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The aim of our article is to introduce and investigate the effect of mem-
ory on the consumer model under the influence of advertisements. This
model describes the movement from potential buyers to buyers under the
influence of advertisements. For the non-delayed model, the local stability
of equilibria is investigated by using its characteristic equation. The the-
ory of fractional differential equations (FDEs) is applied to determine the
fractional-order values q at which the model undergoes Hopf bifurcation.
For the delayed model, we introduced the fractional-order consumer model
under the time-delay effect. The time-delay parameter makes the model
dynamics richer, which explains the model’s behavior more realistically.
By considering the time-delay value as a bifurcation parameter beside the
fractional-order q, the Hopf bifurcation is analyzed. We calculated the for-
mula of the time-delay value that leads to Hopf bifurcation. Furthermore,
for supporting the theoretical outcomes, we give some examples, which il-
lustrate the influence of both the fractional order and the time delay on the
behavior of the model. We also introduced the distributed order consumer
model which is a generalization of the integer and fractional orders ones.
We considered two different expressions for the weight function to illustrate
the stability and to get the periodic solution. A good agreement between
both theoretical analysis and simulation results is found.
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1. Introduction

Fractional calculus is a hot research area in science and engineering due
to its capacity to provide more detailed descriptions of a variety of non-
linear phenomena [1]. The current state can be described by the fractional
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differential equation (FDE) as a process involving the history of the previ-
ous states (memory effects) [2, 3]. Therefore, the FDE is gaining immense
enthusiasm in many real research topics such as secure communication [4],
control engineering [5], neural network [6], and biology models such as epi-
demiological and ecological models which have long-range temporal memory
[7–11].

The dynamics behavior of FDEs has been studied in recent years. Through
studies of FDEs systems, many new and interesting results in different fields
have been obtained, e.g., a single neuron model with time delay [12], a novel
predator–prey system with time delay [13], a new delayed incommensurate
gene regulatory network [14], a self-sustained birhythmic system with two
delays, multiplicative and additive colored noises [15], and hyperchaotic com-
plex systems [16].

On the other hand, the theory of differential equations with time delay is
used to study and analyze the behavior of the dynamical systems [17–22].
The time delays describe the effect of some hidden processes in time, which
may be non-momentary, such as the incubation periods of the disease, re-
sponse, sensitivity, and growth pattern [23–27]. Therefore, the study of
FDEs with time delays provides a more clear and comprehensive explana-
tion of the behavior of the system, as it takes into account both the influence
of memory and time on the interaction between the elements of the system
[28–32].

In the past years, there has been much interest in studying distributed-
order systems due to their many applications in several scientific fields [33–
37]. In [38], the stability and dynamics, including chaotic and hyperchaotic
solutions of fractional and distributed order of different systems were dis-
cussed. In [39], the stability of a nabla discrete distributed-order dynamical
system has been investigated. In [40], the boundedness and projective syn-
chronization of distributed-order neural networks are studied. For more
studies, see [41–46].

One of the attractive subjects in economic systems is the consumer
model. This model represents the dynamics of converting market visitors
from potential buyers to buyers as a result of their interaction. In [47], a
very popular method of studying the customers dynamics using agent-based
modeling is presented. In [48], Feichtinger considered the population in the
market consisting of potential customers x1 and buyers x2 as follows:{

ẋ1 = k0 − αx1x
2
2 + βx2 ,

ẋ2 = αx1x
2
2 − (β + ϵ)x2 ,

(1.1)

where the constants k0, ε, β, and α are described as:
k0 > 0: the influx of people into the market,



On the Dynamics of Delayed and Non-delayed Fractional-order . . . 7-A2.3

ε > 0: buyers who leave the market forever,
β ≥ 0: buyers who switch to a competing brand,
α > 0: proportionality measuring of the advertising effectiveness.

Due to the economic importance of the diffusion model, many studies
have been devoted to clarify their dynamics [49–52].

Depending on the goals, advertising may have an impact on a company’s
sales volume both immediately and over time. The rate at which prospective
consumers become actual customers is related to the advertising’s impact
function (see Fig. 1).

Fig. 1. The effect of advertising on markting.

The authors of [52] developed the diffusion model (1.1) to describe the
effect of advertising on selling and converting potential buyers into buyers
over time as follows:

ẋ1 = k0 + βx2 − αx1x
2
2 − bx1x3

x3+a ,

ẋ2 = αx1x
2
2 − (β + ϵ)x2 +

bx1x3
x3+a ,

ẋ3 = dx3
(
1− x3

k

)
,

(1.2)

where
x3 ≥ 0 : the dynamics of advertising diffusion,
a : the half-saturation,
b : the response rate of the potential buyers,
k > 0, d ≥ 0 : the logistics parameters.
By using the transformations,

t =
t′

n
, x1 =

n(n− β)

k0α
x , x2 =

k0
n− β

y , x3 = z ,

and

γ =
αk20

n(n− β)2
, β′ =

β

n
, b′ =

b

n
, n = β + ϵ , d′ =

d

n
,
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and for the sake of facilitating, we omit the primes, then model (1.2) takes
the form 

ẋ = γ
(
1− xy2 + β(y − 1)

)
− bxz

a+z ,

ẏ = −y + xy2 + bxz
γ(a+z) ,

ż = dz − dz2

k .

