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Inelastic scattering of charged hadronic systems is studied by consider-
ing a new approximation scheme to effective potential. A short-ranged elec-
tromagnetic interaction with the same range as the nuclear one is adapted
to visualize the effect of such a potential model in treating the off-energy-
shell scattering of the nuclear systems. Under this approximation, the
Schrödinger equation admits an exact analytical solution and the related
off-shell quantities are expressed in their maximal reduced form to make
them amenable to numerical treatment. The nucleon–light nuclei system is
studied and close agreement in numerical results with other works is found.
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1. Introduction

In our previous article, we have treated the charged hadron scattering
under additive interaction, namely, short-ranged electromagnetic plus nu-
clear potential [1]. In practice, it is difficult to achieve an exact solution of
the Schrödinger equation with two such local potentials. When the short-
range local nuclear potential is replaced by a non-local separable interaction,
one can get an exact solution of the concerned system and such problems
have been advocated by a number of research groups [2–15]. In the recent
past [16, 17], one of us (U.L.) treated the alpha–proton and alpha–alpha
systems for a few lower partial waves by calculating approximate s-wave
analytical solutions of the nuclear Hulthén plus the atomic Hulthén poten-
tial with different range of interactions in conjunction with the formalism
of super-symmetric algebra. For simplicity of calculation and to obtain an
exact solution, people may consider the same ranged electromagnetic and
nuclear parts of the total interaction. This is no loss of generality as, in
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practical situation, the effect of such two-potentials is observed within the
nuclear domain [1]. In Ref. [1], we achieved close agreement in scattering
phase parameters for nucleon–nucleus and nucleus–nucleus elastic scatter-
ing under such approximation and thereby established our conjecture. The
present text addresses itself to the study of inelastic scattering involving
the off-shell Jost function, half-off-shell transition matrix (T -matrix), and
off-shell extension function [3, 7, 9–15, 18–20] for motion in the nuclear
Manning–Rosen plus atomic Hulthén potential [1, 21–27]. Here, we treat
only the s-wave case as the all partial wave treatment involves inordinate
mathematical complications.

2. Methods for off-shell solutions

In this section, we adapt two different approaches to the problem of
construction of exact analytical expression for the off-shell Jost solution
for motion in the Manning–Rosen plus Hulthén potential by exploiting the
theory of ordinary differential equation in conjunction with the properties
of the special functions of mathematical physics.

2.1. Differential equation approach

The nuclear Manning–Rosen potential is defined by [21–26]

VN(s) =
1

δ2

[
η(η − 1)

exp (−2s/δ)

[1− exp (−s/δ)]2
−D

exp (−s/δ)
[1− exp (−s/δ)]

]
. (1)

The parameters η, D are dimensionless quantities and δ is the screening ra-
dius for nuclear potential having dimension of length. As an electromagnetic
interaction, we adapt the screened atomic Hulthén potential [27]

VA(s) = E0
exp (−s/b)

1− exp (−s/b)
(2)

with E0, the strength, and b, the screening radius of the potential. For our
present analysis, we have considered the situation where b = δ. Thus, the
effective potential is given as

Veff(s) =
1

δ2

{
η(η − 1)

exp(−2s/δ)

[1− exp (−s/δ)]2
−
(
D − E0δ

2
) exp (−s/δ)
[1− exp (−s/δ)]

}
.

(3)
At a centre-of-mass energy E = ξ2 + iϵ, where ξ is the centre-of-mass mo-
mentum and ϵ is a small perturbation due to relative velocity if any [28],
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the off-shell Jost solution f(ξ, p, s) for the above effective potential satisfies
an inhomogeneous Schrödinger-like equation, written as[

d2

ds2
+ ξ2 − Veff(s)

]
f(ξ, p, s) =

(
ξ2 − p2

)
exp(ips) . (4)

At this stage, we have considered ϵ to be zero and having no effect on final
calculations of physical observables. Introducing the following transforma-
tion:

f(ξ, p, s) = δη [1− exp (−s/δ)]η exp (iξs)Θ(ξ, p, s) , (5)

equation (4) takes the form

exp(s/δ)δ2(1− exp (−s/δ))Θ′′
(ξ, p, s) +

{
2ηδ + 2iξδ2 exp(s/δ)

