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In this paper, we investigate the thermodynamic properties of the non-
commutative Dirac oscillator with a permanent electric dipole moment in
the presence of an electromagnetic field in contact with a heat bath. Using
the canonical ensemble, we determine the properties for both relativistic
and nonrelativistic cases through the Euler–MacLaurin formula in the high-
temperature regime. In particular, the main properties are: the Helmholtz
free energy, the entropy, the mean energy, and the heat capacity. Once these
properties are obtained, we analyze via 2D graphs the behavior of the prop-
erties as a function of temperature T , where we note that the Helmholtz
free energy decreases with T and ωθ, and increases with ω, ω̃, ωη, where
ω is the frequency of the oscillator, ω̃ is a type of cyclotron frequency, and
ωθ and ωη are the noncommutative frequencies of position and momentum.
For the entropy, we note an increase with T and ωθ, and a decrease with
ω, ω̃, ωη. Now, for the mean energy, we note that such property increases
linearly with T , and their values for the relativistic case are twice that of
the nonrelativistic case. As a direct consequence of this, the value of the
heat capacity for the relativistic case is also twice that of the nonrelativistic
case, and both are constants, thus satisfying the Dulong–Petit law. Lastly,
we also note that the electric field does not influence the properties in any
way.
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1. Introduction

The Dirac oscillator (DO) is an exactly soluble model introduced in the
context of relativistic quantum mechanics for spin-1/2 massive fermions
(Dirac fermions) [1, 2]. Such a model was developed by Moshinsky and
Szczepaniak in 1989 and has been also considered as an interaction term
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for modeling quark confinement in quantum chromodynamics (QCD) [1, 2].
To obtain the DO, we need to insert into the free Dirac equation (DE) a
nonminimal coupling given by: p → p− im0ωβr, where p is the momentum
operator, i is the imaginary unit, m0 is the rest mass of fermion with an
angular frequency ω, β is one of the Dirac matrices, and r is the position
operator [1, 2]. In particular, in the nonrelativistic limit, the DO becomes
the quantum harmonic oscillator (QHO) with a strong spin–orbit coupling.
Since it was introduced in the literature, the DO has already been verified
experimentally [3] and has also been widely studied (applied) in different
physical problems. For instance, we have the Aharonov–Bohm–Coulomb
system [4], noninertial effects in a cosmic string spacetime [5, 6], thermo-
dynamics [7–9], graphene [10], effects of spin [11, 12], Landau levels [13],
quantum optics [14], noncommutative phase space [15], Aharonov–Casher
effect [16], etc.

The study of the physical properties of materials, and in particular the
thermodynamic (thermal) properties, is of great interest in condensed mat-
ter physics, solid-state physics, and materials science [17–27]. Indeed, the
efforts expended to get the knowledge of such properties are justified as
much by practical needs as by fundamental science [28]. Some examples
of such practical relevance can be found in Refs. [28–35], where the ther-
modynamic properties of graphene, diamond, graphite, carbon nanotubes,
nanostructured carbon materials, and nanofluids were investigated. Besides,
the study of such properties is also of great relevance from a theoretical
point of view (for low- and high-energy quantum systems). For example, in
relativistic quantum mechanics, such theoretical relevance can be found in
Refs. [7, 8, 36–40], where we have the own DO, neutral Dirac fermions with a
magnetic dipole moment, Aharonov–Bohm quantum rings, two-dimensional
relativistic gas, Klein–Gordon oscillator, and the graphene, while in nonrel-
ativistic quantum mechanics such relevance can be found in Refs. [41–48],
where we have quantum pseudodots and dots, quantum wires, nanofibers,
magneto-polarons, and quantum wells.

