COMPARISON OF VALENCE-CORRELATION SCHEMES IN NUCLEI HAVING VALENCE NUCLEONS IN THE SAME SHELL

V. Kumar ${ }^{\dagger}$, A. Shukla, Manou Kumar Sharma, P.K. Rath
Department of Physics, University of Lucknow, Lucknow-226007, India

Received 28 April 2023, accepted 18 September 2023, published online 2 October 2023

The variation of excitation energies of yrast 2^{+}states and ratios $E_{4^{+}} / E_{2^{+}}$with $N_{p} N_{n}$ in the mass range of $A=6-136$ having valence nucleons in the same shell is studied. The mass range $A=6-136$ was considered due to the availability of data when valence protons and neutrons fill in the same major shell. It has been noticed that the depression in $E_{2^{+}}$and ascension in R appear in isobars that differ from the predictions of the $N_{p} N_{n}$ scheme in which isotones are expected. A new correlation scheme, the product of valence nucleon N_{T}, and holes \bar{N}_{T}, i.e., $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ is proposed to explain the experimental observations.

DOI:10.5506/APhysPolB.54.9-A3

1. Introduction

The nucleons within an atomic nucleus are arranged in a shell-like structure. This was initially inferred by observing an abrupt change in the variation of several nuclear observables at magic numbers when the proton and neutron numbers take on specified values: $2,8,20,28,50,82$, and 126 [1]. One such observable is the increased excitation energy of yrast 2^{+}state, $E_{2^{+}}$in even-even nuclei at magic numbers. Employing valence correlation schemes (VCSs) [2-11], nuclear observables such as $E_{2^{+}}, R=E_{4^{+}} / E_{2^{+}}$, and $B\left(\mathrm{E} 2,0^{+} \rightarrow 2^{+}\right)$are correlated with the number of valence nucleons.

In the $N_{p} N_{n}$ scheme [2-6], spectroscopic observables of nuclei depend on the number of valence protons N_{p} and neutrons N_{n}. The N_{p} and N_{n} are counted to the nearest closed shells, irrespective of these valence nucleons being particles or holes. As an example, the variation in $E_{2^{+}}$with neutron number N and corresponding valence neutron N_{n} is presented in Fig. 1. With the filling of valence protons and neutrons in different shells, $Z=50-82$ and $N=82-126$, the minima in $E_{2^{+}}$appear for $N=104$, which corresponds

[^0]to the maximum valence neutrons, $N_{n \text {-max }}=22$ based on the $N_{p} N_{n}$ scheme (see Fig. 1 (a)). However, when valence protons and neutrons fill the same shell, $Z, N=50-82$ (see Fig. 1 (b)), the minima in $E_{2^{+}}$do not appear at $N_{n \text {-max }}=16$ or $N=66$.

Fig. 1. The excitation energies of yrast 2^{+}states shown with neutron number N (bottom axis) and corresponding valence neutron N_{n} (upper axis). The dashed lines indicate the $N_{n \text {-max }}$ and arrows indicate the minima in $E_{2^{+}}$for an isotopic chain. (a) When valence protons and neutrons fill in different major shells, the minima in $E_{2^{+}}$appear at $N_{n \text {-max }}$ that means systematics followed $N_{p} N_{n}$ scheme. (b) When valence protons and neutrons fill the same major shell, the minima in $E_{2^{+}}$appear at different N_{n} values. Data were taken from Ref. [12]. The dotted lines are drawn for visual aid.

Figure 2 presents the variation in E_{2+} and R with $N_{p} N_{n}$ in the mass range of $A=6-136$, having valence protons and neutrons in the same shell. From the close analysis it turns out that the minima in $E_{2^{+}}$and maxima in R do not appear at $\left(N_{p} N_{n}\right)_{\max }$ in most of the isotopic chains such as Ne, Mg, $\mathrm{Zn}, \mathrm{Ge}, \mathrm{Se}$, and Te . Therefore, the deviation from $N_{p} N_{n}$ scheme invigorates an alternative valence-correlation scheme, which is the main objective of the present paper.

