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Detecting beyond the Standard Model (BSM) signals in high-energy
particle collisions presents significant challenges due to complex data and
the need to differentiate rare signal events from the Standard Model (SM)
backgrounds. This study investigates the efficacy of deep learning models,
specifically Deep Neural Networks (DNNs) and Graph Neural Networks
(GNNs), in classifying particle collision events as either BSM signal or
background. The research utilized a dataset comprising 214,000 SM back-
ground and 10,755 BSM events. To address class imbalance, an undersam-
pling method was employed, resulting in balanced classes. Three models
were developed and compared: a DNN and two GNN variants with different
graph construction methods. All models demonstrated high performance,
achieving Area Under the Receiver Operating Characteristic curve (AUC)
values exceeding 94%. While the DNN model slightly outperformed GNNs
across various metrics, both GNN approaches showed comparable results
despite different graph structures. The GNNs’ ability to explicitly capture
inter-particle relationships within events highlights their potential for BSM
signal detection.
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1. Introduction

The Standard Model of particle physics [1, 2] has been extensively tested
by the CMS and ATLAS experiments, with experimental data confirming
its remarkable success. However, despite its achievements, the SM cannot
explain some phenomena, which leads us to search for beyond the Standard
Model theories. At CERN, the CMS and ATLAS collaborations have con-
ducted searches for dark matter candidates, one of the primary phenomena
that the SM cannot explain. While these searches have not yielded positive
results thus far, they have placed mass limits on the sought-after particles. In
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one of these studies [3], in the scenario where a pair of gluinos is produced
and these gluinos decay to the LSP via off-shell stop or sbottom, gluino
masses below 2.44 TeV and 2.35 TeV, respectively, have been excluded at
95% C.L. for the case of a massless lightest supersymmetric particle called
LSP (χ̃0

1).
Although the production cross section of colored particles in hadron col-

liders is higher than that of electroweakinos, the limits placed on these par-
ticles are also higher compared to electroweakinos. However, the mass limits
placed on electroweakinos are still within the reach of CMS or ATLAS ex-
periments. In a study [4] examining the direct production mechanism of
chargino–neutralino (χ̃±

1 /χ̃
0
2), a mass limit of 820 GeV was placed on the

(χ̃±
1 /χ̃

0
2) for the case of a massless χ̃0

1. A separate study [5], which investi-
gated slepton (l̃ ) pair production, where each slepton decays into a lepton
and an LSP, excluded slepton masses up to 700 GeV.

In another study [6] conducted by the ATLAS Collaboration, which in-
vestigated SUSY scenarios with R-parity violation, a comprehensive analysis
was performed using 139 fb−1 of data. The analysis examined various pro-
duction mechanisms, including gluino pair production, stop pair production,
chargino–neutralino production, and neutralino pair production. The find-
ings placed significant constraints on SUSY particle masses. For scenarios
with high LSP mass, gluino masses up to 2.4 TeV were excluded. In cases
with low LSP mass, the exclusion limit for gluino masses reached up to
2 TeV. Notably, the study also set stringent limits on the top squark mass,
excluding it up to 1.35 TeV, further constraining the parameter space for su-
persymmetric models. Furthermore, the study provided important insights
into the mass limits of the LSP itself. For higgsino LSP scenarios, where the
LSP is assumed to be mass-degenerate with the second-lightest neutralino,
LSP masses up to 320 GeV were excluded. In the case of wino LSP, where
the LSP is assumed to be mass-degenerate with the lightest chargino, the
exclusion limit for LSP masses was extended up to 365 GeV.

Given the challenges in detecting electroweakinos due to their lower pro-
duction rates, researchers have turned to advanced analytical techniques to
enhance their search capabilities. Therefore, different research groups need
to utilize various methods to increase acceptance in studies addressing this
production mechanism. One of these methods is to utilize machine learn-
ing algorithms. Machine learning algorithms can be successful in capturing
linear or non-linear relationships between features in scientific fields like
particle physics, where the collected data is multi-dimensional and the clas-
sical cut-and-count method may not yield sufficiently good results. A study
conducted in [7] reproduced the results of studies [5, 8] performed by the
ATLAS group, using machine learning algorithms, which addressed direct
slepton production or chargino/neutralino production and their decay into
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different final states via l̃/W± boson. The obtained results showed that the
machine learning method enhanced the outcomes. Machine learning algo-
rithms are not only used in physics analyses but are also widely utilized in
the reconstruction of physics objects and in the jet–flavor tagging stage in
the CMS and ATLAS experiments [9–11] as well.