The present paper has as its goal investigation of the thermodynamic
properties of the noncommutative Dirac oscillator (NCDO) with a perma-
nent electric dipole moment (EDM) in the presence of an external electro-
magnetic field in (2 + 1)-dimensions. In particular, we determine the prop-
erties for both relativistic and nonrelativistic cases in the high-temperature
regime, where we use the canonical ensemble as the thermal background
to accommodate a set of noninteracting N -particles in contact with a ther-
mal bath (or heat reservoir) at a constant temperature T (thermodynamic
equilibrium temperature). From the physical point of view, the canonical
ensemble is a closed system characterized by a constant number of particles
(N = constant) in a constant volume (V = constant) in which only heat and
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work can be exchanged between the partial system and the thermal bath,
where the total system (isolated from the rest of the universe) is consti-
tuted by: partial system (N -particles)+ thermal bath [49]. Thus, in order
to perform the calculations, we use the Euler–MacLaurin sum formula to
construct the canonical partition function of the system. Next, we explic-
itly determine the (macroscopic) thermodynamic quantities of our interest,
namely, the Helmholtz free energy, the entropy, the mean (internal) energy,
and the heat capacity.

This paper is organized as follows. In Section 2, we determine explicitly
the thermodynamic properties of the NCDO with EDM in the presence of
an external electromagnetic field. In Section 3, we present the results and
discussions, where we analyze via 2D graphs the behavior of the thermody-
namic properties as a function of temperature. In Section 4, we finish our
work with the conclusion.

2. Thermodynamic properties of the system

In this section, we calculate the relativistic and nonrelativistic thermo-
dynamic properties of an N -particles system in contact with a thermal bath
at temperature T . According to statistical thermodynamics (or statisti-
cal mechanics), these properties are the Helmholtz free energy F (T, V,N),
the entropy S(T, V,N), the mean energy U(T, V,N), and the heat capac-
ity CV (T, V,N), where all are, together with V and N , extensive variables
(already T is an intensive variable), being F (T, V,N) and U(T, V,N) also
state functions (thermodynamic potentials), respectively. Thus, to deter-
mine such properties, we must first calculate the partition function, which
in turn is calculated from the energy spectrum.

2.1. The relativistic case

Let us start our discussion with the following relativistic energy spectrum
for the NCDO with EDM in the presence of an external electromagnetic
field [50]:

Eχ
n,m,s,κ = Upot + χm0c

2

√
1 +

2ℏN
m0c2

(
1 + s

(ω − σω̃)

ωθ

)
(ω − σω̃ + sωη) ,

(1)
where

Upot ≡ −dfE0 = −σ|df |E0 , (σ = ±1) , (2)

and

N = Neff ≡
[
2n+ 1− κ+

∣∣∣m+ s
1− κ

2

∣∣∣− s

(
m+ s

1− κ

2

)]
≥ 0 , (3)
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being χ = ±1 a parameter that describes the positive or negative en-
ergy states (DO or anti-DO), N is an effective quantum number, being
n = 0, 1, 2, . . . the radial quantum number and m = 0,±1,±2, . . . the mag-
netic quantum number, Upot is the (electric) potential energy, with df being
the EDM, E0 is the strength of the constant electric field (E0 > 0), σ = ±1
is a parameter that describes a positive or negative EDM, ω > 0 is the an-
gular frequency of the DO, ω̃ = |df |Φ

m0
> 0 is a type of cyclotron frequency

(angular velocity), being Φ a magnetic field linear density (magnetic field
per unit length), ωθ = 2ℏ

m0θ
> 0 and ωη = η

2ℏm0
> 0 are the NC frequencies

of position and momentum, with θ and η being, respectively, the NC param-
eters of position and momentum, s = ±1 is the spin parameter (describes
the spin “up” or “down”), and κ = ±1 is a parameter that describes the two
components of the Dirac spinor, respectively.

Before continuing, it is interesting to note that our relativistic energy
spectrum generalizes (due to the EDM) a case from literature, that is, we
are talking about Ref. [15]. According to this reference, the spectrum of the
noncommutative Dirac oscillator is given by

E2
n,ml

=m2c4 + 2mc2ℏω
(
1+

sη

2ℏmω

)(
1+

smωθ

2ℏ

)
(2n+ |kϕ| − skϕ + 1∓ 1) ,

(4)
where n = 0, 1, 2, . . . and kϕ = 0,±1,±2, . . . are two quantum numbers,
being kϕ a number associated with the angular part of the spinor, given by
the exponential exp(ikϕϕ). However, to arrive at this spectrum, Ref. [15]
considered the same exponential for the two components of the spinor, which
is different from our case (and from Refs. [11, 12]).