Fig. 2. The variation in $E_{2^{+}}$(left panels) and R (right panels) with $N_{p} N_{n}$, when protons and neutrons fill in the same shell. Data were taken from Ref. [12]. Two branches are shown when neutrons are treated as a particle (with circle) and hole (with triangle). The dotted lines are drawn for visual aid.

To know the exact value of N_{n} for an isotope which has minimum $E_{2^{+}}$ or maximum R value in its isotopic chain, the $E_{2^{+}}$and R data were plotted with respect to N_{n}, N_{ν}, and corresponding neutron number N in Fig. 3. The N_{ν} is the number of valence neutrons counted as $N_{\nu}=N-N_{\text {core }}$ (defined in Section 2 and listed in Table 1, as an example of ${ }_{10}^{26} \mathrm{Ne}_{16} ; N=16, N_{n}=4$, and $N_{\nu}=8$). On a close analysis of Fig. 3, it seems that local depression in $E_{2^{+}}$and ascension in R appear in nuclei with different N_{n} (instead of $N_{n \text {-max }}$) for different isotopic chains in a considered shell. These different N_{n} values for a given shell correspond to the isobars with atomic mass $A=28,76$, and

120 (see Fig. 3) for shell $Z, N=8-20,28-50$, and $50-82$, respectively. Apart from the above systematics, the sum of $N_{\pi}+N_{\nu}$ is also fixed for a given shell, where N_{π} is the number of valence protons counted as $N_{\pi}=Z-N_{\text {core }}$ (defined in Section 2, and $N_{\pi}+N_{\nu}=N_{\mathrm{T}}$). However, according to the $N_{p} N_{n}$ scheme, minima in $E_{2^{+}}$and maxima in R are expected for isotones with $N=14,38 / 40$, and 66 or $N_{n-\max }=6,10$, and 16 .

Fig. 3. Variation in $E_{2^{+}}$(left panels) and R (right panels) shown with the valence neutron N_{n} or N_{ν} (bottom axis of panels) and the corresponding neutron number N (upper axis of panels), for shells $Z, N=8-20,28-50$, and $50-82$. The dashed lines indicate the $N_{n \text {-max }}$ and arrows indicate the depression in $E_{2^{+}}$and ascension in R. The dotted lines are drawn for visual aid.

2. Proposed valence-correlation scheme $N_{T} \bar{N}_{T}$

The $N_{p} N_{n}$ scheme [2-6] is the product of the number of valence protons N_{p} and the number of valence neutrons N_{n}, relative to the nearest closed shell. Note that earlier, the midshell nucleons were counted as particles and past midhell was counted as holes. Above the midshell, the N_{p} or N_{n} are counted relative to the next higher magic number.

For the sake of clarity, here we first define the notation and the proposed correlation scheme $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ employed in the present work. Alternatively, the valence proton N_{π} and valence neutron N_{ν} can also be calculated by subtraction of the atomic number Z and neutron number N from the down magic numbers $Z_{\text {core-d }}, N_{\text {core-d }}$, and the upper magic numbers $Z_{\text {core-up }}$ and $N_{\text {core-up }}$ as given below. The down magic number $Z_{\text {core-d }}, N_{\text {core-d }}$ and the upper magic number $Z_{\text {core-up }}$ and $N_{\text {core-up }}$ for the shell $Z, N=50-82$ are for example: down magic number; $Z_{\text {core-d }}=N_{\text {core-d }}=50$, and upper magic number; $Z_{\text {core-up }}=N_{\text {core-up }}=82$. The valence nucleon particles can be calculated as

$$
\begin{align*}
& N_{\pi}=Z-Z_{\text {core-d }} \tag{1}\\
& N_{\nu}=N-N_{\text {core-d }} \tag{2}
\end{align*}
$$

