe channel in

vacuum [73]. While we prefer usage of ∆m2
ren in the context of the present

paper, the question of which symbol should be appropriate to use here is
under debate [9]. The other expansion parameters are the α̃βγ parameters
defined in Eq. (3.5) which represent the UV effects.

We start from the tilde-basis Hamiltonian

H̃ ≡ (U13U12)Ȟ(U13U12)
† = H̃νSM + H̃

(1)
UV + H̃

(2)
UV , (4.2)

where

H̃νSM =
∆m2

ren

2E








a(x)
∆m2

ren
+ s213 + ϵs212 0 c13s13
0 ϵc212 0

c13s13 0 c213 + ϵs212




+ ϵc12s12




0 c13e
iδ 0

c13e
−iδ 0 −s13e−iδ
0 −s13eiδ 0






 . (4.3)

The UV part has the first- and second-order terms in the α̃ parameters

H̃
(1)
UV =

b

2E
U †
23AU23 ,

H̃
(2)
UV = − b

2E
U †
23A

(2)U23 , (4.4)

where

A ≡




2α̃ee

(
1− a(x)

b(x)

)
α̃∗
µe α̃∗

τe

α̃µe 2α̃µµ α̃∗
τµ

α̃τe α̃τµ 2α̃ττ


 ,

A(2) ≡



α̃2
ee

(
1− a(x)

b(x)

)
+ |α̃µe|2 + |α̃τe|2 α̃∗

µeα̃µµ + α̃∗
τeα̃τµ α̃∗

τeα̃ττ

α̃µeα̃µµ + α̃τeα̃
∗
τµ α̃2

µµ + |α̃τµ|2 α̃∗
τµα̃ττ

α̃τeα̃ττ α̃τµα̃ττ α̃2
ττ


 .

(4.5)
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In H̃νSM in Eq. (4.3), the rephasing to remove the NC potential is under-
stood [17]. For a consistent nomenclature, A must carry the superscript as
A(1), but for simplicity of the expressions, we omit it throughout this paper.
In what follows, we keep omitting the superscript (1) for many of the quan-
tities in the first order in the α̃ parameters, because our treatment will be
free from the second-order terms apart from Section 9.

4.1. The renormalized eigenvalue (bar) basis

We use the two successive rotations in the 1–3 and 1–2 spaces with the
angles ϕ and ψ, the matter-dressed θ13 and θ12, respectively, to diagonalize

H̃νSM, see Ref. [6]. The diagonalized basis is denoted as the “bar basis” with
the Hamiltonian

H̄ = U †
12(ψ, δ)U

†
13(ϕ)H̃U13(ϕ)U12(ψ, δ) = H̄

(0)
νSM + H̄

(1)
νSM + H̄

(1)
νUV + H̄

(2)
νUV .

(4.6)

The notations are such that U12(ψ, δ), for example, implies U12(θ12, δ) with
replacement of θ12 by ψ. The νSM part of H̄ takes the form in the SOL
convention as

H̄
(0)
νSM + H̄

(1)
νSM =

1

2E



λνSM
1 0 0
0 λνSM

2 0
0 0 λνSM

3




+ϵc12s12 sin(ϕ− θ13)
∆m2

ren

2E




0 0 −sψ
0 0 cψe

−iδ

−sψ cψe
iδ 0


 ,

(4.7)

where the first and second terms in Eq. (4.7) define H̄
(0)
νSM and H̄

(1)
νSM, respec-

tively. λνSM
i /2E denote the zeroth-order eigenvalues of the νSM Hamiltonian

given in Ref. [6]. The UV part of the bar-basis Hamiltonian reads

H̄
(1)
UV =

b

2E
G , H̄

(2)
UV = − b

2E
G(2) , (4.8)

where theGmatrices are the 2–3, 1–3, and 1–2 rotated Amatrices in Eq. (4.5)

G = U12(ψ, δ)
†U †

13(ϕ)U
†
23(θ23)AU23(θ23)U13(ϕ)U12(ψ, δ) ,

G(2) = U12(ψ, δ)
†U †

13(ϕ)U
†
23(θ23)A

(2)U23(θ23)U13(ϕ)U12(ψ, δ) . (4.9)

To discuss the Rep symmetry, for simplicity, we take the renormalized
bar basis in which the diagonal elements of the G matrices are absorbed into
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the eigenvalues of H̄(0)

λi = λνSM
i + bGii − bG

(2)
ii (i = 1, 2, 3) . (4.10)

The off-diagonal parts of the G and G(2) matrices are left as they are in H̄
(1)
UV

and H̄
(2)
UV, and are treated as perturbation. Notice that since the matter-

dressed mixing angles are defined through the process of diagonalizing the

νSM part, H̄
(0)
νSM + H̄

(1)
νSM, the shifted eigenvalues do not affect them.

From now on until Section 9, we concentrate on the first-order term in
the Hamiltonian and parametrize the G matrix as

G = DHD† =




H11 eiδH12 H13

e−iδH21 H22 e−iδH23

H31 eiδH32 H33


 , (4.11)

whereD ≡ diag(eiδ, 1, eiδ), with the diagonal elements untouched, Gii = Hii.
The explicit expressions of Hij are given in Appendix B. We have introduced
the H matrix for two reasons:

(1) Overall e±iδ factors in the elements G12 and G23 are taken out to
prevent proliferation of hidden δ in the expressions of the probability.

(2) It makes the δ dependences of the νSM and UV parts of the SF equa-
tion more coherent.

Then, by using the renormalized eigenvalues, the bar-basis Hamiltonian
is given to the first order in the DMP-UV expansion as

H̄ =
1

2E



λ1 0 0
0 λ2 0
0 0 λ3




+ϵc12s12 sin(ϕ− θ13)
∆m2

ren

2E




0 0 −sψ
0 0 cψe

−iδ

−sψ cψe
iδ 0




+
b

2E




0 eiδH12 H13

e−iδH21 0 e−iδH23

H31 eiδH32 0


 . (4.12)

Hereafter, we denote the first term of Eq. (4.12) as H̄(0), and the second and
third as H̄(1) which are treated as perturbation. After identifying the un-
perturbed and perturbed Hamiltonian, there is a standard route to compute
the S matrix and the oscillation probability. This task is carried out explic-
itly in the νµ → νe channel in Ref. [17] to the first order in the DMP-UV
expansion. As in Ref. [17], we use the uniform matter density approximation
until Section 9.
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5. V matrix method

Symmetry Finder (SF) [3–5] is formulated by using the V matrix formal-
ism [64], and for this reason, we construct it for the DMP-UV perturbation
theory. If we have the expression of the flavor eigenstate in terms of the
mass eigenstate basis in matter as

ν = V ν̄ , (5.1)

the oscillation probability can readily be calculated as

P (νβ → να) = δαβ − 4
∑

j>i

Re[VαiV
∗
βiV

∗
αjVβj ] sin

2 (λj − λi)x

4E

−2
∑

j>i

Im[VαiV
∗
βiV

∗
αjVβj ] sin

(λj − λi)x

2E
. (5.2)

The V matrix method has been utilized for this purpose, e.g., in Refs. [6, 9].

5.1. V matrix at the zeroth and first orders

However, since we deal with the theory with a non-unitary mixing matrix,
proper care is needed to calculate the V matrix. We recall that the flavor
eigenstate να is related to the vacuum mass eigenstate (denoted as the check
basis) as να = Nαiν̌i = {(1− α̃)U}αi ν̌i, see Eqs. (3.2) and (3.4). From
Eqs. (4.2) and (4.6), the relation between the bar and the check bases is

given by H̄ = U †
12(ψ, δ)U

†
13(ϕ)U13U12ȞU

†
12U

†
13U13(ϕ)U12(ψ, δ). Here, U13

and U12 without arguments implies the rotation matrices in vacuum, see
Eq. (3.5). Therefore, the relation between the check-basis and bar-basis
states is

ν̌ = U †
12U

†
13U13(ϕ)U12(ψ, δ)ν̄ . (5.3)

Then, the flavor state is connected to the bar-basis state as

ν = (1− α̃ )Uν̌ = (1− α̃ )U23(θ23)U13(ϕ)U12(ψ, δ)ν̄ , (5.4)

which gives the zeroth-order and the first-order “genuine UV part” of the V
matrix given, respectively, as

V (0) = U23(θ23)U13(ϕ)U12(ψ, δ) ,

V
(1)
UV = −α̃U23(θ23)U13(ϕ)U12(ψ, δ) = −α̃V (0) . (5.5)

Hereafter, we simply use the subscript “UV” to indicate the genuine UV
part.
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When the perturbation H̄(1) is switched on, the other type of the first-
order term in the V matrix, the EV (UV-induced but unitary evolution) part

V
(1)
EV , is generated. For more about these concepts, the “genuine UV” and

“unitary evolution” parts, see Ref. [22]. They contribute to the probability
in the two quite different forms as we will see in Section 5.3, the feature also
observed in the S matrix computation in Ref. [17]. To compute the EV part
of the first-order correction to the V matrix, we take out the prefactor (1−α̃)
because the effect of this α̃ produces the second-order effect. Then, the
method for obtaining the first-order correction for the V matrix is identical
to the one used in computing the first-order correction to the wave function

in quantum mechanics. When we write ν̄i = ν̄
(0)
i + ν̄

(1)
i , the first-order

correction can be calculated as

ν̄
(1)
i =

∑

j ̸=i

2EH̄
(1)
ij

λi − λj
ν̄
(0)
j ≡Wij ν̄

(0)
j , (5.6)

where we have defined the W matrix. Since H̄ in Eq. (4.12) has two first-
order terms, one from the νSM and the other due to the EV effect, the
W matrix can be written in the form of the addition of these terms, W =
WνSM +WEV, and their explicit forms are given in Eq. (5.10). A short note
for clarification of Eq. (5.6) is in Appendix C.