Thus, for d = 0, where Upot = ω̃ = 0 is implied (i.e., absence of the
EDM), our spectrum (1) takes the following form:

E2
n,m = m2

0c
4 + 2m0c

2ℏω
(
1 +

sη

2ℏm0ω

)(
1 +

sm0ωθ

2ℏ

)
×
[
2n+

∣∣∣m+ s
1− κ

2

∣∣∣− s

(
m+ s

1− κ

2

)
+ 1∓ 1

]
. (5)

Now, doing the same as Ref. [15], that is, considering the same exponen-
tial for two components of the spinor, given by exp(imϕ) [50], the spectrum
above becomes

E2
n,m = m2

0c
4 + 2m0c

2ℏω
(
1 +

sη

2ℏm0ω

)(
1 +

sm0ωθ

2ℏ

)
× [2n+ |m| − sm+ 1∓ 1] (6)

and, therefore, reduces exactly to the particular case of literature. With
this, we see clearly that our spectrum (1) is the general case of Ref. [15].
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In particular, the spectrum (1) has a characteristic that allows us to cal-
culate the thermodynamic properties of the system, which is the fact that
it has a degeneracy, finite or infinite (finite or infinite degenerate states) de-
pending on the values (signs) of s and m. However, only a finite degeneracy
and a spectrum with positive energy (χ = +1) are allowed for the calculation
of such properties. For instance, considering the maximal spectrum, which is
for s = +1 (spin “up”) with m < 0 (m = −1,−2,−3, . . .), σ = −1 (negative
EDM), and κ = +1, we have the following finitely degenerate spectrum for
the NCDO [50]:

En,m=Upot+m0c
2

√
1+

4ℏ
m0c2

(
1+

(ω + ω̃)

ωθ

)
(ω+ω̃ + ωη)[n+|m|] > 0 . (7)

Now, let us focus our attention on the fundamental object of the statistical
mechanics for the canonical ensemble, the so-called partition function Z,
which is defined as the sum of all possible macroscopic quantum states of
the system [49]. Explicitly, the one-particle partition function (N = 1) is
given by the following expression [8, 36, 49]:

Z(T, V, 1) =
∞∑
k=1

Ω(Ek) e
−βEk , (8)

where β = 1
kBT

is the Boltzmann factor, with kB being the Boltzmann
constant, and the quantity Ω(Ek) is the degree of degeneracy (or simply the
degeneracy) for the energy level Ek (number of microstates of the system
with energy Ek). The spectrum Ek is given by

Ek = Upot +m0c
2
√
1 +ABk , (9)

where we define k ≡ n+ |m| ≥ 1, being k a new quantum number, and A ≡
4ℏ

m0c2
= 4λ (λ is the reduced Compton wavelength) and B≡

(
1 + (ω+ω̃)

ωθ

)
(ω+

ω̃+ωη). Thus, to determine Ω(Ek), it is necessary to take into account that
for each quantum level (state) described for a specific pair (n, |m|), there are
2|m| + 1 different degenerate states [8, 36]. In this way, the total degree of
degeneracy (total number of microstates) is given by the following equation:

Ω(Ek) =

k∑
|m|=1

(2|m|+ 1) = k(k + 2) . (10)

Therefore, the partition function (8) becomes

Z(T, V, 1) =
∞∑
k=1

k(k + 2) e−[β̄+β̃
√
1+ABk ] , (11)

where we define β̄ ≡ βUpot =
|df |Φ
kBT

≥ 0 and β̃ ≡ βm0c
2 = m0c2

kBT
.
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Before proceeding, it is advisable to analyze the convergence of the par-
tition function [7, 8, 36]. Thus, the function f(x) = x(x+2) e−[β̄+β̃

√
1+ABx]

is a monotonically decreasing function if the following associated integral

I
(
β̄, β̃

)
=

∞∫
1

f(x)dx =

[
240

(AB)3β̃6
+

240
√
1 +AB

(AB)3β̃5
+

(96 + 144AB)

(AB)3β̃4

]
×e−[β̄+β̃

√
1+AB ]

+

[
(16 + 64AB)

√
1 +AB

(AB)3β̃3
+

(16 + 22AB)

(AB)2β̃2
+

6
√
1 +AB

ABβ̃

]
×e−[β̄+β̃

√
1+AB ] , (12)

is finite (convergent). Thus, from the theorems of convergent series, this
implies that the partition function (11) is also convergent.