×(1− exp (−s/δ))
}
Θ

′
(ξ, p, s) +

{
2iξδη − η +

(
D − E0δ

2
)}
Θ(ξ, p, s)

=
(
ξ2 − p2

)
exp(i(p− ξ)s) exp(s/δ)(1− exp (−s/δ))1−ηδ2−η , (6)

where Θ(ξ, p, s) is a newly defined function of momenta and position. If we
rewrite Eq. (6) by changing a new variable of the form (1− exp (−s/δ)) = r
and substituting η = η + 1, it yields

r(1− r)
d2Θ

dr2
+ {2η + 2− (3 + 2η − 2iξδ)r}dΘ

dr
− (1 + η −D

+E0δ
2 − 2ηiξδ − 2iξδ

)
Θ = δ1−η

(
ξ2 − p2

)
r−η(1− r)iδ(ξ−p)−1 . (7)

Comparing Eq. (7) with the following standard differential equation for
Gaussian hypergeometric function [29–32]

r(1− r)
d2Θ

dr2
+ {R− (1 +M +N)r} dΘ

dr
−MNΘ = rσ−1(1− ρr)τ−1 , (8)

we obtain

M = 1 + η − iξδ +
√
η2 + η +D − E0δ2 − ξ2δ2 , (9)

N = 1 + η − iξδ −
√
η2 + η +D − E0δ2 − ξ2δ2 , (10)

R = 2 + 2η , ρ = 1 , σ = 1− η , (11)

and
τ = iδ(ξ − p) . (12)
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Two linearly independent solutions of the homogeneous part of Eq. (8),
namely v1(r) and v2(r) are given by [29, 30]

v1(r) = 2F1(M,N ;R; r) =
Γ (R)

Γ (M)Γ (N)

∞∑
n=0

Γ (M + n)Γ (N + n)

Γ (R+ n)

rn

n!
;

R > 0 , (13)

and

v2(r) = 2F1(M,N ;M +N −R+ 1; 1− r) ;

M +N −R+ 1 ̸= 0,−1,−2 . . . (14)

With the following transformation [29, 30] on v2(r):

2F1(M,N ;R; r) = (1− r)R−N−M
2F1(R−M,R−N ;R; r) , (15)

one gets the expression for v2(r) as

v2(r) =
(
1− e−r/δ

)−2η−1

×2F1

(
N −R+ 1,M −R+ 1;M +N −R+ 1; e−r/δ

)
. (16)

The particular solution [32] of Eq. (8) is written as

FP (r) =
(
ξ2 − p2

)
δ1−η

∞∑
n=0

Γ (n+ 1− iδ(ξ − p))

Γ (1− iδ(ξ − p))n!
fn+1−η(M,N ;R; r) (17)

with

fn(a, b; c; r) = rn
∞∑
j=0

Γ (n+ a+ j)Γ (n+ b+ j)Γ (n)Γ (n+ c− 1)

Γ (n+ a)Γ (n+ b)Γ (n+ j + 1)Γ (n+ c+ j)
rj

=
rn

n(n+ c− 1)
3F2(1, n+ a, n+ b;n+ 1, n+ c; r) . (18)

The complete expression for f(ξ, p, s) is obtained from Eq. (5) in conjunction
with Eqs. (9)–(18) as

f(ξ, p, s) = δη+1 [1−exp (−s/δ)]η+1 exp (iξs)

[
A1 2F1(M,N ;R;

1− exp (−s/δ)) +A2(1− exp (−s/δ))−2η−1

2F1(1−M∗, 1−N∗; 1− 2iξδ; exp (−s/δ))

×
(
ξ2 − p2

)
δ1−η

∞∑
n=0

Γ (n+ 1− iδ(ξ − p))

Γ (1− iδ(ξ − p))n!