Then, the energy eigenstate calculated to the first order can be written,
using the W matrix defined in Eq. (5.6), as

ν̄ = ν̄(0) + ν̄(1) = (1 +W )ν̄(0)

= (1 +WνSM +WEV) [U23(θ23)U13(ϕ)U12(ψ, δ)]
† ν , (5.7)

where we have used the zeroth order relation ν = V (0)ν̄(0) = [U23(θ23)U13(ϕ)
U12(ψ, δ)]ν̄

(0). Inverting this relation and adding the contribution from the
genuine unitary part in Eq. (5.5), we obtain the expression of the flavor state
by the mass eigenstate in matter to the first order as

ν =
[
−α̃V (0) + V (0) (1 +WνSM +WEV)

†
]
ν̄ ≡ V ν̄ , (5.8)

which defines the V matrix to the first order in the DMP-UV expansion,
and in Eq. (5.8), we have used the expression of the zeroth-order V matrix
in Eq. (5.5).

5.2. V matrix to the first order: Summary

For the convenience of formulating the SF equation, we rewrite the ex-
pression of the flavor state (5.8) with the use of the V matrix in the following
form:
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νe
νµ
ντ


 = U23(θ23)U13(ϕ)U12(ψ, δ)

{
1 +W(1)

νSM +W(1)
EV −Z(1)

UV

}

ν1
ν2
ν3


 ,

(5.9)

where

W(1)
νSM(θ23, δ, ϕ, ψ;λ1, λ2) ≡W †

νSM

= ϵc12s12 sin(ϕ− θ13)




0 0 −sψ ∆λren
λ3−λ1

0 0 cψe
−iδ ∆λren

λ3−λ2

sψ
∆λren
λ3−λ1

−cψeiδ ∆λren
λ3−λ2

0


 ,

W(1)
EV(θ23, δ, ϕ, ψ;λ1, λ2) ≡W †

EV

=




0 eiδH12
b

λ2−λ1
H13

b
λ3−λ1

−e−iδH21
b

λ2−λ1
0 H23e

−iδ b
λ3−λ2

−H31
b

λ3−λ1
−H32e

iδ b
λ3−λ2

0


 . (5.10)

That is, we label the mass eigenstate basis, the bar-basis state, νi (i = 1, 2, 3)
to make the state label more explicit in our discussion of the Rep symmetry
which involves the state exchange. WνSM and WEV are calculated by using
Eq. (5.6). Notice that the H matrix is hermitian.

In Eq. (5.9), we give V (0) in Eq. (5.8) the explicit form as in Eq. (5.5),
and move it to the front position on the right-hand side of Eq. (5.9). For

this purpose, we have introduced Z(1)
UV with the definition

α̃V (0) = V (0)Z(1)
UV , (5.11)

which can be readily solved for Z(1)
UV as

Z(1)
UV(θ23, δ, ϕ, ψ; α̃βγ) =

(
V (0)

)†

α̃V (0) . (5.12)

5.3. Computing the oscillation probability using the V matrix method

Having obtained the V matrix as in Eq. (5.8), it is straightforward to
compute the oscillation probability by using formula (5.2). We restrict our-
selves to the zeroth- and first-order terms of the oscillation probability. In
the UV extensions of the perturbative formulations of neutrino oscillation
in matter using the S matrix method [17, 22, 45], the probability can be
written to the first order in the DMP-UV expansion as
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P (νβ → να) = P (νβ → να)
(0)
νSM + P (νβ → να)

(1)
νSM

+P (νβ → να)
(1)
EV + P (νβ → να)

(1)
UV , (5.13)

where the first two terms denote the standard νSM contributions. P (νβ →
να)

(1)
EV is the contribution from the EV part, the UV-driven but describing

the unitary evolution effect. P (νβ → να)
(1)
UV is the genuine non-unitary

contribution which violates unitarity at the S matrix and the probability
levels [22].

The first two terms, P (νβ → να)
(0)
νSM and P (νβ → να)

(1)
νSM, are fully

calculated in Ref. [6]. See also Ref. [20] for the less abstract expressions
in all the relevant channels. Therefore, we just concentrate into the UV-

related parts, P (νβ → να)
(1)
EV and P (νβ → να)

(1)
UV, in this paper. In our

V matrix formulation, P (νβ → να)
(1)
UV comes from VUV in Eq. (5.5), and

P (νβ → να)
(1)
EV from V (0)W †

EV term of Eq. (5.8).

The computed results of P (νµ → νe)
(1)
EV and P (νµ → νe)

(1)
UV are given in

Appendices D.1 and D.2, respectively. One can readily see that the genuine

non-unitary part P (νµ → νe)
(1)
UV is identical to the corresponding formula in

Ref. [17]. For the EV part, P (νµ → νe)
(1)
EV agrees with the one in Ref. [17]

apart from that our expression in Appendix D misses the (bx)/2E term,
Eq. (4.9) in Ref. [17]. But, there is no problem because the (bx)/2E term
shows up if we expand the renormalized eigenvalues (4.10) by bGii = bHii,
as will be shown in Eq. (E.5) in Appendix E.

6. Symmetry Finder for the DMP-UV perturbation theory

6.1. Symmetry Finder (SF) equation

We embody SF in Eq. (2.1) and the associated machinery, the SF equa-
tion, in the DMP-UV perturbation theory. We define another state physi-
cally equivalent to the one in Eq. (5.9)

F



νe
νµ
ντ


 = FU23(θ23)U13(ϕ)U12(ψ, δ)R

†R

{
1 +W(1)

νSM +W(1)
EV −Z(1)

UV

}

×R†R



ν1
ν2
ν3


 , (6.1)
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with the use of the flavor state rephasing matrix F and the generalized 1–2
state-exchange matrix R parametrized as5

F ≡




eiτ 0 0
0 eiσ 0
0 0 1


 , R ≡




0 −ei(δ+α) 0

e−i(δ+β) 0 0
0 0 1


 , (6.2)

respectively, where τ , σ, α, and β denote the arbitrary phases. Since the
rephasing of the states does not change its physical content, the states de-
fined by Eqs. (5.9) and (6.1) are physically equivalent to each other.

Now, we introduce the SF equation, the DMP version of Eq. (2.1). If
the flavor state (6.1) can be written in a form of the same state but with the
transformed parameters, it implies the existence of symmetry. The concrete
form of the statement reads



eiτ 0 0
0 eiσ 0
0 0 1





νe
νµ
ντ


 =



1 0 0
0 c23 s23e

iσ

0 −s23e−iσ c23






cφ 0 sφe
iτ

0 1 0
−sφe−iτ 0 cφ




×FU12(ψ, δ)R
†R

{
1+W(1)

νSM(Φ;λ1, λ2) +W(1)
EV(Φ, α̃;λ1, λ2)−Z(1)

UV(Φ, α̃)

}

×R†R



ν1
ν2
ν3


 =



1 0 0
0 c′23 s′23
0 −s′23 c′23





c′φ 0 s′φ
0 1 0

−s′φ 0 c′φ


U12(ψ

′, δ + ξ)

×
{
1 +W(1)

νSM

(
Φ′;λ2, λ1

)
+W(1)

EV

(
Φ′, α̃′;λ2, λ1

)
−Z(1)

UV

(
Φ′, α̃′

)}

×



−ei(δ+α)ν2
e−i(δ+β)ν1

ν3


 . (6.3)

That is, if we find a solution to the SF equation (6.3), we identify a Rep
symmetry in the DMP-UV theory. In Eq. (6.3), Φ denotes the collective
representation of all the parameters involved, θ23, ϕ, ψ, δ, θ12, and θ13, and
Φ′ their transformed ones. α̃′ is for the transformed α̃, the collective notation
for the α̃βγ parameters, and δ′ = δ+ ξ. The SF equation is valid to the first
order in the DMP-UV perturbation theory.

Clarifying remarks are in order on the structure of the SF equation and
the relationship between the DMP and DMP-UV theories:

(1) Due to the perturbative formulation of the SF equation, it can be
decomposed into the zeroth- and the first-order parts, which will be

5 In Ref. [3], we have used the notation G for the R matrix in Eq. (6.2). We use here
the symbol R not to confuse it with the G matrix in Eq. (4.9).
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denoted as the first and second conditions, respectively. The former
contains only the νSM variables.

(2) The three first-order entities in the second condition, W(1)
νSM(Φ′;λ1, λ2),

W(1)
EV(Φ, α̃;λ1, λ2), and Z(1)

UV(Φ, α̃) are independent from each other due
to the differences in their variable dependences. One can confirm this
property by the explicit treatment of the second condition on the UV
parts in Sections 6.4 and 6.5, in addition to the νSM part which is
worked out in Ref. [3]. Therefore, the second condition decomposes
into the three independent equations, see Eq. (6.7).

6.2. The first condition

By eliminating all the first-order terms in the SF equation (6.3), we
obtain the first condition. We look for the solution under the ansatz s23e

iσ =
s′23 and sφe

iτ = s′φ. Apparently, we have no other choice within the present
SF formalism. The ansatz implies that the possible values of τ and σ are
restricted to integer multiples of π.

Then the first condition takes the form

FU12(ψ, δ)R
† = U12

(
ψ′, δ + ξ

)
, (6.4)

where we recall that

U12(ψ, δ) =




cψ sψe
iδ 0

−sψe−iδ cψ 0
0 0 1


 . (6.5)

It is shown [3] that the DMP first condition, which is identical to ours, can
be reduced to

cψ′ = −sψe−i(α−τ) = −sψei(β+σ) , sψ′ = cψe
i(β+τ−ξ) = cψe

−i(α−σ−ξ) .
(6.6)

First of all, the first condition implies that up to the phase factor, cψ trans-
forms to sψ and vice versa. This is consistent with the property of the
symmetry we are looking for, which involves the 1–2 state exchange. We
note that under the above restriction of τ and σ being integer multiples
of π, Eq. (6.6) implies that all the rest of the phase parameters, ξ, α, and β,
must also be integer multiples of π. All the solutions to the first condition
are obtained in Ref. [3], and they are summarized in Table 2. The universal
nature of the first three columns of Table 2 over the DMP, SRP, and the
helio-perturbation theories is pointed out in Ref. [4].
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Table 2. All the solutions to the first condition (6.6) for Symmetry X, where

X= IA, IB, . . . , IVB, and the rephasing matrix Ref(X) (7.4) are tabulated. The

labels “upper” and “lower” imply the upper and lower sign in the corresponding

rows in Table 3.