Machine learning algorithms have significantly contributed to the liter-
ature in many studies aimed at separating various BSM signals from back-
grounds, not only using CMS or ATLAS data but also using simulated data.
In the study [12], researchers developed models to separate signals from
backgrounds using various machine learning algorithms, neural networks,
and deep learning algorithms for two different beyond the Standard Model
signals. One of these signals is the theoretical heavy and neutral Higgs bo-
son production through gluon–gluon fusion, and the other is chargino pair
production where these charginos subsequently decay into an LSP, lepton,
and neutrino via a W boson. In addition to this study, researchers in [13–15]
developed models using CNN, deep learning, transfer learning, and machine
learning algorithms to separate the Standard Model background from BSM
signals or to isolate 2D histograms representing only the SM background
from 2D histograms where the signal is embedded in the SM background.
These studies not only compare the performances of the developed models
against each other but also demonstrate the successful application of transfer
learning in cases with limited data, particularly as shown in [14].

Recent studies have highlighted the effectiveness of geometric deep learn-
ing techniques, especially Graph Neural Networks (GNNs), in tackling var-
ious track reconstruction challenges in high-energy particle physics [16–18].
Researchers in work [18] have applied a physics-inspired Interaction Net-
work (IN), a specific type of GNN, to address particle tracking under the
intense pileup conditions anticipated at the high-luminosity Large Hadron
Collider (HL-LHC). By modeling particle tracking data as graphs, where
silicon tracker hits serve as nodes and particle trajectories as edges, the IN
GNN demonstrated remarkable edge-classification accuracy and tracking ef-
ficiency. Notably, the compact IN architecture, significantly smaller than
previous GNN tracking models, shows promise for implementation in envi-
ronments with limited computational resources. The study also investigated
the acceleration of IN implementations using diverse computing resources,
including FPGAs, and explored alternative GNN approaches that eliminate
the need for predefined graph structures. These results emphasize the po-
tential of GNNs, particularly the IN model, as a powerful tool for particle
tracking and other reconstruction tasks at the HL-LHC, positioning them
as strong candidates for future high-energy physics experiments
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The multi-dimensional nature of particle collision data, coupled with the
rarity of BSM events, necessitates advanced techniques capable of extract-
ing subtle patterns and features. GNNs offer a promising approach due to
their ability to explicitly capture the relationships between particles in each
event. This study aims at leveraging the strengths of GNNs in handling
complex, graph-structured data to improve the sensitivity and efficiency
of BSM signal detection. By comparing the performance of GNNs with
traditional deep learning methods, this research seeks to provide valuable
insights into the most effective approaches for analyzing particle collision
data. Hence, in this study, the classification of gluino–gluino production, a
beyond-Standard-Model signal, from certain backgrounds of the Standard
Model in particle physics, using graphical neural networks [19], is addressed.
Although GNNs have a wide range of applications, namely in solving many
graph-related machine learning problems such as node classification, link
prediction, anomaly detection, and graph classification, this study focuses
on the latter constructed from tabular data belonging to each class. The
performances of the GNNs are then compared with each other and with
that of a deep learning method.

2. Methodology

The search for BSM signals in particle physics has traditionally relied
on conventional methods such as cut-and-count or shape analysis, employed
by the researchers. However, the increasing complexity and volume of data
generated by modern particle colliders present new challenges that demand
more sophisticated analytical approaches. The multi-dimensional nature of
particle collision data, coupled with the rarity of BSM events, necessitates
advanced techniques capable of extracting subtle patterns and features. In
this context, machine learning algorithms, particularly deep learning models,
have emerged as powerful tools for analyzing complex datasets in particle
physics. This study explores the application of both DNN and GNNs to the
challenge of BSM signal detection. By leveraging these advanced machine
learning techniques, the aim is to enhance the sensitivity and efficiency of
BSM searches, potentially uncovering signals that might elude traditional
analysis methods. The comparison between DNNs and GNNs also provides
valuable insights into the most effective approaches for handling the unique
characteristics of particle collision data, paving the way for more robust and
adaptable analysis techniques in high-energy physics.