On the other hand, although the partition function (11) is a convergent
function, it cannot be calculated exactly in a closed form [49]. However,
for high temperatures (T → ∞ or β ≪ 1), we can obtain good approxima-
tions [49]. In that way, a systematic expansion of (11) for large T is possible
with the use of the Euler–MacLaurin (sum) formula, in which the objective
is to calculate the integrals numerically. In particular, the Euler–MacLaurin
formula is given by [49]

Z(T, V, 1) =
∞∑
k=1

f(k) =
1

2
f(1) +

∞∫
1

f(x)dx−
∞∑
p=1

1

(2p)!
B2pf

(2p−1)(1) , (13)

or explicitly, as

Z(T, V, 1) =

∞∑
k=1

f(k) =
1

2
f(1) +

∞∫
1

f(x)dx− 1

12
f ′(1) +

1

720
f ′′′(1)− . . .+ ,

(14)
where B2p are the Bernoulli numbers.
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Thus, using the information above, the partition function (14) will be-
come

Z(T, V, 1) =

[
3

2
+

240

(AB)3β̃6
+

240
√
1 +AB

(AB)3β̃5
+

(96 + 144AB)

(AB)3β̃4

]
×e−[β̄+β̃

√
1+AB ]

+

[
(16 + 64AB)

√
1 +AB

(AB)3β̃3
+

(16 + 22AB)

(AB)2β̃2
+

6
√
1 +AB

ABβ̃

]
×e−[β̄+β̃

√
1+AB ]

−

[
8
√
1+AB−3ABβ̃

24
√
1+AB

+
(AB)3β̃

2880(1+AB)5/2
− (AB)2β̃

720(1+AB)3/2

]
×e−[β̄+β̃

√
1+AB ]

− 1

720

[
ABβ̃√
1+AB

+
3(AB)3β̃2

8(1+AB)2
− (AB)2β̃2

(1+AB)
+

(AB)3β̃3

8(1+AB)3/2

]
×e−[β̄+β̃

√
1+AB ] +O

(
β̃4
)
. (15)

Therefore, in the high-temperature regime, the partition function (15)
takes the form

Z(T, V, 1) ≃
(

240

(AB)3β̃6

)
, (16)

or for a set of N -particles, as

Z(T, V,N) ≃
(

240

(AB)3(m0c2)6β6

)N

, (17)

where we use the fact that β̃ = βm0c
2. Before calculating the thermody-

namic properties of interest, it is convenient to make a quick observation
about the partition function (16). For instance, in the absence of the EDM
(ω̃ → 0), and of the NC phase space (ωη → 0 and ωθ → ∞), we get exactly
the partition function of the usual DO in (3+1)-dimensions [8], i.e., (16) is
a generalization of the particular case already obtained in the literature.

Now, let us concentrate on the main thermodynamic properties, which
are the Helmholtz free energy, the entropy, the mean energy, and the heat
capacity. Mathematically, these properties are written in the following
form [8, 36, 49]:

F (T, V,N) = − 1

β
ln[Z(T, V,N)] , (18)

S(T, V,N) = kBβ
2 ∂

∂β
F (T, V,N) , (19)
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U(T, V,N) = − ∂

∂β
ln[Z(T, V,N)] , (20)

CV (T, V,N) = −kBβ
2 ∂

∂β
U(T, V,N) . (21)

Then, using the partition function (17), the properties above will be
rewritten as

F̄ ≃ −kBT ln

(
240k6BT

6

(AB)3(m0c2)6

)
,

S̄ ≃ kB

[
6 + ln

(
240k6BT

6

(AB)3(m0c2)6

)]
,

Ū ≃ 6kBT , C̄V ≃ 6kB , (22)

where F̄ = F
N (Helmholtz free energy per particle), S̄ = S

N (entropy per par-
ticle), Ū = U

N (mean energy per particle), and C̄V = CV
N (heat capacity per

particle), respectively. However, unlike F̄ , Ū and S̄, here, the (relativistic)
pressure is zero, i.e., P = −∂F

∂V = 0.