×fn+1−η(M,N ;R; 1− exp (−s/δ))
]
. (19)
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To determine the unknown constants A1 and A2, we shall apply the bound-
ary conditions at s = 0 and s → ∞. One gets the off-shell Jost function
f(ξ, p) [7] by considering the limiting behaviour of the off-shell Jost solution
f(ξ, p, s) at the origin. Thus, for s→ 0, one gets

A2 =
f(ξ, p)

δη+1J (ξ)
, (20)

where the on-shell Jost function J (ξ) [33] is

J (ξ) = δη
Γ (2 + 2η)Γ (1− 2iξδ)

Γ (M)Γ (N)
. (21)

To obtain the other constant A1, we use the limit when s → ∞. The
quantity FP (s) in Eq. (19) is related to the regular Manning–Rosen plus
Hulthén Green’s function G(R)(s, s′) as

(
ξ2−p2

)
δ2 [1−exp (−s/δ)]η+1 exp (iξs)

∞∑
n=0

Γ (n+ 1− iδ(ξ − p))

Γ (1− iδ(ξ − p))n!

×fn+1−η(M,N ;R; 1−exp (−s/δ)) =
(
ξ2−p2

) s∫
0

G(R)
(
s, s′

)
exp (ips) ds′

(22)

with
G(R)

(
s, s′

)
=

1

J (ξ)

[
ϕ(ξ, s)f

(
ξ, s′

)
− ϕ

(
ξ, s′

)
f(ξ, s)

]
. (23)

Here, ϕ(ξ, s) and f(ξ, s) are the regular and irregular solutions of the Manning–
Rosen plus Hulthén potential [1]

ϕ(ξ, s) = δη+1 [1−exp (−s/δ)]η+1 exp (iξs) 2F1(M,N ;R; 1− exp (−s/δ))
(24)

and

f(ξ, s) = [1−exp (−s/δ)]−η exp (iξs) 2F1(1−M∗, 1−N∗; 1−2iξδ; exp (−s/δ)) .
(25)

Fuda and Whiting [34], and Laha and Bhoi [35] were able to prove that only
the particular solution of Eq. (4) gives the off-shell Jost solution as

f(ξ, p, s) =
(
ξ2 − p2

) ∞∫
s

G(I)
(
s, s′

)
exp

(
ips′

)
ds′ (26)
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with the irregular Green’s function [36] for the Manning–Rosen plus Hulthén
potential

G(I)
(
s, s′

)
=

1

J (ξ)

[
ϕ
(
ξ, s′

)
f(ξ, s)− ϕ(ξ, s)f

(
ξ, s′

)]
. (27)

Under the limit s→ ∞, Eq. (19) together with Eqs. (22)–(27) yields

A1 =
i(p− ξ)

J (ξ)

Γ (1− η)Γ (1− i(ξ + p)δ)

Γ (1− η − i(ξ + p)δ)

×3F2(M − 1− 2η,N − 1− 2η,−i(ξ + p)δ; 1− 2iξδ, 1− η − i(ξ + p)δ; 1) .

(28)

In evaluating the above constant we have applied the following standard
integral [29, 30, 37]

s∫
0

zρ−1(s− z)σ−1
2F1(α, β; γ; cz)dz =

Γ (ρ)Γ (σ)

Γ (ρ+ σ)
sρ+σ−1 ×

3F2(α, β, ρ; γ, ρ+ σ; cs) (29)

with Re σ > 0, Re ρ > 0, Re(γ + σ − α− β) > 0.
Having the constants A1 and A2, one obtains the compact expression for

f(ξ, p, s) as

f(ξ, p, s) = δη+1 [1− exp (−s/δ)]η+1 exp (iξs)

×
[
i(p− ξ)

J (ξ)

Γ (1− η)Γ (1− i(ξ + p)δ)

Γ (1− η − i(ξ + p)δ)

×3F2(M−1−2η,N−1−2η,−i(ξ + p)δ; 1− 2iξδ, 1− η − i(ξ + p)δ; 1)

×2F1(M,N ;R; 1− exp (−s/δ)) + f(ξ, p)

δη+1J (ξ)
(1− exp (−s/δ))−2η−1

×2F1(1−M∗, 1−N∗; 1− 2iξδ; exp (−s/δ))

+
(
ξ2−p2

)
δ1−η

∞∑
n=0

Γ (n+1−iδ(ξ − p))

Γ (1−iδ(ξ − p))n!
fn+1−η(M,N ;R; 1−exp (−s/δ))

]
.