(1.3)

The behavior of most marketing models has memory (after-effect)
[53–57]. We believe that both consumer reaction and advertising impact
rates rely on both the present state and all past states. Therefore, fractional
ordinary differential equations offer greater advantages than classical integer-
order ones. First, we introduce the fractional version of model (1.3) as

Dqx(t) = γ
(
1− xy2 + β(y − 1)

)
− bxz

a+z ,

Dqy(t) = −y + xy2 + bxz
γ(a+z) ,

Dqz(t) = dz − dz2

k ,

0 < q ≤ 1 , t ≥ 0 ,

(1.4)

where Dq denotes the Caputo fractional derivative of the order of q.
Secondly, we state the delayed fractional consumer model (1.4) as

Dqx(t) = γ
(
1− xy2 + β(y − 1)

)
− bx(t−τ)z

a+z ,

Dqy(t) = −y + xy2 + bx(t−τ)z
γ(a+z) ,

Dqz(t) = dz − dz2

k ,

0 < q ≤ 1 , t ≥ 0 .

(1.5)

We consider the existence of a time lag in the impact of the advertisement
on the potential buyers class. It is presumable that prospective buyers take
a τ amount of time to respond to the advertisement.

Finally, the distributed form of model (1.3) is introduced as
Dϕ(q)x(t) = γ

(
1− xy2 + β(y − 1)

)
− bxz

a+z ,

Dϕ(q)y(t) = −y + xy2 + bxz
γ(a+z) ,

Dϕ(q)z(t) = dz − dz2

k .

(1.6)

The distributed-order system (1.6) is considered as a generalization of sys-
tems with integer and fractional orders. If we take ϕ(q) = δ(q− s) in model
(1.6), the fractional order with order s can be given, where δ(q − s) is the
Kronecker delta.

Using analytical and numerical methods, equilibria, periodic solutions,
and their stability will be studied for each case; fractional, fractional with
time delay, and distributed order of model (1.3).
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The motivation of the study is to introduce three new versions of the con-
sumer model (1.3) which are (1.4)–(1.6) models. We analyze the purchasing
memory effect on sales. The dynamics and Hopf bifurcations of models
(1.4) and (1.5) are studied analytically and numerically. A good agreement
is found between them. The stability analysis of the equilibria of these two
models is studied. We also study the stability analysis of fixed points, Hopf
bifurcation, and periodic solutions of the distributed-order consumer model
(1.6). The effect of changing the weight function of this model on its dy-
namics is investigated. We used the predictor–corrector method [58, 59]
in numerical treatments for fractional versions and the spectral numerical
method [60] for solving distributed-order one.

The paper is organized as follows. Section 2 contains a summary of basic
information on fractional calculus. Section 3 deals with the fractional-order
consumer model (1.4) and its dynamics and Hopf bifurcation. The fractional
order with time-delay consumer model (1.5) is studied in detail in Section 4.
In Section 5, the distributed-order consumer model (1.6) is introduced. The
equilibrium points and their stability, periodic solutions, and Hopf bifurca-
tion of this model are studied. Section 6 contains the summary of the results
of this work.

2. Preliminaries

In this part, we give the mathematical basics of fractional calculus [61].

Definition 2.1 The Caputo fractional derivative of the order of n − 1 <
q < n (n ∈ N) of a function f : R+ → R is defined by

Dqf(t) =
1

Γ (n− q)

t∫
0

f (n)(τ)

(t− τ)q+1−n
dτ , (2.1)

where the function f(t) has absolutely continuous derivatives up to the (n−1)
order.

Specially, when 0 < q ≤ 1, we get

Dqf(t) =
1

Γ (1− q)

t∫
0

f ′(τ)

(t− τ)q
dτ . (2.2)

We observe that the fractional derivatives include integration with non-local
operators. Therefore, it can be used to consider the memory effect in many
systems [62].
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Let us consider a fractional-order system as

Dqx = f(x) , q ∈ (0, 1] , (2.3)

and suppose that E is its equilibrium point. Then, the stability of E can be
analyzed according to the following theorem [63–65].

Theorem 2.1 For the fractional-order system (2.3), its equilibrium point E
is

1. locally asymptotically stable iff | arg(λi)| > qπ
2 , i = 1, 2, 3;

2. stable iff | arg(λi)| ≥ qπ
2 , i = 1, 2, 3 and the eigenvalues with | arg(λi)| =

qπ
2 have the same geometric and algebraic multiplicity;

3. unstable iff ∃ such that | arg(λi)| < qπ
2 ;

4. a saddle point iff some eigenvalues of λi satisfy | arg(λi)| < qπ
2 and some

other eigenvalues satisfy | arg(λi)| > qπ
2 .

We state some basic concepts for distributed-order derivatives [66–68].