2.2. The nonrelativistic case

Now, let us consider the thermodynamic properties for the nonrelativistic
case, which is the case where most of the phenomena of condensed matter
physics or solid-state physics occur. However, let us first introduce the
nonrelativistic energy spectrum for the NCDO with EDM in the presence of
an external electromagnetic field. According to Ref. [50], this spectrum is
given by

εn,m,s,κ = Upot + ℏN
(
1 + s

(ω − σω̃)

ωθ

)
(ω − σω̃ + sωη) , (23)

and considering the maximal spectrum, for instance, for s = +1 (spin “up”)
with m < 0, σ = −1 (negative EDM), and κ = +1, we have a finitely
degenerate spectrum as [50]

εn,m = Upot + 2ℏ
(
1 +

(ω + ω̃)

ωθ

)
(ω + ω̃ + ωη) [n+ |m|] > 0 . (24)

Thus, the one-particle partition function is written by the following ex-
pression [8, 36, 49]:

Z(T, V, 1) =
∞∑
k=1

Ω(εk) e
−βεk , (β = 1/kBT ) , (25)
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where Ω(εk) is the degeneracy (degree of degeneracy), given by Ω(εk) =
k(k + 2), i.e., the same as in the relativistic case, and the spectrum εk is
given by

εk = Upot + ĀBk , k = n+ |m| = 1, 2, 3, . . . , (26)

where we define Ā ≡ 2ℏ and B ≡
(
1 + (ω+ω̃)

ωθ

)
(ω + ω̃ + ωη).

In that way, we can rewrite the partition function (25) as

Z(T, V, 1) =
∞∑
k=1

k(k + 2) e−[β̄+
¯̄βk ] , (27)

where β̄ = βUpot and ¯̄β = βĀB.
However, unlike in the relativistic case, here we do not need to use the

Euler–MacLaurin. Therefore, the series in (27) converges in the following
expression:

Z(T, V, 1) = e−[β̄−
¯̄β ]

(
3 e

¯̄β − 1
)

(
e
¯̄β − 1

)3 . (28)

Now, expanding the expression above, and considering the high-tempera-
ture regime where β ≪ 1, the partition function takes the form (for N -par-
ticles)

Z(T, V,N) ≃

(
2(

ĀB
)3

β3

)N

. (29)

Then, using (29) in expressions (18)–(21) implies that the nonrelativistic
thermodynamics properties are written as

F̄ ≃ −kBT ln

(
2k3BT

3(
ĀB
)3
)

,

S̄ ≃ kB

[
3 + ln

(
2k3BT

3(
ĀB
)3
)]

,

Ū ≃ 3kBT , C̄V ≃ 3kB , (30)

where F̄ = F
N , S̄ = S

N , Ū = U
N , and C̄V = CV

N .

3. Results and discussions

Now, we will discuss our (numerical) results via 2D graphs, where such
graphs show the behavior of the thermodynamic properties as a function of
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temperature T , both for the nonrelativistic and relativistic cases. For the
sake of simplicity, here we also consider ℏ = c = kB = m0 = |df | = 1 (“unit
constants”). Thus, in Fig. 1, we have four graphs of the Helmholtz free energy
F̄ (T ) as a function of T for three different values of ω, ω̃, ωθ, and ωη, which
are the four frequencies of the system. For instance, in Fig. 1 (a), we have
ω = {1, 2, 3} with ω̃ = ωθ = ωη = 1, in Fig. 1 (b), we have ω̃ = {1, 2, 3} with
ω = ωθ = ωη = 1, in Fig. 1 (c), we have ωθ = {1, 2, 3} with ω = ω̃ = ωη = 1,
and in Fig. 1 (d), we have ωη = {1, 2, 3} with ω = ω̃ = ωθ = 1 (these values
are also used in the graphs of S̄(T ) versus T ).

Fig. 1. Graph of F̄ (T ) versus T for three different values of ω, ω̃, ωθ, and ωη, where
the solid lines are for the relativistic (RE) case and the dashed lines are for the
nonrelativistic (NR) case.