(30)

2.2. Integral transform method

For physical boundary condition, Eq. (4) takes the form [38, 39][
d2

ds2
+ ξ2 − Veff(s)

]
ψ(+)(ξ, p, s) =

(
ξ2 − p2

)
sin(ps) . (31)
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According to Refs. [34] and [35], the particular solution of the above equation
also represents the off-shell physical solutions ψ(+)(ξ, p, s) written as

ψ(+)(ξ, p, s) =
(ξ2 − p2)

2i

[
Ḡ(+)(s, p)− Ḡ(+)(s,−p)

]
, (32)

where

Ḡ(+)(s, p) =

∞∫
0

G(+)
(
s, s′

)
exp

(
ips′

)
ds′ . (33)

The quantities Ḡ(+)(s,−p) and Ḡ(+)(s, p) are related by

Ḡ(+)(s,−p) =
[
Ḡ(+)(s, p)

]
p→−p

. (34)

To evaluate Ḡ(+)(s, p) in Eq. (33), we follow the ordinary differential equa-
tion approach. The inhomogeneous differential equation [36, 40] satisfied by
G(+)(s, s′) is [

d2

ds2
+ ξ2 − Veff(s)

]
G(+)

(
s, s′

)
= δ

(
s− s′

)
. (35)

We use the same kind of transformation in the above equation as in Eq. (5)

G(+)
(
s, s′

)
= δη [1− exp (−s/δ)]η exp (iξs)Ω

(
s, s′

)
(36)

to have

exp(s/δ)δ2(1− exp (−s/δ))Ω′′
+

{
2ηδ + 2iξδ2 exp(s/δ)

×(1− exp (−s/δ))
}
Ω

′
+

{
2iξδη − η +

(
D − E0δ

2
)}
Ω

= exp(−iξs) exp(s/δ)(1− exp (−s/δ))1−ηδ2−ηδ
(
s− s′

)
. (37)

Taking the Hankel transform of Ω(s, s′) with respect to s′ in Eq. (37) and
changing the independent variable by y = (1− exp (−s/δ)) and substituting
η = η + 1, we get

y(1− y)
d2Ω̄

dy2
+ {2η + 2− (3 + 2η − 2iξδ)y}dΩ̄

dy
− (1 + η −D

+E0δ
2 − 2ηiξδ − 2iξδ)Ω̄ = δ2−ηy1−η(1− y)iδ(ξ−p)−1 , (38)

with
Ω̄(s, p) = H

{
Ω
(
s, s′

)
; s′ → p

}
. (39)
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Comparison of Eqs. (8) and (38) yields

Ω̄(s, p) =

[
B1 2F1(M,N ;R; 1− exp (−s/δ))

+B2 (1− exp (−s/δ))−2η−1
2F1(1−M∗, 1−N∗; 1− 2iξδ; exp (−s/δ))

+δ1−η
∞∑
n=0

Γ (n+ 1− iδ(ξ − p))

Γ (1− iδ(ξ − p))n!
× fn+1−η(M,N ;R; 1− exp (−s/δ))

]
. (40)

In Eq. (40), B1 and B2 are two unknown constants which will be determined
from the boundary conditions at s = 0 and s = ∞. At s = 0, Ḡ(+)(s, p) =
0 and we obtain B2 = 0. The s-wave physical Green’s function for the
Manning–Rosen plus Hulthén potential is written as [36]

G(+)
(
s, s′

)
= −ϕ(ξ, s<)f(ξ, s>)

J (ξ)
. (41)

The quantities s> and s< have the usual meaning. For the limit s→ ∞, we
combine Eqs. (36),(40) and (41) with the judicious application of Eq. (29)
to obtain

B1 =
1

i(ξ + p)J (ξ)