Definition 2.2 The distributed derivative of a continuous variable x(t) is

Dϕ(q)x(t) =

l∫
l−1

ϕ(q)Dqx(t)dq ≈
m∑
j=1

w (qj)D
qjx(t)∆τj , (2.4)

where q ∈ (l − 1, l], 0 = τ0 < τ1 < · · · < τm = 1, ∆τj = τj − τj−1 = 1
m ,

qj =
τj+τj−1

2 = 2j−1
2m , j = 1, 2, . . . ,m,m ∈ N.

Definition 2.3 In distributed-order non-autonomous systems of the follow-
ing kind:

Dϕ(q)x(t) = Ax+ f(x, t) , (2.5)

the constant vector x0 ∈ Rn represents the equilibrium point if and only if
Ax0 + f (x0, t) = 0.

Theorem 2.2 The zero solution of (2.5) is asymptotically stable if

1. lim
∥x(t)∥→0

∥f(x(t))∥
∥x(t)∥ = 0 ,

2.
∣∣∣arg λi

(
− θl−1

θl

)∣∣∣ > πµl
2 ; i = 1, 2, . . . , n ; l = 1, 2, . . . ,m ,

where λ
(
θl−1

θl

)
are the eigenvalues of the matrix θl−1

θl
, θl ∈ Rn×n, such that

θ0 = −A, θl = I∆τlw (ql), µl = ql − ql−1, ql =
2l−1
2m , and (m + 1) is the

number of steps for q ∈ (0, 1].
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3. Fractional-order consumer model (1.4)

Now, we study the dynamics of model (1.4).

Proposition 3.1 Model (1.4) has two equilibrium points, the semi-trivial
equilibrium point E1(1, 1, 0) and the non-trivial one E2(a0, 1, k), where a0 =

γ(a+k)
γ(a+k)+bk .

For the stability analysis of E1,2, the Jacobian matrix J(E) of (1.4) at the
equilibrium point E(x∗, 1, z∗) is

J(E) =

 − bz∗

a+z∗ − γ γ(β − 2x∗) − abx∗

(a+z∗)2

bz∗

(a+z∗)γ + 1 2x∗ − 1 abx∗

(a+z∗)2γ

0 0 d− 2dz∗

k

 , (3.1)

where, x∗ = 1, z∗ = 0 for E1 and x∗ = a0, z∗ = k for E2.
The characteristic equation of (3.1) is(

d− 2dz∗

k
− λ

)(
λ2 + Φ1λ+ Φ2

)
= 0 , (3.2)

where

Φ1 =
−2x∗(a+ z∗) + γ(a+ z∗) + a+ bz∗ + z∗

a+ z∗
,

Φ2 = −(β − 1)(γ(a+ z∗) + bz∗)

a+ z∗
,

which leads to the eigenvalues as follows:

λ1 = d− 2dz∗

k
, (3.3)

λ2,3 =
−Φ1 ±

√
∆

2
, ∆ = Φ2

1 − 4Φ2 . (3.4)

Hence, the equilibrium point E1 is unstable, because the first λ1 is positive
for integer and fractional consumer models (1.3) and (1.4). For E2, the
corresponding eigenvalues can be written as

λ1 = −d , λ2,3 =
R±

√
∆

2
, ∆ = R2 − 4Q ,

Q =
(bk + (a+ k)γ)(1− β)

a+ k
,

R = 1− γ − bk

(
1

a+ k
+

2

bk + (a+ k)γ

)
. (3.5)
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If ∥ arg(λ2,3)∥ > qπ
2 , then the equilibrium point E2 is stable for model

(1.4), while E2 is stable for integer consumer model (1.3) for the condition
∥ arg(λ2,3)∥ > π

2 . This means that the region of stability for the fractional
model is larger than in the integer case.

Now, we study the existence of Hopf bifurcation of model (1.4). In the
case of q = 1, the Hopf bifurcation is related to the real part in the conjugate
complex eigenvalues. However, in the fractional case, the stability of E is
related to the sign of P1,2(q, γ) =

qπ
2 −| arg(λi)|, i = 1, 2. Thus, the function

P1,2(q, γ) has an effect comparable to the real part of eigenvalue in integer
systems, therefore, the Hopf bifurcation condition can be extended to the
fractional systems as follows [64, 69–71].

Lemma 3.1 For the fractional-order model (1.4), a Hopf bifurcation occurs
around an equilibrium E at the bifurcation parameter γ = γ0 and critical
value q = q0, if the following conditions are hold:

1. The Jacobian matrix has a pair of complex-conjugate eigenvalues λ1,2 =
Φ(γ)± iω(γ);

2. P1,2(q, γ0) = 0;

3. ∂P1,2(q,γ)
∂q |q=q0 ̸= 0.

For the equilibrium point E1(1, 1, 0), it is easy to get the characteristic equa-
tion as follows:

(d− λ)
(
λ2 − (γ − 1)λ+ γ(1− β)

)
= 0 . (3.6)

Obviously, λ1 = d is a positive eigenvalue and λ2,3 satisfy

λ2,3 =
(γ − 1)±

√
∆

2
, ∆ = γ(γ + 4β − 6) + 1 . (3.7)

Theorem 3.1 A Hopf bifurcation occurs at E1 if ∆ < 0 and the critical
value q0 is

q0 =
2

π
tan−1

(√
|∆|

γ0 − 1

)
.