Similarly, the valence hole can be calculated as

$$
\begin{align*}
\bar{N}_{\pi} & =Z_{\text {core-up }}-Z \tag{3}\\
\bar{N}_{\nu} & =N_{\text {core-up }}-N \tag{4}
\end{align*}
$$

Further, N_{π} and N_{ν} are the number of valence protons and valence neutrons of the considered nuclei, respectively. The \bar{N}_{π} and \bar{N}_{ν} are the number of holes in that nuclei. The total valence nucleons N_{T} and total hole positions \bar{N}_{T} are given by $N_{\mathrm{T}}=N_{\pi}+N_{\nu}$ and $\bar{N}_{\mathrm{T}}=\bar{N}_{\pi}+\bar{N}_{\nu}$.

Note that the midshell concept is not applied for counting the particles or holes in the $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ scheme. The valence particles or holes are correlated in both schemes. The valence nucleons can be considered as $N_{p}=N_{\pi}$, $N_{n}=N_{\nu}$ up to mid-shell and $N_{p}=N_{\pi-\max }-N_{\pi}, N_{n}=N_{\nu-\max }-N_{\nu}$ beyond that. The $N_{\pi-\max }\left(N_{\nu-\max }\right)$ is the total number of states in the shell for protons (neutrons).

As an analogy to the $N_{p} N_{n}$ scheme, we propose the $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$, product of valence nucleon and the hole positions. A difference can be seen in Table 1 as an example of neon isotopes, when protons and neutrons fill the same shell $Z, N=8-20$. One can notice that the $\left(N_{p} N_{n}\right)_{\max }$ and $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$ correspond to different isotopes ${ }_{10}^{24} \mathrm{Ne}_{14}$ and ${ }_{10}^{28} \mathrm{Ne}_{18}$, respectively. We observe very interesting features for the neon isotopic chain as the depression in $E_{2^{+}}$and ascension in R appear with the $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }=144$ instead of $\left(N_{p} N_{n}\right)_{\max }=12$.

The $E_{2^{+}}$and R ratios systematics with $N_{p} N_{n}$ and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ are displayed in Figs. 4-7 for a number of isotopes in the mass range of $A=4-136$, which are discussed in detail as follows.

Table 1. The $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ and $N_{p} N_{n}$ values for neon isotopes when protons and neutrons fill the same major shell $Z, N=8-20$. The maximum values of $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ and $N_{p} N_{n}$ correspond to different isotopes $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max } \rightarrow{ }_{10}^{28} \mathrm{Ne}_{18},\left(N_{p} N_{n}\right)_{\max } \rightarrow{ }_{10}^{24} \mathrm{Ne}_{14}$. The N_{π} / N_{ν} and $\bar{N}_{\pi} / \bar{N}_{\nu}$ are occupied and unoccupied spaces, respectively.

Neon isotopes shell (8-20)								
Nuclei	N_{p}	N_{n}	$N_{p} N_{n}$	N_{π}	N_{ν}	N_{T}	\bar{N}_{T}	$N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$
${ }_{10}^{20} \mathrm{Ne}_{10}$	2	2	4	2	2	4	20	80
${ }_{10} \mathrm{Ne}_{12}$	2	4	8	2	4	6	18	108
${ }^{24} \mathrm{Ne}_{14}$	2	6	$\mathbf{1 2}$	2	6	8	16	128
${ }^{26} \mathrm{Ne}_{16}$	2	4	8	2	8	10	14	140
${ }^{28} \mathrm{Ne}_{18}$	2	2	4	2	10	12	12	$\mathbf{1 4 4}$

3. Comparison of $N_{p} N_{n}$ and $N_{T} \bar{N}_{\mathrm{T}}$ schemes with $E_{2^{+}}$and \boldsymbol{R} ratios systematics