Γ (1− η)Γ (1− i(ξ + p)δ)

Γ (1− η − i(ξ + p)δ)

×3F2(M−1−2η,N−1−2η,−i(ξ + p)δ; 1−2iξδ, 1−η−i(ξ + p)δ; 1) . (42)

From Eqs.(36),(40) and (42) with B2 = 0, we have

Ḡ(+)(s, p) = δη+1 [1− exp (−s/δ)]η+1 exp (iξs)

×
[

1

i(ξ + p)J (ξ)

Γ (1− η)Γ (1− i(ξ + p)δ)

Γ (1− η − i(ξ + p)δ)

×3F2(M − 1− 2η,N − 1− 2η,−i(ξ + p)δ; 1− 2iξδ, 1− η − i(ξ + p)δ; 1)

×2F1(M,N ;R; 1− exp (−s/δ)) + δ1−η
∞∑
n=0

Γ (n+ 1− iδ(ξ − p))

Γ (1− iδ(ξ − p))n!

×fn+1−η(M,N ;R; 1− exp (−s/δ))
]
. (43)

The expression for Ḡ(+)(s,−p) is obtained by replacing p with −p in Eq. (43).
Therefore, by utilizing Eqs. (32) and (43), one is able to write an expression
for the off-shell physical solution for motion in the Manning–Rosen plus
Hulthén potential. There exists a relation between the off-shell physical and
Jost solutions [14, 41] expressed as

ψ(+)(ξ, p, s) =
πp

2
Th

(
ξ, p, ξ2

)
f(ξ, s) +

1

2i

[
f(ξ, p, s)− f(ξ,−p, s)

]
, (44)
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where Th(ξ, p, ξ2) stands for the half-off-shell T -matrix written as

Th
(
ξ, p, ξ2

)
=
f(ξ, p)− f(ξ,−p)

iπpf(ξ)
. (45)

The quantity f(ξ, p) represents the off-shell Jost function for the Manning–
Rosen plus Hulthén potential. The off-shell Jost function f(ξ, p) is obtained
from f(ξ, p, s) as

f(ξ, p) = lim
s→0

f(ξ, p, s)

= δη+2
(
ξ2 − p2

) Γ (η + 2)Γ (−i(ξ + p)δ)

Γ (η + 2− i(ξ + p)δ)

×3F2(M,N, η + 2;R, η + 2− i(ξ + p)δ; 1) . (46)

Exploiting two times the following transformation [42]:

3F2(a1, a2, a3; b1, b2; 1) =
Γ (b2)Γ (b1 + b2 − a1 − a2 − a3)

Γ (b2 − a3)Γ (b1 + b2 − a1 − a2)

×3F2(b1 − a1, b1 − a2, a3; b1, b1 + b2 − a1 − a2; 1) , (47)

Eq. (46) reads

f(ξ, p) = δη
Γ (η + 2)Γ (1 + i(ξ − p)δ)Γ (1− i(ξ + p)δ)

Γ (i(ξ − p)δ − η +M)Γ (2η + 2− i(ξ + p)δ)−M)

×3F2(2η + 2−M,N, η; 2η + 2, 2η + 2− i(ξ + p)δ −M ; 1) . (48)

Equations (46) and (48) are equivalent. However, Eq. (48) is the most
suitable one for checking limiting values and numerical treatment. In the
on-shell limit i.e. p→ ξ, f(ξ, p) = f(ξ).

2.3. Off-shell extension function

The half-shell T -matrix may be rewritten as

Th
(
ξ, p, ξ2

)
=

(
ξ

p

)
|f(ξ, p)|2 sin∆(ξ, p) eiδ(ξ)

πp|f(ξ)|
, (49)

where ∆(ξ, p) is the quasi-phase and the quantity δ(ξ) stands for the scat-
tering phase shift. After some algebraic manipulation, one can get

Th
(
ξ, p, ξ2

)
= Th

(
ξ, ξ, ξ2

)
H(ξ, p) , (50)

where Th(ξ, ξ, ξ2) is the on-shell T -matrix and is expressed as

Th
(
ξ, ξ, ξ2

)
= − 2

πξ
sin δ(ξ) eiδ(ξ) . (51)
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The off-shell extension function H(ξ, p) reads