2.1. Proposed method

This study employs both DNN and GNN models to classify particle
collision events, focusing specifically on BSM signal detection against back-
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ground events. The analysis utilizes background and the BSM signal data
provided by the research group [20, 21]. The study focused on Channel 1,
where the final state consists of Missing Transverse Energy (MET), and jets.
The dataset itself includes a bunch of different BSM processes such as SUSY
and non-SUSY. However, only SUSY gluino–gluino pair production, which
eventually decays to jets and neutralinos is considered in this work. Gluinos
are assumed to have a mass of 1.6 TeV and the neutralinos have a mass of
800 GeV. The Channel 1, looking for hadronic activity, includes 214,000 SM
events, and a signal sample of 10,755 is constructed as follows:

— Emiss
T ≥ 200GeV ,

— HT ≥ 600GeV ,

— Emiss
T /HT ≥ 0.2 ,

— N(jpT>50GeV) ≥ 4 ,

— N(jpT>200GeV) ≥ 1 ,

where j can either be a jet or a b-jet. Comprehensive details regarding
the dataset’s production and the pre-selection cuts applied can be found in
referenced article [21].

The model inputs were defined using key physical features of particle col-
lision events: energy (E), transverse momentum (pT), pseudorapidity (η),
and azimuthal angle (ϕ) for each physics object of interest, including jets,
b-jets, electrons, and muons. Additionally, global event features such as
MET and its azimuthal angle (METϕ) were included. Each event was la-
beled with a binary target variable (1–0) indicating whether it was a BSM
signal (1) or background events (0). However, particle collision events typi-
cally contain varying numbers of particles, resulting in inconsistent feature
sets across events. To address this variability and ensure consistent input
for both the DNN and GNN models, a pre-processing step was implemented.
The input features were standardized to include a maximum of four b-jets
and four jets per event. For events with more than four objects of a given
type, only the first four were retained, while the total count of each object
type (e.g., nbjets, njets) was recorded as an additional feature. For events
with fewer than four objects, a feature padding technique was employed by
adding placeholder values of −9999 for any missing particle data, ensuring
a consistent set of features for each event. This approach balances the need
for detailed event information with the requirement for uniform input across
all events. Both the DNN and GNN models utilize the same pre-processed
dataset, allowing for a fair comparison of their performance.
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To address class imbalance, undersampling was performed using the pan-
das library [22], equalizing the number of signal and background events. For
binary classification purposes, all backgrounds contributing to the signal re-
gion were treated as a single background class. The dataset was then split
into training, validation, and test sets in a ratio of 60%, 20%, and 20%,
respectively. Subsequent to the splitting, the training set was normalized
using the ‘StandardScaler’ class from the scikit-learn library [23], ensuring
a mean of 0 and a standard deviation of 1 for all features. The same scaling
parameters computed from the training set were then applied to normalize
the validation and test sets. This normalization step is crucial in preventing
bias in machine learning algorithms.

A DNN model with a flexible architecture was created using Keras API
[24]. The model consists of an input layer, four hidden dense layers with
units of 128, 32, 64, and 192, respectively, each employing the ReLU acti-
vation function, a dropout layer with a rate of 0.2 applied after the third
dense layer (64 units) to mitigate overfitting by randomly setting 20% of
the input units to zero during training, and an output layer with a sigmoid
activation function for binary classification (see figure 1 for the architecture
of the DNN model). Keras Tuner [25] was used for hyperparameter opti-
mization, searching for the best combination of number of layers, units per
layer, dropout rates, and learning rate. The model is compiled using the
Adam optimizer with a learning rate of approximately 0.00043 and the bi-
nary crossentropy loss function. Training is conducted for a maximum of

Fig. 1. Comparison of the architectures of the GNN and DNN models. The GNN
model features GCN, Batch Normalization, dropout, Global Average Pooling, and
dense layers, while the DNN model includes dense and dropout layers.
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100 epochs, with early stopping implemented to halt training when the val-
idation loss ceases to improve, using patience of 20 epochs. The training
was conducted with a batch size set to 32. To prevent overfitting, early
stopping is employed, and when triggered, it ensures that the best model
is saved. Hyperparameters that are used and optimized for the final DNN
model are listed in Table 1. The final model was created using the best
hyperparameters and trained on the training set, validated on the valida-
tion set. The model’s performance was evaluated on the test set to ensure
generalizability. A threshold of 0.5 was applied to the sigmoid output to de-
termine class assignments. Outputs exceeding this threshold were classified
as the positive class (1), while those below were assigned to the negative
class (0). This consistent threshold was used across all performance metric
calculations, including accuracy, precision, recall, and F1 score. The com-
prehensive training strategy and hyperparameter optimization resulted in a
robust DNN model capable of accurately classifying particle collision events
based on the provided features.