In this section, we present our results and discussion based on the proposed $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ scheme and compared with the $N_{p} N_{n}$ scheme when protons and neutrons fill the same shell. The mass region is divided into $Z, N=8$ -$20,28-50 ; 20-28$ and $50-82$ shells. To show the depression/ascension in a line, the data were plotted with N_{n} instead of the $N_{p} N_{n}$ because the maximum value of $N_{p} N_{n}$ is different for different isotopic chains for a given shell. However, the $N_{n \text {-max }}$ is the same for all isotopic chains for a given shell. The number of particles (p) and number of holes (h) is equal at $N_{n \text {-max }}$ i.e., $N_{n}(\mathrm{p})=N_{n}(\mathrm{~h})$. On the other hand, the maximum value of $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ is the same for all isotopic chains in a given shell i.e., $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$ and $N_{\mathrm{T}}=\bar{N}_{\mathrm{T}}$.

3.1. Shells $Z, N=8-20$ and 28-50

The depression in $E_{2^{+}}$and ascension in R are not consistently appearing at $N_{n \text {-max }}$ (see Fig. 4 and 5). However, the local depression in $E_{2^{+}}$and ascension in R appear at $\left(N_{\mathrm{T}} N_{\mathrm{T}}\right)_{\max }$. The $N_{\mathrm{T}} N_{\mathrm{T}}$ scheme is showing consistent results. Cakirli and Casten [7] divided valence space into three regions based on particle (p) and hole (h) concept in $N_{p} N_{n}$ scheme: particle-particle $(\mathrm{p}-\mathrm{p})$, particle - hole $(\mathrm{p}-\mathrm{h})$, and hole-hole $(\mathrm{h}-\mathrm{h})$ regions. The R values are larger for the $\mathrm{p}-\mathrm{p}$ and $\mathrm{h}-\mathrm{h}$ regions as compared to the $\mathrm{p}-\mathrm{h}$ region. Similarly, two cases are expected in the $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ scheme: (1) $N_{\mathrm{T}}>\bar{N}_{\mathrm{T}} ;(2) N_{\mathrm{T}}<\bar{N}_{\mathrm{T}}$. The R values appear larger for the $N_{\mathrm{T}}>\bar{N}_{\mathrm{T}}$ case.

Fig. 4. A comparison of the $N_{p} N_{n}$ and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ schemes of $Z / N=8-20$ and $Z / N=$ 28-50 shells shown for the $E_{2^{+}}$with respect to N_{n} and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$. The minima in 2^{+}energy do not appear at $N_{n \text {-max }}$ for many isotopic chains. However, depression appears at the $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$. Dashed lines indicate $N_{n \text {-max }}$ and $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$.

Fig. 5. A comparison of $N_{p} N_{n}$ and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ schemes for $Z, N=8-20$ and $Z, N=28-$ 50 shells shown for the ratio R with respect to N_{n} and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$. The maxima in ratio R does not appear at $\mathrm{N}_{n \text {-max }}$ for many isotopic chains. However, ascension in R appears at $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$. Arrows indicate $N_{n-\max }$ and $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$.

3.2. Shell $Z, N=20-28$

Figure 6 shows the $E_{2^{+}}$systematics with respect to N_{n} and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$. The minima in $E_{2^{+}}$are consistently appearing at $N_{n \text {-max }}$, not for $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\text {max }}$. The E_{2+} and R systematics of $1 f_{7 / 2}$ shell is in accordance with the $N_{p} N_{n}$ scheme.

Fig.6. A comparison of the $N_{p} N_{n}$ and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ schemes for $Z, N=20-28$ shell shown for the $E_{2^{+}}$with respect to N_{n} and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$. The minima in 2^{+}energy appear at $N_{n \text {-max }}$.