Symmetry τ, σ, ξ α, β Rep(X )

IA τ = σ = 0, ξ = 0 α = β = 0 (upper) diag(1,1,1)

α = π, β = −π (lower)

IB τ = σ = 0, ξ = π α = π, β = −π (upper) same as IA

α = β = 0 (lower)

IIA τ = 0, σ = −π, ξ = 0 α = π, β = 0 (upper) diag(1,−1,1)

α = 0, β = π (lower)

IIB τ = 0, σ = −π, ξ = π α = 0, β = π (upper) same as IIA

α = π, β = 0 (lower)

IIIA τ = π, σ = 0, ξ = 0 α = 0, β = π (upper) diag(−1,1,1)

α = π, β = 0 (lower)

IIIB τ = π, σ = 0, ξ = π α = π, β = 0 (upper) same as IIIA

α = 0, β = π (lower)

IVA τ = σ = π, ξ = 0 α = π, β = −π (upper) diag(−1,−1,1)

α = β = 0 (lower)

IVB τ = σ = π, ξ = π α = β = 0 (upper) same as IVA

α = π, β = −π (lower)

6.3. The second condition

The first-order terms in the SF equation (6.3) constitute the second
condition which can be decomposed into the νSM, EV, and the UV parts

RW(1)
νSM(θ12, θ13, δ, ϕ, ψ;λ1, λ2)R

† = W(1)
νSM(θ′12, θ

′
13, δ + ξ, ϕ′, ψ′;λ2, λ1) ,

RW(1)
EV(θ23, δ, ϕ, ψ, α̃βγ ;λ1, λ2)R

† = W(1)
EV(θ

′
23, δ + ξ, ϕ′, ψ′, α̃′

βγ ;λ2, λ1),

RZ(1)
UV(θ23, δ, ϕ, ψ, α̃βγ)R

† = Z(1)
UV(θ

′
23, δ + ξ, ϕ′, ψ′, α̃′

βγ) . (6.7)

The decomposability of the second condition implies, together with the com-
mon first condition in the both DMP and DMP-UV theories, that the sym-
metries of the DMP-UV theory cannot be larger than the eight symmetries
of the νSM DMP. The question is whether all of them survive in the UV
extension.
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Table 3. All the reparametrization symmetries of the 1–2 state-exchange type in

the DMP-UV perturbation theory are summarized by giving the transformation

properties of the νSM and UV α̃ variables. In the text, we refer to them as

“Symmetry IA-DMP-UV”, etc.

Symmetry Vacuum parameter transf. Matter parameter transf. UV parameter transf.

IA none λ1 ↔ λ2, cψ → ∓sψ, sψ → ±cψ none

IB θ12 → −θ12, δ → δ + π. λ1 ↔ λ2, cψ → ±sψ, sψ → ±cψ none

IIA θ23 → −θ23, θ12 → −θ12. λ1 ↔ λ2, cψ → ±sψ, sψ → ±cψ α̃µe → −α̃µe, α̃τµ → −α̃τµ
IIB θ23 → −θ23, δ → δ + π. λ1 ↔ λ2, cψ → ∓sψ, sψ → ±cψ same as IIA

IIIA θ13 → −θ13, θ12 → −θ12. λ1 ↔ λ2, ϕ→ −ϕ α̃µe → −α̃µe, α̃τe → −α̃τe
cψ → ±sψ, sψ → ±cψ

IIIB θ13 → −θ13, δ → δ + π. λ1 ↔ λ2, ϕ→ −ϕ same as IIIA

cψ → ∓sψ, sψ → ±cψ
IVA θ23 → −θ23, θ13 → −θ13. λ1 ↔ λ2, ϕ→ −ϕ α̃τe → −α̃τe, α̃τµ → −α̃τµ

cψ → ∓sψ, sψ → ±cψ
IVB θ23 → −θ23, θ13 → −θ13, λ1 ↔ λ2, ϕ→ −ϕ same as IVA

θ12 → −θ12, δ → δ + π. cψ → ±sψ, sψ → ±cψ

Given the cψ ↔ sψ exchange property up to sign, the rest of the job in
the νSM part is to determine the sign as well as to determine whether θij
(ij = 12, 13, 23) flips the sign or not. This is done by solving the second
condition. It produces the eight DMP symmetries, IA, IB, . . . , IVB, where
the type A (B) means that no δ is involved (δ is involved) in the symmetry
transformations, as worked out in Ref. [3], see Table 3. With the knowledge

of the eight νSM symmetries, we examine the second conditions on W(1)
EV

and Z(1)
UV to know if consistent solutions exist. In the rest of this section,

we reduce the EV and UV second conditions a little further to make them
ready to solve. It will be followed by the solutions to the Z(1)

UV and W(1)
EV

equations in Sections 7 and 8, respectively.

6.4. The second condition on the unitary evolution part

The second condition (6.7) with the explicit form of W(1)
EV in Eq. (5.10)

can be written, using the H matrix defined in Eq. (4.11), as
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0 ei(δ+α+β)H21
b

λ2−λ1
−eiαH23

b
λ3−λ2

−e−i(δ+α+β)H12
b

λ2−λ1
0 e−i(δ+β)H13

b
λ3−λ1

e−iαH32
b

λ3−λ2
−ei(δ+β)H31

b
λ3−λ1

0




=




0 −ei(δ+ξ)H ′
12

b
λ2−λ1

H ′
13

b
λ3−λ2

e−i(δ+ξ)H ′
21

b
λ2−λ1

0 e−i(δ+ξ)H ′
23

b
λ3−λ1

−H ′
31

b
λ3−λ2

−ei(δ+ξ)H ′
32

b
λ3−λ1

0


 . (6.8)

We notice that it can be written in the condensed form as

H ′
12 = −ei(α+β−ξ)H21 ,

H ′
23 = e−i(β−ξ)H13 ,

H ′
13 = −eiαH23 . (6.9)

The condition on Hji can be obtained from that on Hij using the hermiticity
Hji = H∗

ij .

6.5. The second condition on the genuine non-unitary part

Using Eq. (5.12), the second condition with Z(1)
UV in Eq. (6.7) takes the

form

R
[
V (0)(θ23, ϕ, ψ, δ)

]†
α̃V (0)(θ23, ϕ, ψ, δ)R

†

=
[
V (0)

(
θ′23, ϕ

′, ψ′, δ + ξ
)]†

α̃′V (0)
(
θ′23, ϕ

′, ψ′, δ + ξ
)
, (6.10)

where V (0)(θ23, ψ, ϕ, δ) is defined in Eq. (5.5). Then, the transformed α̃ can
be obtained in a closed form as

α̃′ = V (0)
(
θ′23, ϕ

′, ψ′, δ + ξ
)
R
[
V (0) (θ23, ϕ, ψ, δ)

]†

×α̃V (0) (θ23, ϕ, ψ, δ)R
†
[
V (0)

(
θ′23, ϕ

′, ψ′, δ + ξ
)]†

. (6.11)

Notice the vastly different features of two second conditions, the one for

Z(1)
UV in Eq. (6.11) and the other for W(1)

EV in Eq. (6.9). It makes consistency
between them highly non-trivial.

7. Solution to the SF equation: Genuine non-unitary part

As we have already pointed out, the possibility of UV extension of the
νSM DMP symmetries depends on whether or not the second conditions
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on W(1)
EV and Z(1)

UV produce independently the consistent solutions for the
transformation properties of the α̃ parameters. Therefore, we first examine

the second condition (6.11) on Z(1)
UV, the genuine non-unitary part, because

it will reveal an interesting feature for the SF formalism itself. But in the
first place, it will tell us how α̃ transforms under the DMP-UV symmetries.

If we use the simplified notation [V ′RV †] ≡ V (0)(θ′23, ϕ
′, ψ′, δ + ξ)

R
[
V (0)(θ23, ϕ, ψ, δ)

]†
, Eq. (6.11) can be written as α′ = [V ′RV †]α[V ′RV †]†.

Therefore, we calculate [V ′RV †] first. To calculate it in a transparent way,
we define C[12]

C[12] ≡




c′ψ s′ψe
i(δ+ξ) 0

−s′ψe−i(δ+ξ) c′ψ 0

0 0 1







0 −ei(δ+α) 0

e−i(δ+β) 0 0
0 0 1




×




cψ −sψeiδ 0
sψe

−iδ cψ 0
0 0 1


 (7.1)

such that the key ingredient [V ′RV †] can be written as

[
V ′RV †

]
≡ V (0)

(
θ′23, ϕ

′, ψ′, δ + ξ
)
R
[
V (0)(θ23, ϕ, ψ, δ)

]†

=




1 0 0
0 c′23 s′23
0 −s′23 c′23






c′φ 0 s′φ
0 1 0

−s′φ 0 c′φ




×C[12]



cφ 0 −sφ
0 1 0
sφ 0 cφ






1 0 0
0 c23 −s23
0 s23 c23


 . (7.2)

We will see immediately below that C[12] and [V ′RV †] in Eq. (7.2) are equal
to each other in quite interesting manner, see Eq. (7.3).

7.1. Useful identities for the rephasing matrix

We calculate C[12] and [V ′RV †] by inserting the solutions to the SF
equation tabulated in Table 3, and the phase parameters α, β, etc. given
in Table 2. Since each solution for Symmetry X has the upper and lower ±
signs, there are total sixteen cases. The computed results we have obtained
for them are the ones totally unexpected to us. Despite the profound depen-
dences on the νSM parameters in C[12] and [V ′RV †], the computed results
are the constants, which depend only on the symmetry type, Symmetry X
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with X= I, II, III, IV6

C[12] = V (0)
(
θ′23, ϕ

′, ψ′, δ + ξ
)
R
[
V (0)(θ23, ϕ, ψ, δ)

]†
= Rep(X) . (7.3)

Rep(X) is the rephasing matrix which is introduced to characterize the trans-

formation property of the flavor basis Hamiltonian asH→ Rep(X)HRep(X)†

under Symmetry X [3]. It is the key concept in the proof of the DMP sym-
metries as the Hamiltonian symmetries. Rep(X) is given by Rep(I)= diag
(1,1,1), and7

Rep(II) =




1 0 0
0 −1 0
0 0 1


 , Rep(III) =




−1 0 0
0 1 0
0 0 1


 ,

Rep(IV) =




−1 0 0
0 −1 0
0 0 1


 . (7.4)

In Appendix F, a sketchy proof of the identity Eq. (7.3) is given for Symme-
try IV. The computations of C[12] and [V ′RV †] for the rest of symmetries
X= I, II, III are left for the interested readers.