Table 1. Optimum Hyperparameters for GNN and DNN models.

Hyperparameter GNN DNN
Optimizer Adam Adam
Activation function ReLu/Sigmoid ReLu/Sigmoid
Loss function Binary crossentropy Binary crossentropy
Batch size 128 32
Learning rate 0.001 0.00043
Early stopping yes yes
Number of units 64–32–64–32–16–1 128–32–64–192–1
Number of layers 13 6

As part of the methodology, two unique graph structures were developed
for each event in the dataset. The first structure, named GNN-1, featured
MET as the central node, connected to all other feature nodes. The second
structure, called GNN-2, was a hybrid connection structure. Most nodes,
including MET, are fully interconnected with each other. However, certain
nodes maintain specific, physically meaningful connections: the number of
electron/positron (ne∓) node links only to the electron/positron (e∓) node;
the number of muon/antimuon (nµ∓) node links only to the muon/antimuon
(µ∓) node; the number of jets (njets) node connects only to jet nodes (j1,
j2, j3, j4); and the number of b-jets (nbjets) node links only to b-jet nodes
(b1, b2, b3, b4). These graph structures were created using the NetworkX
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library [26], with node features converted to NumPy arrays [27]. The Spektral
library [28], which is based on the Keras API and TensorFlow 2, was then used
to adapt these graph structures and features for use in the GNN models.
The illustrations of the graphs for both cases are shown in figures 2 and 3,
respectively.

Fig. 2. Graph representation of the GNN-1 model. The Missing Transverse Energy
(MET) node is centrally positioned and connected to all other nodes, forming a
star-like topology. This structure emphasizes the global influence of MET on all
other particles in the event.

To effectively manage and prepare the data for training and validation,
a custom data loader was implemented. This data loader organized the
graph structures into the training, validation, and test sets, ensuring that the
data was correctly formatted and optimized for the GNN architecture. By
handling the batching and shuffling of the data, the custom loader facilitated
efficient training processes and consistent evaluation across the models.

Building on the developed graph structures, two GNN models were im-
plemented to leverage these configurations. The GNN architectures comprise
a total of six trainable layers with a sequence of units as 64–32–64–32–16–1.
The models, created using Keras and Spektral libraries, consist of input
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Fig. 3. Graph representation of the GNN-2 model. The graph features a hybrid con-
nection structure. Most nodes, including MET, are fully interconnected with each
other. However, certain nodes maintain specific, physically meaningful connections:
the number of electron/positron (ne∓) node links only to the electron/positron (e∓)
node; the number of muon/antimuon (nµ∓) node links only to the muon/antimuon
(µ∓) node; the number of jets (njets) node connects only to jet nodes (j1, j2, j3,
j4); and the number of b-jets (nbjets) node links only to b-jet nodes (b1, b2, b3, b4).

layers, followed by two Graph Convolutional Network layers with 64 and
32 units, respectively, each followed by a batch normalization layer and
a dropout layer with a rate of 0.5 to prevent overfitting. After the GCN
layers, a global average pooling layer is applied to aggregate the node fea-
tures. The model then includes three dense layers with 64, 32, and 16 units
employing the ReLU activation function. Each of the first two dense layers
is followed by a dropout layer with a rate of 0.5. The final output layer
is a dense layer with 1 unit and a sigmoid activation function, suitable for
binary classification tasks. The architecture of the model is depicted in
figure 1.
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Unlike the DNN model, the GNN models were optimized through man-
ual trial and error rather than using tools like Keras Tuner. This approach
involved iteratively adjusting the model architecture and hyperparameters
based on validation performance. The model was compiled using the Adam
optimization algorithm with a learning rate of 0.001 and trained with bi-
nary cross-entropy loss. The training was conducted for a maximum of 500
epochs, with early stopping implemented to halt training when the vali-
dation loss ceased to improve after 20 consecutive iterations. When early
stopping was triggered during the training, the best model was saved. The
performance of the best model was evaluated on the test set. As with the
DNN model, a 0.5 threshold was applied to the GNN outputs for class de-
termination and performance metric calculations, ensuring consistency in
evaluation across all models.

The performance of the two different graph structure types was com-
pared, and the results are presented in Table 1. Through meticulous ar-
chitectural design and manual optimization, the GNN models demonstrated
strong performance in classifying particle collision events, highlighting the
effectiveness of graph-based approaches in distinguishing BSM signals from
background events.