Proof. Let the bifurcation parameter be γ = γ0, which leads to ∆ < 0.
Therefore, the Jacobian matrix J(E1) has two conjugate complex eigenval-
ues.

We define

P1,2(q, γ0) =
qπ

2
− | arg(λi)| =

qπ

2
− tan−1

(√
|∆|

γ0 − 1

)
= 0 , (3.8)
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which yields to

q0 =
2

π
tan−1

(√
|∆|

γ0 − 1

)
. (3.9)

Finally,
∂P1,2(q, γ)

∂q

∣∣∣∣
q=q0

=
π

2
̸= 0 . (3.10)

Therefore, a Hopf bifurcation appears at E1(1, 1, 0) when condition (3.9) is
met.

For the equilibrium point E2(a0, 1, k), the corresponding eigenvalues are
given in equation (3.5). Obviously, λ1 = −d is a negative eigenvalue, and
λ2,3 satisfy

λ2,3 =
R±

√
∆

2
, ∆ = R2 − 4Q . (3.11)

Theorem 3.2 A Hopf bifurcation exists at E2(a0, 1, k) if ∆ < 0 and the
critical value q0 is

q0 =
2

π
tan−1

(√
|∆|
R

)
.

It can be proved in a similar manner as we did for Theorem 3.1.

Remark 3.1 It is worth noting that the use of fractional derivatives gives
a more realistic and deeper visualization, in addition to increasing the model
parameters (fractional derivative order q), which increases the dynamics of
the model.

3.1. Numerical simulations

For supporting the theoretical analysis, we carry out some numerical sim-
ulations. Model (1.4) has 7 parameters, including order q of the derivative
which can be chosen as follows: we consider γ as the bifurcation parameter
and (a, b, d, e, β) = (5, 5, 1, 0.1, 0.5). Regarding the non-trivial equilibrium,
we have E2(

5.1γ
0.5+5.1γ , 1, 0.1), and by simple calculations, we get the coeffi-

cients of (3.11) as

R = 1− γ − 0.5

(
0.196078 +

2

0.5 + 5.1γ

)
, Q = 0.0980392(0.5 + 5.1γ) .

Then,

∆ = −0.196078− 2γ +

(
−0.901961 + γ +

1

0.5 + 5.1γ

)2

> 0

⇔ 0.0430158 < γ < 3.54892 .
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From Theorem 3.2, we fix γ = 0.5. To show the impact of fractional order,
we consider two cases:
Case 1: In this case, we consider the integer model (1.3). Figure 2 illustrates
the behavior of model (1.3). We observe that the time series preserves their
oscillation constantly.

Fig. 2. The phase portrait and time series of model (1.3).

Case 2: In this case, we consider the fractional version (memory effect). By
direct computation, we get q0 = 0.956838.

Let q = 0.94, 0.98 and the initial value (0.836066, 1.099, 0.091)T , we can
easily check the stability of the non-trivial equilibrium point. This fact is
depicted in the following discussion.

Figure 3 shows that when q = 0.94 < q0, then the behavior of the
model solutions tends to a fixed point and the time series gradually lose
their oscillation. Thus, the equilibrium point E2 of model (1.4) is locally
asymptotically stable. Figure 4 shows that when the fractional order q
crosses the critical value q0, then the behavior of the solutions tends to an
orbit and the time series preserves their oscillation constantly. Thus, a Hopf
bifurcation will appear. In Fig. 5, we observe that for q = 0.98 > q0, the
behavior of the solutions is moving away from a fixed point to create periodic
solutions and the oscillation of the time series gradually increases.
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Fig. 3. The phase portrait and time series of model (1.4). The equilibrium E2 is
asymptotically stable when q = 0.94 < q0.

Fig. 4. The phase portrait and time series of model (1.4) at q0 = 0.956838. The so-
lution of model (1.4) approaches orbits and the time series preserve their oscillation
constantly.
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Fig. 5. The phase portrait and time series of model (1.4). A periodic oscillation
bifurcates from the equilibrium E2 when q = 0.98 > q0.

Comparing the two cases, we conclude that the fractional derivative has
a clear effect on changing the stability of the model. This refers to the effect
of memory on shopping and sales behavior.

4. Delayed fractional-order consumer model (1.5)

At the point E(x, y, z∗), model (1.5) can be rewritten using the theory
of series as

Dqx(t) = γ
(
1− xy2 + β(y − 1)

)
−b
(

z∗

a+z∗ + a(z−z∗)
(a+z∗)2 − a(z−z∗)2

(a+z∗)3

)
x(t− τ) +O

(
(z − z∗)3

)
,

Dqy(t) = −y + xy2

+ b
γ

(
z∗

a+z∗ + a(z−z∗)

(a+z∗)2
− a(z−z∗)2

(a+z∗)3

)
x(t− τ) +O

(
(z − z∗)3

)
,

Dqz(t) = dz − dz2

k .