7.2. Solution to the second condition: Genuine non-unitary part

The solution to the second condition (6.11) can readily be obtained by
using the second identity in Eq. (7.3)

α̃′ = Rep(X) α̃ Rep(X)† , (7.5)

which implies that α̃′ = α̃ for Symmetry X= I, and for X= II, III, and IV,
in order

α̃′=



α̃ee 0 0
−α̃µe α̃µµ 0
α̃τe −α̃τµ α̃ττ


 ,



α̃ee 0 0
−α̃µe α̃µµ 0
−α̃τe α̃τµ α̃ττ


 ,



α̃ee 0 0
α̃µe α̃µµ 0
−α̃τe −α̃τµ α̃ττ


 .

(7.6)

6 We generically quote symmetry as “Symmetry X” when X applies to all the DMP-UV
symmetries. When we quote X for a particular property in a more specific way, such
as, e.g., “X= II, III, and IV”, it means that the property holds for the both XA and
XB. For our repeated use of the phrase “O transforms under the transformations of
Symmetry X”, we simply say “O transforms under Symmetry X” to avoid cumbersome
repetition of the words.

7 Rep(II)= diag(−1,1,−1) in Ref. [3], but this is equivalent to diag(1,−1,1) as in
Eq. (7.4). Similarly, Rep(IV) can be written as diag(1,1,−1). The overall sign of
Rep(X) does not affect the physical observables.
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The resulting transformation properties of the α̃ parameters and Rep(X) are
summarized in Table 3 and Table 2, respectively.

We have reached a very interesting feature that the UV α̃ parameters
do not transform under Symmetry IA- and IB-DMP-UV, but do transform
under the rest of six DMP-UV symmetries: The Rep symmetry, as a whole,
recognizes and distinguishes the νSM and the UV sectors of the theory.
It suggests an intriguing possibility that the symmetry can be utilized to
diagnose an extended theory which possesses the νSM and UV parts, which
will be further discussed in Section 10.

7.3. The key identity and its possible topological nature

Probably, the most important observation made in this paper is the key
identity (7.3), abbreviated as V (0)(Φ′)R[V (0)(Φ)]† = Rep(X). It has several
interesting consequences. They include an innovation in the Hamiltonian
proof of the symmetries and a conjecture on possible further enlargement of
symmetry, which will be presented, respectively, in Sections 9 and 10.

However, the nature of the identity is highly intriguing and is not un-
derstood. While the left-hand side has full of the νSM variables depen-
dences, the right-hand side is the constant diagonal matrix with the elements
±1 = e±ikπ (k = 0, 1). Such a coherent behavior of the sixteen (eight sym-
metries duplicated by the upper and lower signs) quantities is not thinkable
without a particular reason. The only possibility which we are aware of, to
the best of our knowledge, is that somehow V (0)(Φ′)R[V (0)(Φ)]† has a topo-
logical nature. While its mathematical proof eludes us, since it is so natural,
we suspect that a solid argument for backing up the topological origin of the
identity could exist. Since the author presented an argument in favor of this
possibility in analogy with the U(1) charge quantization around a vortex in
Ref. [4], we do not repeat it here.

8. Solution to the SF equation: Unitary evolution part

We analyze the second condition in Eq. (6.9) for the unitary evolution
part to determine the transformation property of the Hij parameters. After
verifying the consistency with the α̃ parameter transformations (7.6), we ex-
amine the invariance of the oscillation probability under the Hij parameters’
transformations.

8.1. Solution to the second condition: Unitary evolution part

The solutions to the first condition depend not only on the symmetry
types denoted generically as XA and XB, but also the upper and lower signs
of the phase parameters α, β, etc., as summarized in Table 2. Using the
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phase parameters, one can show that the second condition (6.9) implies that
Hij transforms under Symmetry X as

Symmetry IA, IIB : H ′
12 = −H21 , H ′

23 = ±H13 , H ′
13 = ∓H23 ,

Symmetry IB, IIA : H ′
12 = H21 , H ′

23 = ±H13 , H ′
13 = ±H23 ,

Symmetry IIIA, IVB : H ′
12 = H21 , H ′

23 = ∓H13 , H ′
13 = ∓H23 ,

Symmetry IIIB, IVA : H ′
12 = −H21 , H ′

23 = ∓H13 , H ′
13 = ±H23 ,

(8.1)

where ± (or ∓) sign refers to the upper and lower signs in Table 2 and Ta-
ble 3, which are synchronized between them. Notice that the transformation
property of Hji can be obtained by using the hermiticity Hji = (Hij)

∗. The
pairings in Eq. (8.1) may look curious because the pairs IA and IIB, and also
IB and IIA, differ in the property that the former (latter) does not (does)
contain the transformation of the α̃ parameters. But, we reassure these
pairings in Section 8.2. It appears that the pairing of the two symmetries is
dictated by the transformation property of ψ, which is the same inside the
pair.

8.2. Consistency between the Hij and the α̃ parameter transformations

Now, we are left with the consistency check between the solutions to the
second conditions derived from the genuine non-unitary part (7.6) and the
unitary evolution part (8.1). The way we carry it out is to use the transfor-
mation properties of the νSM variables and the α̃ parameters in Eq. (7.6),
which are both in Table 3, to obtain the Hij transformation properties and
see if they agree with the ones in Eq. (8.1).

Then, we immediately encounter the problem for Hii (i = 1, 2, 3), the
diagonal elements. Their transformation properties are absent in Eq. (8.1).
It is because they are absorbed into the eigenvalues, see Eq. (4.10). Note
that Gii = Hii. In fact, Hii calculated with the above recipe transform,
under all Symmetry X= IA, IB, . . . , IVB, as

H11 ↔ H22 , (8.2)

i.e., H11–H22 exchange, and H33 is invariant. It must be the case because
we are dealing with the 1–2 state-exchange symmetry λ1 ↔ λ2 for which
the both transformations λνSM

1 ↔ λνSM
2 and H11 ↔ H22 must occur simul-

taneously under all Symmetry X. Therefore, the consistency is met for the
diagonal Hii.

Now, we discuss the off-diagonal Hij (i ̸= j). To have a clearer view
of the “curious paring”, we give explicit treatments of Symmetry I and II.
In Appendix B, the Hij elements are given by using the Kij elements, the
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latter depend only on θ23, ϕ, and the α̃ parameters. Since none of them is
involved in the transformations of Symmetry IA and IB, all the Kij elements
are invariant under these symmetries. Then, the Hij elements transform
under IA and IB only through the νSM parameter transformations as

H12 → −H21 , H13 → ∓H23 , H23 → ±H13 (IA) ,

H12 → H21 , H13 → ±H23 , H23 → ±H13 (IB) . (8.3)

Notice that they reproduce the relevant lines in Eq. (8.1). It means that no
α̃ parameter transformation is involved in Symmetry IA- and IB-DMP-UV,
and only the νSM parameter transformations suffice. Thus, in consistency
with the result obtained in Section 7.2, our SF treatment reproduces the
somewhat puzzling result8 that no UV variable transformation is induced in
Symmetry IA and IB9.

Under Symmetry IIA and IIB, the two Kij elements flip their sign

K12 → −K12 , K23 → −K23 , (8.4)

and all the other Kij elements are invariant. Then, one can show that the
resulting Hij element transformations are as

H12 → H21 , H13 → ±H23 , H23 → ±H13 (IIA) ,

H12 → −H21 , H13 → ∓H23 , H23 → ±H13 (IIB) . (8.5)

Therefore, the pairings between IA–IIB, and IB–IIA in the first and second
lines of Eq. (8.1), which we have referred to as “curious”, are reproduced.

Similarly one can work out the Hij transformation properties for Sym-
metry III and IV to confirm Eq. (8.1). Therefore, the α̃ parameter transfor-

mation from the second condition on the genuine non-unitary part Z(1)
UV is

perfectly consistent with the Hij transformation property derived from that

of the unitary evolution part W(1)
EV.

8 Invariance of the oscillation probability in the DMP-UV perturbation theory under
Symmetry IA- and IB-DMP (without UV extension) was indeed observed while the
author worked on Ref. [17], but it was not mentioned due to its puzzling feature.

9 Here is a clarifying note on our claim that the symmetry can distinguish between the
νSM and the UV sectors of the theory. To make a clearer statement, we go back to the
original framework in Ref. [17] in which we restrict to the unrenormalized treatment
of the eigenvalues λi = λνSM

i by removing the Hii term in Eq. (4.10). Now, there

exists the (bx)/2E term in P (νµ → νe)
(1)
EV as given in Eq. (E.5). Then, there is no

mixing up between the νSM and the UV variables. In this treatment, the generators
for UV variables’ transformations do not act on the νSM part of the theory.
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8.3. Invariance of the oscillation probability

The oscillation probability P (νµ → νe)
(1)
EV given in Appendix D.1 is writ-

ten in terms of the νSM and Hij parameters without any naked α̃ param-
eters. Therefore, showing the invariance under Symmetry X can be carried
out straightforwardly for all the eight symmetries with the transformation
properties of these parameters given in Table 3 and Eq. (8.1). This exercise
for invariance proof, simple but slightly lengthy, is left for interested readers.

On the other hand, the probability P (νµ → νe)
(1)
UV in Appendix D.2 con-

sists of the νSM and the naked α̃ parameters. We can use the transformation
properties of these variables summarized in Table 3 to prove the invariance
under all Symmetry X.

In this paper, we do not discuss explicitly the oscillation channels other
than νµ → νe, because we will prove the Hamiltonian invariance in Section 9
which automatically applies to all the oscillation channels.

9. DMP-UV symmetry as a Hamiltonian symmetry

In this section, we show that all the DMP-UV symmetries summarized
in Table 3 are the symmetries of the flavor basis Hamiltonian Hflavor. In
the unitary case in vacuum, Hflavor = UȞU †, where Ȟ is the vacuum mass
eigenstate basis Hamiltonian and U is the νSM flavor mixing matrix, see
Eq. (3.5). In the non-unitary case in matter, since the flavor basis ν is
related to the mass eigenstate basis ν̌ as ν = Nν̌, Hflavor = NȞN †, where
the check basis Hamiltonian Ȟ is defined in Eq. (3.1). We denote Hflavor

constructed in this way as HVM.
We can construct Hflavor in an alternative way. To formulate the DMP-

UV perturbation theory, we diagonalized the dominant part of Ȟ to obtain
the bar-basis Hamiltonian with the result presented in Eq. (4.12) to the first
order. Then, we can transform back to the check basis, and then transform
to the flavor basis using ν = Nν̌. The thereby obtained Hflavor is denoted
as HDiag. The subscripts in HVM and HDiag imply “vacuum-matter” and
“diagonalized”, respectively. Of course, they are equal to each other, HVM =
HDiag

10.