3.3. Shell $Z, N=50-82$

The results for this shell seem to be not consistent with either $N_{p} N_{n}$ or $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ schemes (see the upper panels in Fig. 7). However, if we assume $Z, N=50-70$ (effective valence region) then the results are consistent and in accordance with the $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ scheme (see the bottom panels in Fig. 7). A theoretical calculation is required for an effective valence region. Although some weak indication of effective valence region (subshell closure) $Z=50-70$ [13], $N=50-70$ [14] was discussed in Refs. [13, 14]. The occupation probabilities of various neutron and proton subshells for the ground states calculated from a Hartree-Fock-Bogoliubov wave function generated for ${ }^{114-130}$ Xe isotopes reveal that the four protons for the entire set of xenon isotopes are spread over nearly four states namely $Z=70,3 s_{1 / 2}, 2 d_{3 / 2}, 2 d_{5 / 2}$, and $1 g_{7 / 2}$. The quenching of the spin-orbit splitting in neutron-rich nuclei has been obtained in many mean-field calculations and also experimentally observed in nuclei, for example, ${ }^{98} \mathrm{Ni}, N=70[14]$. There is no sharp experimental evidence for $Z, N=50-70$ subshell closure. The present observation of the depression in $E_{2^{+}}$and the ascension in R within the valence region $Z, N=50-70$ could be a weak sign of subshell closure.

Fig. 7. A comparison of the $N_{p} N_{n}$ and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ schemes for $Z, N=50-82$ shell and assumed subshell $Z, N=50-70$ shown for $E_{2^{+}}$with respect to N_{n} and $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$. The minima in 2^{+}energy do not appear at $N_{n-\text { max }}$ for many isotopic chains when we consider shell $Z, N=50-82$. However, depression appears at the $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$ when assuming the subshell as $Z, N=50-70$.

4. R values compared when valence nucleons filling in the same shell with normalize $N_{p} N_{n}$ and $N_{T} \bar{N}_{\mathrm{T}}$

In order to compare the R values for different isotopic chains when valence nucleons fill the same shell, the R values are shown in Fig. 8 with $\frac{N_{p} N_{n}}{\left(N_{p-\max }+N_{n-\max }\right)^{2}}$ and $\frac{N_{\mathrm{T}} \bar{N}_{\mathrm{T}}}{\left(N_{\pi-\max }+N_{\nu-\max }\right)^{2}}$. A clear difference appears in both panels. According to the $N_{p} N_{n}$ scheme, the R values are proportional to $N_{p} N_{n}$ which means that the higher values of R (bump) must appear at the higher value of $\frac{N_{p} N_{n}}{\left(N_{p-\max }+N_{n-\max }\right)^{2}}$. However, a pattern opposite to expectation has appeared. Similarly, in the case of $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ phenomenology, the R values are proportional to $N_{\mathrm{T}} \bar{N}_{\mathrm{T}}$ which means that the higher values of R (bump) must appear at the higher value of $\frac{N_{\mathrm{T}} \bar{N}_{\mathrm{T}}}{\left(N_{\pi-\max }+N_{\nu-\max }\right)^{2}}$. The pattern appeared as expected.

Fig. 8. R values are shown with $\frac{N_{\mathrm{T}} \bar{N}_{\mathrm{T}}}{\left(N_{\pi-\text { total }}+N_{\nu} \text {-total }\right)^{2}}$ and $\frac{N_{p} N_{n}}{\left(N_{p-\text { max }}+N_{n-\text { max }}\right)^{2}}$ for different isotopic chains when valence nucleons fill the same valence regions, $Z, N=8-20$, 28-50, and 50-70.