In general, all graphs of Fig. 1 behave in a similar way, that is, F̄ (T )
decreases logarithmically (or monotonically) as a function of T . However,
knowing that the variation or change of F̄ can be written as ∆F̄system ≤ −W̄ ,
where W̄ = W̄non−PV ≥ 0 is a type of work done by the system (not mechan-
ical work, or non-PV work, since V = constant and P = 0), implies that the
smaller ∆F̄system, the greater the value of W̄ (the free energy of the system is
depleted to do the work, i.e., is the energy available to do work). By way of
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comparison, W is much larger for the relativistic case (W̄RE ≫ W̄NR). On
the other hand, since F̄ can also be written as F̄ ≡ Ū−T S̄ (Ū ≥ T S̄), it im-
plies that in the case of F̄ with increasingly negative values, more entropy is
generated (S̄ increases), consequently, the system tends to equilibrium faster
(faster heat exchange between the system and the thermal bath). Besides,
with the exception of Fig. 1 (c), F̄ (T ) increases with the increase of ω, ω̃,
and ωη (for a fixed value of T ). However, as ω̃ ∝ Φ, ωη ∝ η, and ωθ ∝ 1/θ, it
implies that F̄ (T ) increases with the increase of the magnetic field and of the
NC parameters. It is important to mention that in the case of NC graphene,
F̄ (T ) also increases with the increase of the NC parameter η [40]. Moreover,
the graphs in Figs. 1 (a) and 1 (b) are exactly the same. In fact, this is
because ω and ω̃ are “indistinguishable or interchangeable variables” [50].

In Fig. 2, we have four graphs of entropy S̄(T ) as a function of T for
three different values of ω, ω̃, ωθ, and ωη. In general, all these graphs behave
in a similar way, that is, S̄(T ) increases logarithmically (monotonically) as
a function of T (as it should be, since ∆S̄ = ∆S̄system ≥ 0). However, unlike
in nonrelativistic case, S̄(T ) increases abruptly between T = 0 and T = 10.
In fact, this occurs because the work W̄ is much larger for the relativistic

Fig. 2. Graph of S̄(T ) versus T for three different values of ω, ω̃, ωθ, and ωη, where
the solid lines are for the relativistic (RE) case and the dashed lines are for the
nonrelativistic (NR) case.
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case (W̄RE ≫ W̄NR), and therefore, the (change in) entropy is greater in
the relativistic case. Still unlike the nonrelativistic case, in T ≃ 0, we have
∆S̄ = 0. On the other hand, since ∆S̄ can also be written as ∆S̄ ≥ Q̄/T ,
this implies that a large ∆S̄ requires a large Q̄, i.e., the system must absorb
more heat from the thermal bath (and for the relativistic case this absorption
is greater). Besides, with the exception of Fig. 2 (c), S̄(T ) decreases with the
increase of ω, ω̃ and ωη (for a given fixed value of T ). However, as ω̃ ∝ Φ,
ωη ∝ η, and ωθ ∝ 1/θ, it implies that S̄(T ) decreases with the increase of
the magnetic field and of the NC parameters. It is important to mention
that in the case of NC graphene, S̄(T ) also decreases with the increase of the
NC parameter η [40]. Thus, analogous to Helmholtz free energy, the graphs
of Figs. 2 (a) and 2 (b) are exactly the same.

Already in Fig. 3 we have the graph of the mean energy as a function of T
that shows Ū as a linear function of temperature, i.e., Ū(T ) increases lin-
early with T (only depends on temperature). In particular, we note that the
value of Ū(T ) for the relativistic case is twice the nonrelativistic case. From
a physical point of view, we can say that the total mean energy, given by
Ū(T ) = Ūpot + Ūkin (potential energy + kinetic energy) of the N -particle or
of the system (with random and disordered motion) is large for the relativis-
tic case. Besides, as Ū can also be written as ∆Ū(T ) = Q̄(T ) − W̄ (T ) ≥ 0
(heat absorbed — work done by the system), it implies that the relativistic
case absorbs much more heat and does much more work than the nonrela-
tivistic case. Now, with regard to the heat capacity C̄V (T ), we note that
such property is a constant that depends only on the Boltzmann constant