9.1. Transformation property of HVM

Using N = (1− α̃)U and NN † = (1− α̃) (1− α̃)†, HVM = NȞN † can
be written as (after multiplied by 2E)

10 The usage of HVM and HDiag instead of our previous notations HLHS and HRHS,
respectively, is to unify our notation with Ref. [4].
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2EHVM = (1− α̃)



U(Ξ)



m2

1 0 0
0 m2

2 0
0 0 m2

3


U(Ξ)†

+(1− α̃)†



a− b 0 0
0 −b 0
0 0 −b


 (1− α̃)



 (1− α̃)† , (9.1)

where we have used a collective notation Ξ for all the vacuum parameters
involved. Here, we have used a slightly different phase-redefined basis from
the one in Eq. (3.1) to make the vacuum Hamiltonian ∝ diag(m2

1,m
2
2,m

2
3)

making it more symmetric, which however does not affect our symmetry
discussion.

We have shown in Ref. [3] that the vacuum term transforms under Sym-
metry X as



U(Ξ)



m2

1 0 0
0 m2

2 0
0 0 m2

3


U(Ξ)†



 →

Rep(X)



U(Ξ)



m2

1 0 0
0 m2

2 0
0 0 m2

3


U(Ξ)†



 Rep(X)† , (9.2)

where Rep(X) is defined in Eq. (7.4). Using the transformation property of

the α̃ parameters in Eq. (7.5), α̃′ = Rep(X) α̃ Rep(X)†, the matter term in
Eq. (9.1) which originates from the νSM and the UV sectors of the theory
obeys the same transformation property as in the vacuum term. Then, the
whole HVM transforms under Symmetry X as

HVM → Rep(X) HVM Rep(X)† , (9.3)

which means that HVM is invariant under Symmetry X up to the rephasing
factor Rep(X). By being the diagonal matrix with the elements e±ikπ (k =
0, 1), Rep(X) does not affect physical observables as it can be absorbed into
the neutrino wave functions.

We note that our success in demonstrating the transformation property
ofHVM in a transparent way as above heavily owes the α parametrization [13]
of the non-unitary matrix, Eq. (3.4). It entails the neat α̃ transforma-
tion (7.5), and enabled us to have the simple and revealing form of HVM

in Eq. (9.1).
Therefore, the invariance property (9.3) ultimately comes from the fact

that the transformation property of the α̃ parameters is determined by the
identical rephasing matrix Rep(X) that governs the transformation of the
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νSM part of the Hamiltonian. Despite that it must be the case for proving
the Hamiltonian invariance, it is remarkable to see that it indeed occurs,
being enforced by the genuine UV part of the SF equation (6.11). It indicates
an intriguing interplay between the νSM and UV sectors in the theory. In
passing, we note that we do not use the property that the matter density
is uniform to obtain the invariance proof, the feature which prevails in the
proof of invariance of HDiag in Section 9.2.

9.2. Transformation property of HDiag: New method

In this section, we discuss HDiag to show that it is invariant under Sym-
metry X-DMP-UV with the same rephasing matrix as needed for HVM. By
HDiag, we mean the flavor-basis Hamiltonian written in terms of the diago-
nalized variables. Using the expression of the flavor-basis state by the bar-
basis state να = [(1− α̃)U23U13(ϕ)U12(ψ, δ)]αj ν̄j given in Eq. (5.4), HDiag is
given by

HDiag=(1− α̃)U23(θ23)U13(ϕ)U12(ψ, δ)H̄U
†
12(ψ, δ)U

†
13(ϕ)U

†
23(θ23) (1− α̃)† .

(9.4)
The bar-basis Hamiltonian H̄ is given in Eq. (4.12), which ignores the
second-order term Eq. (4.8) with the G(2) matrix in Eq. (4.9). In this section,
we proceed with the bar-basis Hamiltonian (4.12) without the second-order
term to prove invariance of HDiag under Symmetry X. In Section 9.3, we will
present a simple argument to show that our proof of invariance prevails even
after we include the second-order effect.

Since we use an entirely new method to prove the invariance HDiag, we
include the νSM part as well, though its invariance has been fully discussed
in Ref. [3]. From identity (7.3), one obtains

V (0)
(
θ′23, ϕ

′, ψ′, δ′
)
= Rep(X)V (0)(θ23, ϕ, ψ, δ)R

† . (9.5)

Then, HDiag in Eq. (9.4) with the use of Eq. (5.5) transforms under Symme-
try X as

HDiag = (1− α̃ )V (0)(θ23, ϕ, ψ, δ)H̄(θ23, θ12, ϕ, ψ, δ; α̃βγ , λi)

×
[
V (0)(θ23, ϕ, ψ, δ)

]†
(1− α̃ )†

→Symmetry X

(
1− α̃′

)
V (0)

(
θ′23, ϕ

′, ψ′, δ′
)
H̄

(
θ′23, θ

′
12, ϕ

′, ψ′, δ′; α̃′
βγ , λ

′
i

)

×
[
V (0)

(
θ′23, ϕ

′, ψ′, δ′
)]† (

1− α̃′
)†

= Rep(X)(1− α̃ )V (0)(θ23, ϕ, ψ, δ)R
†H̄

(
θ′23, θ

′
12, ϕ

′, ψ′, δ′; α̃′
βγ , λ

′
i

)

×R
[
V (0)(θ23, ϕ, ψ, δ)

]†
(1− α̃ )†Rep(X)† . (9.6)



Symmetry in Neutrino Oscillation in Matter with Non-unitarity 6-A1.31

Note that R is the “untransformed” matrix. What is remarkable is that one
can show by using the Hij transformation property in Eq. (8.1) that

R†H̄
(
θ′23, θ

′
12, ϕ

′, ψ′, δ′; α̃′
βγ , λ

′
i

)
R = H̄ (θ23, θ12, ϕ, ψ, δ; α̃βγ , λi) (9.7)

for all Symmetry X-DMP-UV, where X= IA, IB, . . . , IVB. The proof must
be done for all the Symmetry X with the upper and lower signs of the
solutions to the first condition11. The fact that Eq. (9.7) holds implies that
HDiag transforms under Symmetry X as

HDiag → Rep(X)HDiagRep(X)† . (9.8)

That is, HDiag is invariant under Symmetry X apart from the rephasing

factors Rep(X) and Rep(X)†. Notice again that Rep(X) is solely rooted in
the νSM, see Eq. (7.3), but also governs the UV part of the theory.

9.3. Including the second-order UV effect

Now, let us include the second-order UV effect into our proof of invari-

ance by turning on H̄
(2)
UV = −(b/2E)G(2) in Eq. (4.8). Recapitulating our

nomenclature, once the A(2) matrix is given as in Eq. (4.5), one can define
the G(2) matrix as in Eq. (4.9). Then, we can similarly define H(2) matrix
as G(2) = DH(2)D† as in Eq. (4.11). If one wants to obtain the explicit

forms of the H
(2)
ij matrix elements, one can follow Eq. (B.1) by replacing A

by A(2) in Appendix B.
We first show that the transformation properties of the A(2) matrix

are identical to those of the A matrix, both defined in Eq. (4.5). Notice
that only the α̃ parameters transform in them. Using the α̃ parameter
transformations (7.6) and with the explicit expressions of the A and A(2)

matrices, it is straightforward to show that the transformation properties
of the A and A(2) matrices under Symmetry X are the same. It means
that the transformation properties of the G(2) matrix under Symmetry X,
where X= IA, IB, . . . , IVB, is the same as that of G matrix, because
G = [V (0)(θ23, ϕ, ψ, δ)]

†AV (0)(θ23, ϕ, ψ, δ) and G(2) = [V (0)(θ23, ϕ, ψ, δ)]
†

A(2)V (0)(θ23, ϕ, ψ, δ), see Eq. (4.9).
Our last step is to show that the key equation (9.7) for proof of invariance

of the Hamiltonian is satisfied after the second-order effect −(b/2E)G(2)

is included. To prove Eq. (9.7), we have used the Hij transformations in

11 A careful reader might have detected an extreme similarity with the treatment in
Ref. [4] for the helio-UV perturbation theory. However, we remark that despite the
similarity at the equation level, the calculation needed for proof of Eq. (9.7) differs
in its figure and in volume.
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Eq. (8.1). One can readily show that the above constructed H
(2)
ij matrix

elements transform under Symmetry X in the same way as Hij . Since the

inclusion of the second-order UV term merely changes Hij to Hij −H
(2)
ij in

Eq. (9.7), and their transformation properties are the same, the invariance
proof given in Section 9.2 remains valid with the inclusion of the second-
order UV effect.

To summarize, we have shown in this section that the flavor basis Hamil-
tonian Hflavor (both HVM and HDiag) transforms as Hflavor →Rep(X)Hflavor

Rep(X)† under all Symmetry X. This establishes the property of Symmetry
X as the Hamiltonian symmetry which holds in all orders in the DMP-UV
perturbation theory in all the oscillation channels.

9.4. The DMP-UV symmetry: Summary

Here, we give our summary of all the eight DMP-UV symmetries, de-
noted as Symmetry X-DMP-UV, where X= IA, IB, . . . , IVB. The SF formu-
lation and the solutions for the DMP-UV symmetry, which are valid to the
first order in the DMP-UV perturbation theory, are described in Sections 6,
7, and 8. In Table 2, we tabulate the solutions to the first condition (6.6)
and the rephasing matrix Rep(X) given in Eq. (7.4) for all Symmetry X-
DMP-UV. In Table 3, we give the transformation properties of the νSM and
the UV α̃ parameters under Symmetry X. The transformations of the Hij

matrix elements for the EV (unitary evolution) part are given in Eq. (8.1)
in Section 8.1. Finally, the Hamiltonian proof of the DMP-UV symmetry is
given in this section which guarantees that the Rep symmetry holds in all
orders in the perturbation theory.