5. Conclusions

The minima in excitation energies $E_{2^{+}}$and the maxima in $R=E_{4^{+}} / E_{2^{+}}$ appear in nuclei with the maximum of $N_{p} N_{n}$ when valence protons and neutrons fill in different shells. In other words, the minima in $E_{2^{+}}$systematics appear for isotones in the $N_{p} N_{n}$ scheme. However, when valence protons and neutrons fill in the same shell, the depression in $E_{2^{+}}$and ascension in R systematics appear in most of the cases for isobars, so this is not in accordance with the $N_{p} N_{n}$ scheme. In analogy to the $N_{p} N_{n}$ scheme, a new valence correlation scheme $N_{\mathrm{T}} N_{\mathrm{T}}$ being the product of valence nucleon N_{T} and the holes \bar{N}_{T} has been introduced. The number of valence protons N_{π} and neutrons N_{ν} can be accommodated in the considered orbit or shell i.e., $N_{\pi}+N_{\nu}=N_{\mathrm{T}}$. Presently, the variation of excitation energies of yrast 2^{+} states and ratios R has been studied in a number of isotopic chains upon the availability of experimental data in the mass range of $A=6-136$. It has been observed that the depression in $E_{2^{+}}$and ascension in R can be correlated with $\left(N_{p} N_{n}\right)_{\max }$ and $\left(N_{\mathrm{T}} \bar{N}_{\mathrm{T}}\right)_{\max }$ depending on the shell considered. A detailed theoretical calculation in favour of the above-mentioned observed features in $E_{2^{+}}$and R may further enrich our understanding of the subject.

One of the authors (V.K.) is extremely thankful to Prof. R.F. Casten for providing clear, precise and valuable comments which have lead to improvement of the content of the present manuscript. Financial assistance from the University Grant Commission (UGC) and Inter-University Accelerator Centre (IUAC), New Delhi, is gratefully acknowledged.

REFERENCES

[1] M.G. Mayer, «On Closed Shells in Nuclei. II», Phys. Rev. 75, 1969 (1949).
[2] R.F. Casten, «Possible Unified Interpretation of Heavy Nuclei», Phys. Rev. Lett. 54, 1991 (1985).
[3] R.F. Casten, $<N_{p} N_{n}$ systematics in heavy nuclei», Nucl. Phys. A 443, 1 (1985).
[4] R.F. Casten, «A simple approach to nuclear transition regions», Phys. Lett. B 152, 145 (1985).
[5] Y.M. Zhao, R.F. Casten, A. Arima, «Generalization of the $N_{p} N_{n}$ Scheme and the Structure of the Valence Space», Phys. Rev. Lett. 85, 720 (2000).
[6] R.F. Casten, «Nuclear Structure From a Simple Perspective», Oxford University Press, 2000.
[7] R.B. Cakirli, R.F. Casten, «Direct Empirical Correlation between Proton-Neutron Interaction Strengths and the Growth of Collectivity in Nuclei», Phys. Rev. Lett. 96, 132501 (2006).
[8] N.V. Zamfir, R.F. Casten, P. Von Brentano, «A simple phenomenology for 3_{1}^{-}states», Phys. Lett. B 226, 11 (1989).
[9] A. Arima, T. Otsuka, F. Iachello, I. Talmi, «Collective nuclear states as symmetric couplings of proton and neutron excitations», Phys. Lett. B 66, 205 (1977).
[10] R.F. Casten, P. von Brentano, A. Gelberg, H. Herarter, «Collectivity: A comparison of collective model, $N_{p} N_{n}$ and F-spin approaches with empirical systematic», J. Phys. G: Nucl. Part. Phys. 12, 711 (1986).
[11] R.F. Casten, P.E. Haustein, D.S. Brenner, «Valence $p-n$ interactions and the development of collectivity in heavy nuclei», Phys. Rev. Lett. 58, 658 (1987).
[12] ENSDF database, http://www.nndc.bnl.gov/ensdf/
[13] R. Devi, S.P. Sarswat, A. Bharti, S.K. Khosa, $« E 2$ transition and $Q_{J^{+}}$ systematics of even mass xenon nuclei», Phys. Rev. C 55, 2433 (1997).
[14] M. Bhattacharya, G. Gangopadhyay, «Neutron drip line in odd and even mass calcium and nickel nuclei», Phys. Rev. C 72, 044318 (2005).

[^0]: ${ }^{\dagger}$ Corresponding author: vinod2.k2@gmail.com