(4.1)
Using the transformation

u(t) = x(t)− x∗ , v(t) = y(t)− 1 , w(t) = z(t)− z∗ ,
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the linearized system (4.1) has the form
u̇ = −γu− bz∗

a+z∗u(t− τ) + γ(β − 2x∗)v − abx∗

(a+z∗)2w ,

v̇ = u+ bz∗

γ(a+z∗)u(t− τ) + (2x∗ − 1)v + abx∗

γ(a+z∗)2w ,

ẇ = w
(
d− 2dz∗

k

)
.

(4.2)

The Jacobian matrix of (4.2) can be obtained as

J(E) =


−γ − bz∗e−λτ

a+z∗ γ(β − 2x∗) − abx∗

(a+z∗)2

1 + bz∗e−λτ

(a+z∗)γ 2x∗ − 1 abx∗

(a+z∗)2γ

0 0 d− 2dz∗

k

 ,

and its characteristic equation is

F (λ, τ) := (d1 − λq)
(
λ2q + c1λ

q + c0 + (l1λ
q + l0) e

−λτ
)
, (4.3)

where d1 = d(2z
∗

k −1), c1 = γ−2x∗+1, c0 = γ(1−β), l1 = bz∗

a+z∗ , l0 = l1(1−β).
One gets λ1 = d1 and λ2,3 satisfy the following equation:

λ2q + c1λ
q + c0 + (l1λ

q + l0) e
−λτ = 0 , (4.4)

Thus, we discuss the roots of equation (4.4).
The case of τ = 0 has been discussed in the previous section. Now, we

consider τ ̸= 0 and suppose that λ = iω = ω(cos π
2 + i sin π

2 ), ω > 0 is a root
of equation (4.4).

By setting λ = iω, we get

(iω)2qc1(iω)
q + c0 + (l1(iω)

q + l0) (cos(ωτ)− i sin(ωτ)) = 0 .

From DeMoivre’s theorem

ijq = cos
(
jq

π

2

)
− i sin

(
jq

π

2

)
,

we get the real and imaginary parts as follows:

A1 cos(ωτ) +A2 sin(ωτ) = C1 ,

A2 cos(ωτ) +A1 sin(ωτ) = C2 , (4.5)

where

A1 = l0 + l1ω
q cos

(
q
π

2

)
, A2 = l1ω

q sin
(
q
π

2

)
,

C1 = c0 + c1ω
q cos

(
q
π

2

)
+ ω2q sin

(
2q

π

2

)
,

C2 = c1ω
q sin

(
q
π

2

)
+ ω2q cos

(
2q

π

2

)
.
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By solving equations (4.5), we obtain

P (ωq) = ω4q +B3ω
3q +B2ω

2q +B1ω
q +B0 , (4.6)

where

B3 = 2c1 sin
(
3q

π

2

)
,

B2 = c21 − l21 + 4c0 cos
(
q
π

2

)
sin
(
q
π

2

)
,

B1 = 2(c0c1 − l0l1) cos
(
q
π

2

)
,

B0 = (c0 − l0)(c0 + l0) . (4.7)

Compared to the integer-order model in [52], we observe that the character-
istic equation has been reduced from 4th degree to 2nd degree, which cannot
be obtained for equation (4.6). Since it is difficult to determine the positive
real roots of equation (4.6) analytically, we can consider that equation (4.6)
has at least one positive root if B0 < 0.

Moreover, by setting q = 1 in equation (4.6), one obtains the results of
the integer-order model. Thus, if we set ωq = Ω, we get

P (Ω) = Ω4 +B3Ω
3 +B2Ω

2 +B1Ω +B0 . (4.8)

Then, we discuss the real roots of equation (4.8). Therefore, we assume that
equation (4.8) has four real roots Ωs(s = 1, 2, . . . , 4). Then, from (4.5), we
can obtain

τ js =
1

ωs

(
tan−1

(
A2C1 −A1C2

A1C1 +A2C2

)
+ jπ

)
, j = 0, 1, 2, . . . , (4.9)

then λ = ±iωs are a pair of purely imaginary roots of equation (4.3) and τ js
are the corresponding critical delay values.

Lemma 4.1 Let λ = η(τ)± iω(τ) be a solution of equation (4.4) such that
η(τ

(j)
s ) = 0 and ω(τ

(j)
s ) = ωs, then d(Reλ(τ))

dτ |
τ=τ js

̸= 0 and d(Reλ(τ))
dτ |

τ=τ js
has

the same sign of ωq
sP ′(ωs).