10. Conclusion and outlook

In this paper, we have applied Symmetry Finder (SF) to identify the
reparametrization (Rep) symmetry in the UV (unitarity violation)-extended
version of the DMP perturbation theory. The extended framework of the
νSM with the inclusion of a non-unitary flavor mixing matrix is one of the
promising ways to discuss physics beyond the νSM. The summary of the
uncovered Rep symmetries in the UV-extended DMP theory, Symmetry X-
DMP-UV (X= IA, IB, . . . , IVB), is given in Table 3. The result of this paper
adds one more successful example to the SF symmetry list which contains
the twin 1–2 exchange symmetries [3, 4], and the 1–3 exchange ones with
and without non-unitarity [4, 5].

In essence, the UV-extended Rep symmetry differs from the original
DMP symmetry [3] by addition of the UV α̃ variable transformation α̃ →
Rep(X) α̃ Rep(X)†. Rep(X) is the rephasing matrix which is introduced to
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describe the transformation property of the flavor-basis Hamiltonian in the
νSM, see Eq. (7.4) for the definition. Therefore, it is inherently the νSM
concept. In this sense, it is very interesting to observe that α̃ transforms
under Symmetry X-DMP-UV in exactly the same way as the flavor-basis
Hamiltonian, with or without the UV extension. It illuminates a remarkable
interplay between the νSM and UV sectors probed by the Rep symmetry.

The above transformation property implies that α̃ does not transform
under IA- and IB-DMP symmetries, as Rep(I) = 1. The Hamiltonian is
then invariant under the original νSM IA- and IB-DMP symmetry trans-
formations even though it contains the UV-originated parts. That is, the
symmetry generators of IA- and IB-DMP do not feel the existence of non-
unitarity. On the other hand, the remaining six symmetries X= II, III, and
IV with both A (without δ) and B (with δ) types do recognize the UV sector
by transforming α̃. This feature strongly suggests that the Rep symmetry
can be used as a diagnostic tool for low-energy effective theories which pos-
sesses the νSM and UV sectors.

Did we successfully answer the question raised earlier?: “Can one ex-
tract new physical insights from the symmetry of reparameterizing the same
physics?” Our answer is Yes. Quantum mechanics governs the both νSM
and UV sectors, and hence the Rep symmetry which is rooted deep in it
inevitably possesses the transformations which relate between the two sec-
tors. In the above, we just saw the concrete example for this feature, the
α̃ transformation property α̃→ Rep(X) α̃ Rep(X)†, which illuminates that
the UV variable transforms by the νSM one, Rep(X). It is intriguing to spec-
ulate on a possible reason why α̃ does not transform in a strongly mixed way
with the νSM variables, but only by phases Rep(X). Since the UV effect at
low energies originates from a new physics at a high scale, coupling between
UV and νSM sector must be “weak”, and the coupling via phases would be
the least efficient form. Thus, it is interesting to see that SF and the Rep
symmetry provide us with a novel way of probing the interrelation between
the νSM and low-energy description of new physics in a model-independent
manner. Of course, the final judgment about the validity of our picture
should be made by the readers.

Triggered by the interest in the system with Majorana phases, we have re-
examined the SF symmetry in vacuum, which entails the eight 1–2 exchange
symmetries whose structure is akin to the DMP SF symmetries. The vac-
uum SF symmetries have the mass exchange m2

1 ↔ m2
2, whereas DMP has

matter-dressed eigenvalue exchange, λ1 ↔ λ2, but not the vacuum mass ex-
change. The feature reflects the difference between the quantum mechanical
ground states in vacuum and in matter.
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10.1. Inter-sector communications between the νSM and UV sectors

We note that the relationship between the νSM and UV sectors through
the phases, in the above case through Rep(X), is not prominently new. We
have piece of evidence for the νSM-UV inter-sector communications through
the phases, the lepton KM phase δ and the phases of the UV α parameters,
as explicitly worked out in Refs. [17, 22, 45]. It is entirely natural to expect
the existence of order-unity correlations between the νSM and UV phases
from the viewpoint of unitarity polygon, a generalization of the unitarity
triangle, in larger unitary theory [15, 16, 22]12. Notwithstanding whether the
speculated topological nature of the identity is true or not, see Section 7.3,
the νSM-UV inter-sector communication through the phases is a natural
and real outcome from our study of the Rep symmetry in this paper.

10.2. How big is the Rep symmetry?

First of all, we try to address the easier question: Are the eight 1–2
state-exchange symmetries in our restricted SF treatment in both DMP and
SRP sufficiently large to cover all allowed cases? We argue in the positive.
All the symmetries identified by the SF framework [3–5], including those
in vacuum as shown in Table 1 in Section 2.1, possess the structure X= I,
II, III, and IV, apart from the doublings due to the types A or B (no or
with δ), or possibly with or without “f” (s12 sign flip) indices. We suspect
that the symmetry structure X= I, II, III, IV exhausts the candidate list
for symmetries for the following reasoning: We have to have the rephasing
matrix Rep(X) for the Hamiltonian proof of Symmetry X. Rep(X) must be
a diagonal matrix because otherwise, it alters the physical observables by
changing the flavor labels. As far as the real diagonal matrices with the
elements ±1 are concerned, our Rep(X) with X= I, II, III, IV in Table 2
constitutes all the possible choices. The remaining possibility is the case of
the complex diagonal matrix Rep(X), whose existence, however, eludes us
at this moment.

Before concluding, we want to leave our speculation, an intriguing pos-
sibility that the Rep symmetry could be much larger. This is born out
of the stimulus of the key identity (7.3), V (0)(Φ′)R[V (0)(Φ)]† = Rep(X),
and, if true, it supersedes our all SF symmetry discussions. The identity

12 Notice that the interactions between the νSM and UV variables always occur through
the first-order term of the Hamiltonian, the last term in Eq. (4.12). Certainly, it
opens the way of communication between the two sectors in the way which manifests
at low energies, as originally dictated by the high-energy theory but brought to low
scales when the high-energy sector is integrated out. Nonetheless, it is the first-order
suppressed effect, and the physical picture behind it is not so transparent. This seems
to be the case even if one solves exactly the system with non-unitarity, as done in
Ref. [16].
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in Eq. (7.3) and the transformation property of HDiag in Eq. (9.6) with the
equality in (9.7) that are required for the invariance proof, do not refer, at
least formally, which states are exchanged. We, therefore, suspect that even
more generic state-exchange symmetry exists which might be extended to
S3, for example, for the three-neutrino system. At the same time the key
identity (7.3) must be elevated to match this generalization with the suitably
generalized R matrix.

Even if this is true, the formulation would become a more abstract one
because the explicit construction with the PDG, or the corollary conventions
such as the SOL, of the U matrix would be very hard. (We recall the
difficulty in formulating the 1–3 exchange symmetry which is overcome only
by using the helio-perturbation theory [5].) The topological nature of the
identity might show up more naturally in this extended setting. The author
believes that this possibility is worth exploring.

10.3. Rep symmetry in an extended class of observables
with Majorana phases?

Our SF symmetry discussion in vacuum and in matter, so far, assumed
its application to neutrino oscillation in which the observable CP phase is
unique, the lepton KM phase δ [72]. However, it is known that if neutrinos
are Majorana particles [74], our world is enriched with two more physical
phases called the Majorana phases [69, 75, 76]. Then, an interesting question
would be: Can the vacuum Rep symmetry in Table 1 accommodate the
Majorana phases?

Let us discuss neutrinoless double beta decay [77] in the context of
the vacuum SF symmetry. We note that to our knowledge, this is the
first time to address the neutrinoless double beta decay observable from
the Rep symmetry viewpoint. In this circumstance, it is imperative to
use the symmetric parametrization of the U matrix [78]. By “symmet-
ric parametrization” we mean the form of the U matrix as Usymmetric =
U23(θ23, ϕ23)U13(θ13, ϕ13)U12(θ12, ϕ12), where U13(θ13, ϕ13) is the 1–3 space-
rotation matrix in the PDG convention [71] but with the lepton KM phase δ
replaced by ϕ13, etc. [78]. Using Usymmetric, the observable of neutrinoless
double beta decay is given by

m0νββ =
∣∣∣m1c

2
13c

2
12 +m2c

2
13s

2
12e

−2iφ12 +m3s
2
13e

−2iφ13
∣∣∣ . (10.1)

The CP phase δ can be expressed by using the three Majorana phases as [78]

δ = ϕ13 − ϕ12 − ϕ23 . (10.2)
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One can easily show that if ϕij transform as ϕij → ϕ′ij under transformations
of Symmetry X, they leave m0νββ invariant if

ϕ′12 = ±ϕ12 , ϕ′13 = ±(ϕ12 − ϕ13) , (10.3)

where the both equations hold in mod. π.
We note that the phase ϕ23 does not come into the neutrinoless double

beta decay observable. To investigate the cases with ϕ23, with the possibil-
ity of an intriguing interplay with the lepton KM phase measured by neu-
trino oscillation, we need a wider class of observables that contain νµ or ντ
[79–81]. Though the discussion above is far from being a complete SF analy-
sis with the Majorana phases, it suggests that the Rep symmetry analysis of
the neutrinoless double beta decay observable m0νββ can accommodate the
Majorana phases. If it were the case, the meaning of the revealed transfor-
mation properties of the phases might be investigated in the light of concrete
models of the double beta decay mechanism with Majorana phases.

The author would like to thank the referee of Acta Physica Polonica B for
his/her enthusiasm in suggesting an examination for a possibility of placing
the neutrinoless double beta decay observable in the symmetry context. He
thanks Stephen Parke for useful communications on the vacuum SF equation
from which our Symmetry Finder approach has been started.