Fig. 3. Graph of Ū(T ) versus T , where the solid line is for the relativistic (RE)
case and the dashed line is for the nonrelativistic (NR) case.
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kB, and as a direct consequence of the mean energy, it implies that the value
of C̄V (T ) for the relativistic case is also twice the nonrelativistic case. Ac-
cording to the literature [36, 40, 49], these results satisfy the Dulong–Petit
law, which states that the heat capacity is a constant for high temperatures
(C̄V (T → ∞) = constant) or far from absolute zero. Moreover, the nonrela-
tivistic case also agrees with such a law, because the heat capacity (of most
crystalline solid substances) is 3kB (per particle). Last but not least, it is
worth mentioning that since the partition function in both nonrelativistic
and relativistic cases does not depend on the electric field (i.e., Upot), it
implies that the thermodynamic properties also do not depend (as we have
seen so far) on it. In fact, there is no influence of the electric field on the
thermodynamic properties because this field is not “bound” to the quantum
number k (as occurs for the four frequencies).

4. Conclusion

In this paper, we investigate the thermodynamic properties of the NCDO
with EDM in the presence of an external electromagnetic field. In this sense,
we determine the properties for both relativistic and nonrelativistic cases in
the high-temperature regime, where we use the canonical ensemble to a set
of noninteracting N -particles (N -DOs) in contact with a thermal bath at
a constant temperature. In order to perform the calculations, we use the
Euler–MacLaurin formula to construct the partition function of the system.
Next, we determine explicitly the thermodynamic properties (per particle) of
our interest, namely, the Helmholtz free energy F̄ (T ), the entropy S̄(T ), the
mean energy Ū(T ), and the heat capacity C̄V (T ). Comparing our relativistic
partition function with another work, we verify that in the absence of the
EDM and the NC phase space, we get the partition function of the literature.

Then, in order to better analyze our (numerical) results, we plotted in
2D graphs the behavior of thermodynamic properties as a function of tem-
perature for three different values of ω, ω̃, ωθ, and ωη (the four frequencies
of the system). In that way, starting with the first thermodynamic property,
we note that the graphs of F̄ (T ) versus T , in general, have similar behavior,
that is, F̄ (T ) decreases logarithmically (monotonically) as a function of T .
Besides, F̄ increases with the increase of ω, ω̃ (or magnetic field), and ωη (or
NC parameter η), and decrease with the increase of ωθ. However, as ωθ ∝ 1

θ ,
it implies that F̄ (T ) increases with the increase of the NC parameter θ. Be-
sides, it is important to mention that the graphs for ω and ω̃ are exactly the
same (ω and ω̃ are “indistinguishable or interchangeable variables”).
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Now, with respect to the second thermodynamic property, we note that
the graphs of S̄(T ) versus T , in general, have similar behavior, that is, S̄(T )
increases logarithmically (monotonically) as a function of T , and decreases
with the increase of ω, ω̃ (or magnetic field), and ωη (or NC parameter
η), and increases (decreases) with the increase of ωθ (NC parameter θ).
However, as ωθ ∝ 1

θ , it implies that S̄(T ) decreases with the increase of the
NC parameter θ. On the other hand, unlike of nonrelativistic case, S̄(T )
increases abruptly between T = 0 and T = 10. Besides, it is also important
to mention that the graphs for ω and ω̃ are exactly the same (ω and ω̃ are
“indistinguishable or interchangeable variables”).

As for the third thermodynamic property, we note that the graphs of
Ū(T ) are linear functions of temperature (Ū(T ) increases linearly with T ).
In particular, we note that the value of Ū for the relativistic case is twice the
nonrelativistic case. Besides, unlike F̄ (T ) and S̄(T ) (which depend on the
four frequencies), Ū(T ) only depends on temperature. Now, with respect to
the last thermodynamic property, we have the heat capacity C̄V , which is
a constant that depends only on the Boltzmann constant kB. As a direct
consequence of the mean energy, it implies that the value of C̄V (T ) for
the relativistic case is also twice the nonrelativistic case. According to the
literature, these results satisfy the Dulong–Petit law, which states that the
heat capacity is a constant for high temperatures (C̄V (T → ∞) = constant).
Last but not least, it is worth mentioning that since the partition function
in both nonrelativistic and relativistic cases does not depend on the electric
field, it implies that the thermodynamic properties also do not depend on it.
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