Proof. Assume that equation (4.4) is reformulated as

Φ1(λ
q) + e−λτΦ2(λ

q) = 0 , (4.10)

where, Φ1(λ
q) = Φ1r(λ

q) + iΦ1i(λ
q) = λ2q + c1λ

q + c0, Φ2(λ
q) = Φ2r(λ

q) +
iΦ2i(λ

q) = l1λ
q + l0.
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By differentiating equation (4.10) with respect to τ , we get

(
q
(
Φ′
1(λ

q) + Φ′
2(λ

q) e−λτ
)
λq−1 − τΦ2(λ

q)e−λτ
) dλ(τ)

dτ
−λΦ2(λ

q) e−λτ = 0 ,

(4.11)
which leads to

Γ =
q
(
Φ′
1(λ

q) + Φ′
2(λ

q) e−λτ
)
λq−1

λΦ2(λq) e−λτ
− τ

λ
, (4.12)

where, Γ = [dλ(τ)dτ ]−1.
By using equation (4.10), we can rewrite (4.12) as follows:

Γ = qλq−2

(
−Φ′

1(λ
q)

Φ1(λq)
+

Φ′
2(λ

q)

Φ2(λq)

)
− τ

λ
, (4.13)

hence

Γ |
τ=τ js

= q(iωs)
q−2

(
−Φ′

1 ((iωs)
q)

Φ1 ((iωs)q)
+

Φ′
2 ((iωs)

q)

Φ2 ((iωs)q)

)
− τ

iωs

= q(iωs)
q−2

(
−Φ′

1 ((iωs)
q)

Φ1 ((iωs)q)

Φ1 ((iωs)q)

Φ1 ((iωs)q)
+

Φ′
2 ((iωs)

q)

Φ2 ((iωs)q)

Φ2 ((iωs)q)

Φ2 ((iωs)q)

)
− τ

iωs

= q(iωs)
q−2

(
−Φ′

1 ((iωs)
q)Φ1 ((iωs)q)

|Φ1 ((iωs)q)|2
+

Φ′
2 ((iωs)

q)Φ2 ((iωs)q)

|Φ2 ((iωs)q)|2

)
− τ

iωs
.

From equations (4.6) and (4.10), we have

P (iωq
s) = |Φ1 ((iωs)

q)|2 − |Φ2 ((iωs)
q)|2 = 0

= (Φ1r(λ
q))2 + (Φ1i(λ

q))2 − (Φ2r(λ
q))2 − (Φ2i(λ

q))2 , (4.14)

therefore,

Γ |
τ=τ js

=
q(iωs)

q−2

|Φ2((iωs)q)|2
(
−Φ′

1((iωs)
q)Φ1((iωs)q) + Φ′

2((iωs)
q)Φ2((iωs)q)

)
− τ

iωs
, (4.15)



7-A2.16 M.A. Abd Rabo et al.

and

Re
{
Γ |

τ=τ js

}
=

q(ωs)
q−2

|Φ2((iωs)q)|2

×Re
{
iq−2

(
−Φ′

1((iωs)
q)Φ1((iωs)q) + Φ′

2((iωs)
q)Φ2((iωs)q)

)}
=

q(ωs)
q−2

|Φ2((iωs)q)|2

×Im
{
iq−1

(
−Φ′

1((iωs)
q)Φ1((iωs)q) + Φ′

2((iωs)
q)Φ2((iωs)q)

)}
=

q(ωs)
q−2

|Φ2((iωs)q)|2
(
Φ′
1r(λ

q)Φ1r(λ
q) + Φ′

1i(λ
q)Φ1i(λ

q)

−Φ′
2r(λ

q)Φ2r(λ
q)− Φ′

2i(λ
q)Φ2i(λ

q)
)

=
q(ωs)

q−2

|Φ2((iωs)q)|2
P ′(ωq)

2
,

therefore,

Re

{[
d(λ(τ))

dτ

]−1
∣∣∣∣∣
τ=τ js

}
=

q(ωs)
q−2

|Φ2((iωs)q)|2
P ′(ωq)

2
, (4.16)

then

sign

{[
d(Reλ(τ))

dτ

]−1
∣∣∣∣∣
τ=τ js

}
=

q

2ω2
s |Φ2((iωs)q)|2

sign
(
ωq
sP

′(ωq)
)
, (4.17)

hence, we conclude that {[d(Reλ(τ))
dτ ]−1|

τ=τ js
}, {[d(Reλ(τ))

dτ ]|
τ=τ js

}, and ωq
sP ′(ωq)

have the same sign.

Theorem 4.1 Let τ js be defined by equation (4.9), then a Hopf bifurcation
occurs when τ = τ js , and a family of periodic solutions generates from point E
at τ passes through the critical value τ js .

Proof. From the above discussion and Lemma 4.1, we get the proof of the
theorem.

4.1. Numerical simulations

In this subsection, we present some numerical calculations to illustrate
and support our analytical results developed for the fractional order of the
consumer model (1.5) using the time-delay effect. We select the parameters
as γ = 0.2, β = 0.5, a = 0.35, b = 0.3, d = 1, k = 0.8.
Case 1: In this case, we consider that there is no time delay τ = 0, thus,
we find that the periodic solution disappeared, see Fig. 6.
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Fig. 6. The time series when q = 0.95, τ = 0.