Appendix A

Vacuum SF symmetry revisited

We revisit the problem of the Rep symmetry in vacuum. We restrict
ourselves to the 1–2 state-exchange symmetry which includes the mass ex-
change m2

1 ↔ m2
2. The SF equation in vacuum can be obtained from the

one for the DMP or DMP-UV perturbation theory given in Eq. (6.3) by
dropping all the interaction terms and sending the matter-dressed angles to
the vacuum ones



eiτ 0 0
0 eiσ 0
0 0 1





νe
νµ
ντ


 =



1 0 0
0 c23 s23e

iσ

0 −s23e−iσ c23




×




c13 0 s13e
iτ

0 1 0
−s13e−iτ 0 c13


FU12(θ12, δ)R

†R



ν1
ν2
ν3




=



1 0 0
0 c′23 s′23
0 −s′23 c′23





c′13 0 s′13
0 1 0

−s′13 0 c′13


U12(θ

′
12, δ + ξ)R



ν1
ν2
ν3


 . (A.1)
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Assuming the solution s′23 = s23e
iσ and s′13 = s13e

iτ and equalities of the
cosine of them, we reach the first condition in Eq. (6.4), but with ψ replaced
by θ12. The solutions of τ , σ, ξ, α, and β for Symmetry IA, IB, etc. are
the same as in Table 2. Then, it is obvious that the solution to the vacuum
SF equation (A.1) is given by the combination of Table 2 and Table 3,
the both taking the vacuum limit. In order not to leave ambiguities in
this statement, we have placed the eight 1–2 state-exchange symmetries in
vacuum, denoted as Symmetry X-vacuum where X= IA, IB, . . . , IVB, in
Table 1 in Section 2.1.

One can show that Symmetry X-vacuum is a Hamiltonian symmetry.
That is, the vacuum HamiltonianHvac ≡ U diag(m2

1/2E,m
2
2/2E,m

2
3/2E) U †

is invariant under Symmetry X transformations up to the rephasing factor

Hvac → Rep(X) Hvac Rep(X)† , (A.2)

where Rep(X) is given in Eq. (7.4). Notice that the transformation property
with the use of the same Rep(X) as in the Rep symmetry in DMP is not so
trivial. Equation (A.2) may look like Eq. (9.2) for the vacuum term in HVM

in DMP but Eq. (A.2) is completely different from Eq. (9.2). c12 and s12
transform in Eq. (A.2), but they do not in Eq. (9.2). cψ and sψ do transform
in DMP but they are absent in Eq. (9.2). In this sense, the transformation
property in Eq. (A.2) with the use of the same Rep(X) is, in fact, remarkable.

We remark here that an explicit verification of invariance of the vacuum
oscillation probability P (νµ → νe) and P (νµ → ντ ), for example, under the
transformations of Symmetry X is very simple. θ12 comes in with the forms
c212s

2
12 which are invariant under c12 ↔ ±s12, or separately as c212 and s212

but synchronized with λ1 ↔ λ2. Similarly, s23 and s13 appear as squared,
except for in the δ-dependent terms, which may provide the unique source
for the trouble. However, one can show by explicit calculation that the
δ-dependent terms can be written in the forms involving Jrc sin δ, Jrc cos δ,
Jr sin δ, or Jr cos δ, which are odd under all Symmetry X. The minus sign is
cancelled either by the explicit minus sign or the triple-sine combination in
the T-odd term. Here, we have introduced the new notations

Jrc ≡ c23s23c
2
13s13c12s12 ,

Jr ≡ c23s23s13c12s12 . (A.3)

In P (νµ → νe), the Jarlskog combination Jrc [82] suffices, but in P (νµ → ντ ),
we need Jr as well for the cos δ terms [83].
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Appendix B

H matrix elements in first order: Summary

In Ref. [17], we have defined the G matrix, the same one as in Eq. (4.9),
in a two-step form

G = U12(ψ, δ)
†KU12(ψ, δ) ,

K = U †
13(ϕ)U

†
23(θ23)AU23(θ23)U13(ϕ) , (B.1)

where A is defined in Eq. (4.5). We follow the same style in this paper,
except that we use the H matrix elements to display the G matrix elements,
G = DHD†, D ≡ diag(eiδ, 1, eiδ) as defined in Eq. (4.11).

The explicit expressions of the H matrix elements through the K matrix
elements are given by

H11 = c2ψK11 + s2ψK22 − cψsψ

(
eiδK21 + e−iδK12

)
,

H12 =
[
cψsψ (K11 −K22) +

(
c2ψe

−iδK12 − s2ψe
iδK21

)]
,

H13 =
(
cψK13 − sψe

iδK23

)
,

H21 =
[
cψsψ (K11 −K22) +

(
c2ψe

iδK21 − s2ψe
−iδK12

)]
,

H22 = s2ψK11 + c2ψK22 + cψsψ

(
eiδK21 + e−iδK12

)
,

H23 =
(
sψK13 + cψe

iδK23

)
,

H31 =
(
cψK31 − sψe

−iδK32

)
,

H32 =
(
sψK31 + cψe

−iδK32

)
,

H33 = K33 . (B.2)

The K matrix elements are given by

K11 = 2c2φα̃ee

(
1− a

b

)
+ 2s2φ

[
s223α̃µµ + c223α̃ττ + c23s23Re (α̃τµ)

]

−2cφsφRe (s23α̃µe + c23α̃τe) ,

K12 = cφ
(
c23α̃

∗
µe − s23α̃

∗
τe

)
− sφ

[
2c23s23 (α̃µµ − α̃ττ ) + c223α̃τµ − s223α̃

∗
τµ

]

= (K21)
∗ ,
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K13 = 2cφsφ

[
α̃ee

(
1− a

b

)
−
(
s223α̃µµ + c223α̃ττ

)]

+c2φ
(
s23α̃

∗
µe+c23α̃

∗
τe

)
− s2φ (s23α̃µe + c23α̃τe)− 2c23s23cφsφRe (α̃τµ)

= (K31)
∗ ,

K22 = 2
[
c223α̃µµ + s223α̃ττ − c23s23Re (α̃τµ)

]
,

K23 = sφ (c23α̃µe − s23α̃τe) + cφ
[
2c23s23(α̃µµ − α̃ττ ) + c223α̃

∗
τµ − s223α̃τµ

]

= (K32)
∗ ,

K33 = 2s2φα̃ee

(
1− a

b

)
+ 2c2φ

[
s223α̃µµ + c223α̃ττ + c23s23Re (α̃τµ)

]

+2cφsφRe (s23α̃µe + c23α̃τe) . (B.3)

Notice that the K matrix elements are free from the νSM vacuum mixing
angles apart from θ23 and contain no δ in the SOL convention. Kji = K∗

ij

and Kii are real.

Appendix C

First order correction in the wave function in quantum mechanics

In Ref. [9], the numerator of Eq. (5.6) is written as H̄
(1)
ji , not

(
H̄

(1)
ji

)∗

which is equivalent to Eq. (5.6). The complex conjugate can be disregarded
in Ref. [9] because the H̄(1) elements are real due to the usage of the ATM
convention of the U matrix. However, in our case and in general, it must
be kept. Though this point must be obvious from Eq. (26) in Ref. [64], we
want to write a pedagogical note here not to leave ambiguity on this point.

The non-degenerate stationary state perturbation theory formulated for
the ket state reads

|νi⟩(1) = |νi⟩(0) +
∑

j ̸=i

(H1)ij

E
(0)
i − E

(0)
j

|νj⟩(0) , (C.1)

with E
(0)
i being the zeroth-order eigenvalues and H1 perturbed Hamiltonian.

In terms of bra state, it can be written as

⟨νi|(1) = ⟨νi|(0) +
∑

j ̸=i

⟨νj |(0)
(
H†

1

)

ji

1

E
(0)
i − E

(0)
j

= ⟨νi|(0) +
∑

j ̸=i

⟨νj |(0)
(H1)ij

E
(0)
i − E

(0)
j

. (C.2)

Since the wave function we have used in this paper corresponds to the bra
state, we obtain Eq. (5.6). In fact, if the complex conjugation is missed,
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we obtain a wrong expression of WνSM in Eq. (5.10) which is different from
the correct one by δ → −δ. Notice that our expression in Eq. (5.10) is
consistent with the one in Ref. [3], which is obtained by rephasing from the
ATM convention result.

Appendix D

The probabilities P (νµ → νe)
(1)
EV

and P (νµ → νe)
(1)
UV

D.1. Unitary evolution part P (νµ → νe)
(1)
EV

The unitary evolution part of the oscillation probability P (νµ → νe)
(1)
EV is

given in a form separated to the T-even and T-odd parts: P (νµ → νe)
(1)
EV =

P (νµ → νe)
(1)
EV|T-even + P (νµ → νe)

(1)
EV|T-odd, where P (νµ → νe)

(1)
EV|T-even =

P (νµ → νe)
(1)
EV|T-even [First term] + P (νµ → νe)

(1)
EV|T-even [Second term].

P (νµ → νe)
(1)
EV|T-even [First term]

=

{
2c2φ

[(
c223 − s223s

2
φ

)
sin 4ψ + sin 2θ23sφ cos δ cos 4ψ

]
Re (H12)

−2 sin 2θ23c
2
φsφ cos 2ψ sin δIm (H12)

}(
b

λ2 − λ1

)
sin2

(λ2 − λ1)x

4E

−2

{
cφsφcψ sin 2ψ

(
c223 + s223 cos 2ϕ

)
Re (H23)

+ sin 2θ23cφcψ cos δ
(
s2φc

2
ψ + s2ψ cos 2ϕ

)
Re (H23)

+ sin 2θ23cφcψ
(
s2φ + c2φs

2
ψ

)
sin δIm (H23)

}(
b

λ3 − λ2

)
sin2

(λ2 − λ1)x

4E

−2

{
cφsφsψ sin 2ψ

(
c223 + s223 cos 2ϕ

)
Re (H13)

− sin 2θ23cφsψ cos δ
(
s2φs

2
ψ + c2ψ cos 2ϕ

)
Re (H13)

− sin 2θ23cφsψ sin δ
(
s2φ + c2φc

2
ψ

)
Im (H13)

}(
b

λ3 − λ1

)
sin2

(λ2 − λ1)x

4E

−4s23c
2
φsφ

{
[c23 cos 2ψ cos δ − s23sφ sin 2ψ]Re (H12)− c23 sin δIm (H12)

}

×
(

b

λ2 − λ1

)
sin2

(λ3 − λ2)x

4E

+4s23c
2
φsφ

{
[c23 cos 2ψ cos δ − s23sφ sin 2ψ]Re (H12)− c23 sin δIm (H12)

}

×
(

b

λ2 − λ1

)
sin2

(λ3 − λ1)x

4E
(D.1)
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P (νµ → νe)
(1)
EV|T-even [Second term]