2.2. GNN

A Graph Neural Network is a type of deep learning model designed to
work with graph-structured data. Unlike traditional neural networks that
operate on grids or sequences, GNNs are capable of handling complex rela-
tionships between nodes and edges in a graph. This makes them particularly
useful in domains where data is naturally represented as graphs, such as so-
cial networks, molecular structures, traffic networks, and recommendation
systems. GNNs have been shown to be effective in tasks such as node clas-
sification, graph classification, and link prediction.

GNNs are widely used in various applications, including computer vi-
sion, natural language processing, and recommender systems [29–32]. For
instance, in computer vision, GNNs can analyze the relationships between
objects in an image, while in natural language processing, they can model
the relationships between words in a sentence. In recommender systems,
GNNs can be used to model the relationships between users and items, and
generate personalized recommendations. Additionally, GNNs have been ap-
plied to various scientific domains, such as chemistry, biology, and physics,
to analyze complex systems and make predictions [33–36].

Graph Convolutional Networks are a specific class of neural networks de-
signed to operate on graph-structured data. GCNs can capture the complex
relationships and dependencies between nodes in a graph. Mathematically,
a GCN extends the concept of convolution from Euclidean space to non-
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Euclidean space. Given a graph G = (V,E) with V set of nodes and E as
the set of edges, the graph can be represented by an adjacency matrix A and
a feature matrix X. The key operation in a GCN is the graph convolution,
which can be expressed as

H(l+1) = σ
(
ÂH(l)W (l)

)
.

Here, Â = D̃−1/2ÃD̃−1/2 is the normalized adjacency matrix, D̃ is the
degree matrix of Ã,H(l) denotes the feature matrix at layer l,W (l) is the
trainable weight matrix at layer l, and σ is a non-linear activation function
such as ReLU. This operation effectively aggregates the features of neigh-
boring nodes, allowing the network to learn representations that capture the
local graph structure.

2.3. DNN

Deep Neural Networks represent a significant advancement in machine
learning, offering a sophisticated approach to modeling complex systems.
Inspired by the neural architecture of the human brain, DNNs extend this
concept with multiple hidden layers, enabling them to excel at learning in-
tricate patterns in data.

The architecture of a DNN is characterized by its layered structure, where
each successive layer processes and refines the output from the previous one.
This hierarchical processing allows DNNs to extract increasingly abstract
features or representations from the input data, facilitating the modeling of
non-linear relationships that often challenge traditional algorithms.

The versatility of DNNs has led to their widespread adoption across
various domains. In computer vision, they have revolutionized tasks such as
object recognition, image classification, and even image synthesis. Similarly,
the field of natural language processing has seen remarkable progress through
the application of DNNs in areas such as machine translation, sentiment
analysis, and conversational AI.

Moreover, the impact of DNNs extends beyond these computational
fields. In healthcare, they are instrumental in advancing diagnostic tech-
niques and accelerating drug discovery processes. The financial sector lever-
ages DNNs for fraud detection and risk assessment, demonstrating their
utility in handling complex, multidimensional data.

The key strength of DNNs lies in their ability to distill meaningful in-
sights from large, complex datasets. This capability positions them as in-
valuable tools in our increasingly data-driven world, where the extraction of
actionable information from vast amounts of data is crucial for advancement
in numerous fields of study and industry.



10-A2.12 A. Celik

3. Findings

In this study, a total of three models, two of which are GNNs, were devel-
oped, and their performances are presented comparatively. In both GNN-1
and GNN-2 models, each simulated event corresponds to a graph, with each
particle or, in other words, a physics object corresponding to a node, and
attributes related to these objects are referred to as features. Since missing
transverse momentum is an important parameter in BSM research, in the
first GNN model created, graphs were constructed with the MET node at the
center and connected to other nodes, while in the second type, a model was
created by selecting all nodes to be interconnected. Looking at the results
of both of these models, it is clear that they provide similar performance
across all the metrics.

Examining the loss and accuracy plots in figure 4, both training and
validation loss follow similar trends for all three models, and training was
terminated with early stopping as there was no improvement in validation
loss after a certain epoch. It is also worth noting that, based on these loss
graphs, overfitting does not appear to be an issue for any of the models.

Fig. 4. Comparison of model performance: Top — accuracy of GNN-1, GNN-2, and
DNN models on training and validation data; Bottom — training and validation
loss over epochs for all three models.
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Additionally, as shown in Table 2, the DNN demonstrates slightly better re-
sults in terms of both accuracy and other measures. However, no significant
difference was observed when compared to the GNN models.