Case 2: We consider that there is a time delay τ ̸= 0, and we need to
determine the critical value of τ corresponding to the derivative order q for
which model (1.5) undergoes Hopf bifurcation. Thus, equation (4.6) can be
written as

P (ωq) = ω4q +B3ω
3q +B2ω

2q +B1ω
q +B0 , (4.18)

where

B3 = 0.442553 sin
(
3
πq

2

)
,

B2 = 0.00540946 + 0.2 sin(qπ) ,

B1 = 0.000701444 cos
(
q
π

2

)
,

B0 = −0.000888469 . (4.19)

From Lemma 4.1, we get

sign

{[
d(Reλ(τ))

dτ

]∣∣∣∣
τ=τ js

}
> 0 .

By selecting different values for the fractional derivative order q, we get the
corresponding τ as in Table 1. The bifurcation diagram in Fig. 7 shows the
effect of the order of q on the values of τ0 and ω0. The value of ω0 increases
as the order q increases as in Fig. 7 (a). Also, the critical value τ0 increases
obviously as the order q increases as shown in Fig. 7 (b), which indicates
the sensitivity of the critical value τ0 to the change of the order of q.
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Table 1. The corresponding values of fractional order q, eigenvalues ω, and time
delay τ .

q ω0 τ0

0.95 0.364007 2.91154
0.975 0.409723 3.15545
0.985 0.423543 3.24682
0.995 0.435395 3.33769

0.2 0.4 0.6 0.8 1.0

q

0.1

0.2

0.3

0.4

0.5

Ω

(a) (q, ω0) curve

0.6

0.8

1.0

q

0.0

0.2

0.4
Ω

0

1

2

3

4

Τ

(b) (q, ω0, τ0) curve

Fig. 7. Bifurcation diagram for the fractional order q, the eigenvalue ω0, and the
critical value τ0.

In the following discussion, we try to show the effect of time delay at
different values of the fractional order. For q = 0.95, we get the critical
value of time delay τ0 = 2.91154, when τ = 2.45 < τ0, then the behavior
of the model solutions tends to a fixed point and the time series gradually
lose their oscillation. Thus, the equilibrium point is locally asymptotically
stable. If τ = 4.55 > τ0, the solution moves away from the equilibrium to
create periodic orbits, which is also evident in the time series as shown in
Fig. 8. For q = 0.975, we get the critical value of time delay τ0 = 3.15545,
when τ = 3.05 < τ0, then the behavior of the model solution tends to a
fixed point and the time series gradually lose their oscillation. Thus, the
equilibrium point is locally asymptotically stable. For τ = 4.55 > τ0, the
solutions are moving away from the equilibrium to create periodic orbits, as
shown in Fig. 9. The same results occurred for different values of the order
of q.
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Remark 4.1 The time-delay parameter has an effect on the dynamical be-
havior of the fractional-order model as shown in Cases 1 and 2.

(a) τ = 2.45

(b) τ = 4.55

Fig. 8. The phase portrait and time series at q0 = 0.95.

5. Dynamics of distributed-order consumer model (1.6)

The stability analysis and the periodic solutions of the distributed-order
consumer model (1.6) are investigated.

5.1. Stability analysis of equilibrium points

In this subsection, we calculate the equilibria and their stability. To
get the equilibria as in Proposition 3.1, one can use Definition 2.3. Using
Theorem 2.2, the stability of the zero solution of model (1.6) is studied. Now,
we test the two conditions of Theorem 2.2. Let the general equilibrium point
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(a) τ = 3.05

(b) τ = 4.55

Fig. 9. The phase portrait and time series at q0 = 0.975.

be (x∗, 1, z∗)T , and using the transformation

u(t) = x(t)− x∗ , v(t) = y(t)− 1 , w(t) = z(t)− z∗ ,

the model (1.6) becomes

Ẋ = AX + F (X) +O
(
X4
)
, (5.1)

where

X =

uv
w

 , A =

 − bz∗

a+z∗ − γ γ(β − 2x∗) − abx∗

(a+z∗)2

bz∗

(a+z∗)γ + 1 2x∗ − 1 abx∗

(a+z∗)2γ

0 0 d− 2dz∗

k

 ,

F (X) =


−χ21 − γχ22

χ21

γ + χ22

d
(
z∗

2−w2
)

e

 ,
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χ21 =
b
(
az∗(x∗(a+w) + uw) + aw(au−wx∗) + x∗z∗

2
(2a+w) + x∗z∗

3
)

(a+ z∗)2(a+ w + z1)
,

χ22 = v(u(v + 2) + vx∗) ,

lim
||x(t)||→0

||F (x(t))||
||x(t)||

= lim
||x(t)||→0

√(
χ1

γ + χ2

)2
+ (χ1 + γχ2)2 + χ2

3
√
u2 + v2 + w2

≤ lim
||x(t)||→0

(
ξ

k2(a+ z∗)4(a+ w + z∗)2γ2

) 1
2 ||x(t)||4

||x(t)||

≤ lim
||x(t)||→0

(
ξ

k2(a+z∗)4(a+w+z∗)2γ2

) 1
2

||x(t)||3 = 0 ,

(5.2)

where ξ = max{a2γ2, a4γ2, a2γ2, abγ, ab2, a2b2}. Therefore, the first condi-
tion of Theorem 2.2 is hold.