= −2cφ

{
2sφsψ

{
c223c

2
ψ − s223 cos 2ϕ

(
1 + s2ψ

)}
Re (H23)

− sin 2θ23cψ cos δ
{
s2φ

(
1 + s2ψ

)
− s2ψ cos 2ϕ

}
Re (H23)

− sin 2θ23cψ sin δ
(
s2φ − c2φs

2
ψ

)
Im (H23)

}(
b

λ3 − λ2

)
sin2

(λ3 − λ2)x

4E

−2cφ

{
2sφcψ

{
c223s

2
ψ − s223 cos 2ϕ

(
1 + c2ψ

)}
Re (H13)

+ sin 2θ23sψ cos δ
{
s2φ

(
1 + c2ψ

)
− c2ψ cos 2ϕ

}
Re (H13)

+ sin 2θ23sψ sin δ
(
s2φ − c2φc

2
ψ

)
Im (H13)

}(
b

λ3 − λ1

)
sin2

(λ3 − λ1)x

4E

−2cφsψ

{
−2

(
c223 + s223 cos 2ϕ

)
sφcψsψRe (H13)

+ sin 2θ23 cos δ
(
s2φs

2
ψ + cos 2ϕc2ψ

)
Re (H13)

+ sin 2θ23 sin δ
(
s2φ + c2φc

2
ψ

)
Im (H13)

}(
b

λ3 − λ1

)
sin2

(λ3 − λ2)x

4E

+2cφcψ

{
2
(
c223 + s223 cos 2ϕ

)
sφcψsψRe (H23)

+ sin 2θ23 cos δ
(
s2φc

2
ψ + s2ψ cos 2ϕ

)
Re (H23)

+ sin 2θ23 sin δ
(
s2φ+c

2
φs

2
ψ

)
Im (H23)

}(
b

λ3−λ2

)
sin2

(λ3−λ1)x
4E

. (D.2)

P (νµ → νe)
(1)
EV|T-odd

= 8

[
−c23s23c2φsφ [cos δIm (H12) + cos 2ψ sin δRe (H12)]

(
b

λ2 − λ1

)

+cφcψ
{[
− cos 2θ23sφcψsψ + c23s23 cos δ

(
s2ψ − s2φc

2
ψ

)]
Im (H23)

+c23s23 sin δ
(
s2φ − c2φs

2
ψ

)
Re (H23)

}(
b

λ3 − λ2

)

+cφsψ
{[
cos 2θ23sφcψsψ + c23s23 cos δ

(
c2ψ − s2φs

2
ψ

)]
Im (H13)

+c23s23 sin δ
(
s2φ − c2φc

2
ψ

)
Re (H13)

}( b

λ3 − λ1

)]

× sin
(λ2 − λ1)x

4E
sin

(λ3 − λ1)x

4E
sin

(λ3 − λ2)x

4E
. (D.3)
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D.2. Genuine non-unitary part P (νµ → νe)
(1)
UV

The genuine non-unitary part of the oscillation probability reads

P (νµ → νe)
(1)
UV = −2 (α̃ee + α̃µµ)

×
[
s223 sin

2 2ϕ

{
s2ψ sin

2 (λ3 − λ2)x

4E
+ c2ψ sin

2 (λ3 − λ1)x

4E

}

+c2φ sin
2 2ψ

(
c223 − s223s

2
φ

)
sin2

(λ2 − λ1)x

4E

+4Jmr cos δ

{
− sin2

(λ3−λ2)x
4E

+sin2
(λ3−λ1)x

4E
+cos 2ψ sin2

(λ2−λ1)x
4E

}

−8Jmr sin δ sin
(λ2−λ1)x

4E
sin

(λ3−λ1)x
4E

sin
(λ3−λ2)x

4E

]

+2c23cφ sin 2ψRe
(
α̃µee

iδ
)[
s2φ

{
sin2

(λ3 − λ2)x

4E
− sin2

(λ3 − λ1)x

4E

}

+c2φ cos 2ψ sin2
(λ2 − λ1)x

4E

]

+c23cφ sin 2ψIm
(
α̃µee

iδ
)[
s2φ

{
sin

(λ3 − λ2)x

2E
− sin

(λ3 − λ1)x

2E

}

−c2φ sin
(λ2 − λ1)x

2E

]

+s23 sin 2ϕ
[
cos δRe

(
α̃µee

iδ
)
+ sin δIm

(
α̃µee

iδ
)]

×
[
2 cos 2ϕ

{
s2ψ sin

2 (λ3 − λ2)x

4E
+ c2ψ sin

2 (λ3 − λ1)x

4E

}

−c2φ sin2 2ψ sin2
(λ2 − λ1)x

4E

]

+s23 sin 2ϕ
[
sin δRe

(
α̃µee

iδ
)
− cos δIm

(
α̃µee

iδ
)]

×
{
s2ψ sin

(λ3 − λ2)x

2E
+ c2ψ sin

(λ3 − λ1)x

2E

}
, (D.4)

where Jmr ≡ c23s23c
2
φsφcψsψ is the Jarlskog factor [82] in matter.
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Appendix E

(bx)/2E term in P (νµ → νe)
(1)
EV

The expressions of the probabilities P (νµ → νe)
(1)
EV and P (νµ → νe)

(1)
UV

given in Appendix D are based on the renormalized treatment of the eigen-
values λi = λνSM

i + bHii in Eq. (4.10). To compare the present expression of

P (νµ → νe)
(1)
EV to the one from the un-renormalized treatment of Ref. [17],

we calculate the first-order corrections that are produced when we expand

the eigenvalues λi in P (νµ → νe)
(0)
νSM given for example in Ref. [20]. Notice

that this is the only source of the (bx)/2E term in the first order in pertur-
bation. In the other parts of the theory, the eigenvalue expansion merely
induces the second-order terms.

We briefly describe the computation for it with the use of the S matrix
method because it is easier. We expand the eigenvalues to the first order

e−i
λi
2E
x = e−ihix +

(
−i bx

2E

)
Hiie

−ihix , (E.1)

where we have defined

hi ≡
λνSM
i

2E
(i = 1, 2, 3) . (E.2)

Then, the flavor basis S matrix element can be expanded to the first order
as

S(0)
eµ (λi) = S(0)

eµ

(
λνSM
i

)
+ S(1)

eµ (Hii) , (E.3)

where

S(0)
eµ

(
λνSM
i

)
= c23cφe

iδcψsψ

(
e−ih2x − e−ih1x

)

+s23cφsφ

[
e−ih3x −

(
c2ψe

−ih1x + s2ψe
−ih2x

)]
,

S(1)
eµ (Hii) =

(
−i bx

2E

){
c23cφe

iδcψsψ

(
H22e

−ih2x −H11e
−ih1x

)

+s23cφsφ

(
H33e

−ih3x − c2ψH11e
−ih1x − s2ψH22e

−ih2x
)}

.

(E.4)
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The interference between S
(0)
eµ

(
λνSM
i

)
and S

(1)
eµ (Hii) produces the required

first-order correction, (bx)/2E term in P (νµ → νe)
(1)
EV, as

2Re
[{
S(0)
eµ

(
λνSM
i

)}∗

S(1)
eµ (Hii)

]
= 2

(
bx

2E

){
(H22 −H11)

×
[
2Jmr sin δ sin

2 (h2 − h1)x

2

+
{
c2φc

2
ψs

2
ψ

(
c223 − s223s

2
φ

)
+ Jmr cos δ cos 2ψ

}
sin(h2 − h1)x

]

+(H33 −H22)

[
2Jmr sin δ sin

2 (h3 − h2)x

2

+
(
s223c

2
φs

2
φs

2
ψ − Jmr cos δ

)
sin(h3 − h2)x

]

+(H33 −H11)

[
−2Jmr sin δ sin

2 (h3 − h1)x

2

+
(
s223c

2
φs

2
φc

2
ψ + Jmr cos δ

)
sin(h3 − h1)x

]}
. (E.5)

Using the expression of Hii in terms of the Kij variables as given in Ap-
pendix B, it can be shown that Eq. (E.5) precisely reproduces Eq. (4.9) in
Ref. [17].

Appendix F

An explicit proof of the identity Eq. (7.3) for Symmetry IV

It is easy to prove the first equality in Eq. (7.3), C[12] = Rep(X), by
explicit calculation of C[12] for all the eight DMP symmetries with the
use of the values of the parameters α, β etc. for each symmetry, which
have the upper and lower signs as given in Table 2. To show how the
second equality holds, we examine the cases of symmetries IVA and IVB
and compute [V ′RV †]. Inserting C[12] =Rep(IV) in Eq. (7.2), we obtain

V (0)
(
θ′23, ϕ

′, ψ′, δ′
)
R
[
V (0) (θ23, ϕ, ψ, δ)

]†

=




1 0 0
0 c′23 s′23
0 −s′23 c′23






c′φ 0 s′φ
0 1 0

−s′φ 0 c′φ






−1 0 0
0 −1 0
0 0 1




×



cφ 0 −sφ
0 1 0
sφ 0 cφ






1 0 0
0 c23 −s23
0 s23 c23


 =




−1 0 0
0 −1 0
0 0 1


 , (F.1)
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thanks to the properties that




c′φ 0 s′φ
0 1 0

−s′φ 0 c′φ






−1 0 0
0 −1 0
0 0 1





cφ 0 −sφ
0 1 0
sφ 0 cφ




=




1 0 0
0 c′23 s′23
0 −s′23 c′23






−1 0 0
0 −1 0
0 0 1






1 0 0
0 c23 −s23
0 s23 c23




=




−1 0 0
0 −1 0
0 0 1


 . (F.2)

Notice that s′φ = −sφ and s′23 = −s23 in Symmetry IVA and IVB. What

happens is that when Rep(IV) moves to the left to get out to the front, it
remedies the transformed parameters into the un-transformed parameters
through a passage, which occurs for both sφ and s23 in Symmetry IV. Sim-
ilarly, one can prove the second equality in Eq. (7.3) for all the remaining
symmetries X= I, II, and III. For Symmetry I, Rep(I) = 1, and no transfor-
mation on s23 and sφ is needed. For Symmetry II (III), the “sign remedy”
occurs only for s23 (sφ).
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