H(ξ, p) =

(
ξ

p

)−1 |f(ξ, p)|
|f(ξ)|

sin∆(ξ, p)

sin δ(ξ)
. (52)

For p→ ξ, ∆(ξ, ξ) = δ(ξ) and H(ξ, ξ) = 1. The off-shell quantities are used
in many particle systems. In this connection, one may consider the off-shell
T -matrix as an important quantity for the study of scattering theory because
its on-shell limit is directly related to the scattering amplitude. The half-
off-shell T -matrix related to the scattering phase shifts can be expressed in
terms of the on- and off-shell Jost function as already mentioned in Eq. (45).
Thus, having the compact analytical expressions for the on- and off-shell Jost
functions one will be in a position to calculate the half-off-shell T -matrix and
off-shell extension function. In the next section, we will compute scattering
phase shift, half-shell T -matrix, and off-shell extension function for the α–3H
system.

3. Results and discussions

We apply our formalism to compute the half-shell T -matrix, off-shell
extension function, and scattering phase shift for the α–3H system which are
depicted in Figs. 1 (left), 1 (right), and 2 respectively. For our calculation,
we use ℏ2/2µ = 12.0954 MeV fm2, E0δ = 0.2381 fm−1 for the system under
consideration. The α–3H system is unbound in its 1/2+ state so we give
free running to our parameters in the numerical program to have proper
values of the phase shifts. The best-fitted parameters for the Manning–
Rosen and Hulthén potential are η = 0.005, D = 1.954, and δ = 0.57 fm.
In Fig. 1 (left), we present our results for the half-off-shell T -matrix as a
function of off-shell momenta for two different laboratory energies. These
numbers show that both Re Th(ξ, p, ξ

2) and Im Th(ξ, p, ξ
2) oscillate but

approach zero as p becomes large. The function f(ξ, p) also tends to zero as
p increases. In Fig. 1 (right) for p → ξ, H(ξ, ξ) = 1. Interestingly, for low
values of laboratory energies, our potential shows large off-shell effects which
is in conformity with the observations of earlier works [8, 43, 44] related to
various kinds of potentials. These indicate that the off-shell behaviour of
the potential in Eq. (4) is quite acceptable. This means that the action of
the potential in producing a half-off-shell T -matrix Th(ξ, p, ξ2) depends also
on p. It is well known that the phase of the half-shell transition matrix is
the scattering phase shift. The phase parameters calculated from the half-
shell T -matrix are depicted in Fig. 2 which are in reasonable agreement with
those of Spiger and Tombrello [45].
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Fig. 2. Phase shift for 1
2

+ state of α–3H system as a function of Elab.

4. Conclusions

The theoretical investigation of the (p–p) Bremsstrahlung is closely re-
lated to the study of the half-off-shell nucleon-nucleon T -matrix. Therefore,
the expression for the T -matrix facilitates us to make the best possible use
of the available information about the two-nucleon wave function in coor-
dinate space. The present text deals with three-parameter central nuclear
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potential instead of several parameter interactions with the inclusion of spin-
orbit and tensor interactions. With this simple potential model, our phase
parameters agree quite well with the earlier works [45–47] except at very
low energies. This may be due to improper accountability of the electro-
magnetic interaction in this energy range. The behaviours of the half-shell
transition matrices computed with the potential in Eq. (4) and those of Laha
and Talukdar [8], Haidenbauer and Plessas [43], Sahoo et al. [44], Behera
et al. [48], and Khirali et al. [49] indicate that low-energy part of the two-
nucleon potentials appears to be nearly the same, indicating that one may
have a common low-momentum nucleon–nucleon potential. From the fore-
going discussion it is noticed that our conjecture works quite satisfactorily
with respect to the off-shell behaviour of the nucleon–nucleon potential un-
der consideration. The present method can be applicable to the case of an
arbitrary exponential type of nuclear local potential.
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