For testing the second condition, let m = 30, ϕ = Γ (1 − α), l = 1, and
τm = 1

m , then,

−θ0
θ1

= 0.0336633

 − bz∗

a+z∗ − γ γ(β − 2x∗) − abx∗

(a+z∗)2

bz∗

(a+z∗)γ + 1 2x∗ − 1 abx∗

(a+z∗)2γ

0 0 d− 2dz∗

k

 . (5.3)

Thus, the characteristic equation is(
d− 2dz∗

k
− λ

)(
λ2 + Φ1λ+ Φ2

)
= 0 , (5.4)

where

Φ1 =
−2x∗(a+ z∗) + γ(a+ z∗) + a+ bz∗ + z∗

a+ z∗
,

Φ2 = −(β − 1)(γ(a+ z∗) + bz∗)

a+ z∗
.

Then, the eigenvalues of (5.3) are

λ1 = d− 2dz∗

k
, (5.5)

λ2,3 =
−Φ1 ±

√
∆

2
, ∆ = Φ2

1 − 4Φ2 . (5.6)

Hence, the equilibrium point E1(1, 1, 0) is unstable, because the first λ1 is
positive.
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For E2(a0, 1, k), the corresponding eigenvalues can be written as

λ1 = −d , λ2,3 =
R±

√
∆

2
, ∆ = R2 − 4Q ,

R = 1− γ − bk

(
1

a+ k
+

2

bk + (a+ k)γ

)
,

Q =
(bk + (a+ k)γ)(1− β)

a+ k
. (5.7)

If ∥ arg(λ2,3)∥ > µ1π
2 , then the equilibrium point E2(a0, 1, k) is stable.

The previous condition is held for the other values of l∣∣∣∣arg λi

(
−θl−1

θl

)∣∣∣∣ = π >
πµl

2
=

π

60
, i = 1, 2, 3, . . . ; l = 2, 3, 4, . . . ,m .

(5.8)
Therefore, the solution of model (1.6) is asymptotically stable.

5.2. Periodic solutions of model (1.6)

For the numerical simulations of the distributed-order consumer model
(1.6), we select two functions for ϕ(q) and the parameters values as follows:
a = 3, b = 2, β = 0.1, d = 1, k = 0.1, and γ is a varying parameter with
the initial point E(0.9, 0.99, 0.1).

5.2.1. ϕ(q) = Γ (1 − q)

Figure 10 shows the behavior of model (1.6) when ϕ(q) = Γ (1 − q). In
Fig. 10 (a)–(b), we find that the behavior tends to a fixed point and the time
series gradually loses its oscillation at γ = 0.1. Thus, the equilibrium point
of model (1.6) is locally asymptotically stable, while in Fig. 10 (c)–(d), the
solution approaches the orbit and the time series preserves its oscillations
constantly at γ = 0.4.

5.2.2. ϕ(q) = δ(q − q(m)) + 4δ(q − q(m − 1))

The behavior of the solution of (1.6) with this function is shown in
Fig. 11. In Fig. 11 (a)–(b), it is clear that the time series preserves its
oscillation constantly at γ = 0.7. From Fig. 11 (c)–(d), we see that the
solution approaches the equilibrium point at γ = 1. Thus, this equilibrium
point is locally asymptotically stable.
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(a) (b)

(c) (d)

Fig. 10. The phase portrait and time series at ϕ(q) = Γ (1−q) and: (a), (b) γ = 0.1,
and (c), (d) γ = 0.4.

6. Conclusion

The powerful theory of fractional-order non-linear differential equations
has been used in these investigations. We have stated three new versions of
the consumer model (1.3), which appeared in many applications.

These versions are the fractional-order model (1.4), the fractional-order
model with time delay (1.5), and the distributed one (1.6). The dynamics of
our models including the equilibrium points and their stability, Hopf bifur-
cations, and periodic solutions are studied numerically as well as analytically
(see Figs. 3–11). A good agreement is found between both analytical and nu-
merical results. It is shown that the fractional-order consumer model (1.4)
has a Hopf bifurcations at the critical value q0 which is stated in Theo-
rems 3.1 and 3.2, and Lemma 3.1. Its fixed prints and their stability are
studied, see Fig. 3.
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(a) (b)

(c) (d)

Fig. 11. The phase portrait and time series at ϕ(q) = δ(q−q(m))+4δ(q−q(m−1))

and: (a), (b) γ = 0.7, and (c), (d) γ = 1.

The fractional-order model (1.5) with time delay, which can reflect the
memory and response behavior of customers more accurately, is investigated.
It is illustrated that the critical value of the time delay τ2 is sensitive to the
change of the fractional-order q, see Table 1. The periodic solutions and
Hop bifurcations of this model are discussed, see Figs. 7, 8, 9. For the
distributed-order consumer model (1.6), we have investigated the stability
conditions of its equilibria. Figures 10 and 11 describe the periodic solutions
and their stability of this model for two different weight functions.
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