Table 2. Comparison of performance metrics for GNNs and DNN models. The
metrics include accuracy, recall, precision, F1 score, and area under the curve
(AUC).

Model Accuracy Precision Recall F1 Score AUC
GNN-1 88.7% 88.4% 89.2% 88.8% 95.1%

GNN-2 87.7% 88.2% 87.1% 87.7% 94.3%

DNN 91.0% 91.2% 90.7% 91.0% 96.7%

In addition to recall, precision, accuracy, F1, the AUC was also used
as a performance metric in this study. AUC is a metric that takes values
between 0.5 and 1.0 and is defined as the area under the true positive rate
(TPR) versus false positive rate (FPR) graph. While a value of 0.5 indicates
performance no better than random guessing, an AUC value of 1.0 suggests
that the model is an excellent classifier. A value of 0.7 can be interpreted
as the model being successful. As shown in Table 2, all three models, DNN,
GNN-1, and GNN-2, demonstrated excellent performance, with AUC values
exceeding 94%, with the DNN achieving slightly better performance.

To further evaluate the models’ performance, confusion matrices were
generated for each of the three models (see Table 3). These matrices provide
a detailed breakdown of true positives, true negatives, false positives, and
false negatives, offering insight into the specific strengths and weaknesses of
each model in classifying signal and background events.

Table 3. Confusion Matrices for GNN-1, GNN-2, and DNN models in classifying
background and signal events.

Table 1:

G
N
N
-1

Predicted

G
N
N
-2

Predicted

BG’s Signal Total BG’s Signal Total

A
ct
u
al BG’s 1896 252 2148

A
ct
u
al BG’s 1896 252 2148

Signal 233 1921 2154 Signal 279 1875 2154

Total: 2129 2173 4302 Total: 2175 2127 4302

D
N
N

Predicted

BG’s Signal Total

A
ct
u
a
l

BG’s 1960 188 2148

Signal 200 1954 2154

Total: 2160 2142 4302
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Figure 5 provides further insight into the models’ performance by plot-
ting the background rejection as a function of signal efficiency. This rep-
resentation, often referred to as a ROC curve in particle physics contexts,
allows for a more nuanced comparison of the models’ discriminative power
across different operating points. Notably, all three models exhibit strong
performance. The DNN model shows slightly better performance, with its
curve slightly positioned above those of the GNN variants across most of the
signal efficiency range. This is consistent with its higher AUC value. The
similarity in performance between the DNN and GNN models suggests that
both approaches are capable of effectively capturing the complex relation-
ships in particle collision data. The strong performance of the GNN models
indicates that the graph-based representation of collision events preserves
important topological information, which can be effectively leveraged for
signal–background discrimination. Notably, the models achieved high classi-
fication accuracy using only low-level features, without relying on high-level
engineered variables. This finding suggests that even without high-level
features, the models can effectively capture the necessary information for

Fig. 5. Comparison of model performance: ROC curves showing signal efficiency
versus background rejection for two GNN’s (GNN-1, GNN-2) and DNN. DNN
shows the highest area under the curve (AUC) of 0.967, outperforming both GNN
models, particularly beyond the signal efficiency of 0.4, where it achieves a slightly
higher background rejection. GNN-1 (AUC = 0.951) slightly outperforms GNN-2
(AUC = 0.943). All models converge at very high-signal efficiencies and show
similar trends at low-signal efficiency regions, indicating comparable performance
in both high-recall and high-precision scenarios.
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accurate classification. This represents a significant advantage in simplify-
ing data preparation and potentially reducing the need for extensive feature
engineering and analysis.

Beyond the statistical performance, these results have important physics
implications. The ability of both DNN and GNN models to accurately dis-
tinguish between SM and BSM events suggests that such machine learning
techniques can enhance the sensitivity of BSM searches. By effectively iden-
tifying rare signal events, these models could contribute to refining current
experimental limits on BSM theories, potentially leading to the discovery of
new physics phenomena.

4. Conclusion

This study has demonstrated the efficacy of both DNN and GNNs in clas-
sifying particle collision events, with a focus on detecting beyond the Stan-
dard Model signals against background events. The comparative analysis
of these models offers valuable insights into their performance and potential
applications in high-energy physics research.

The strong performance of the GNN models, despite different graph con-
struction methods, highlights the potential of graph-based representations
in preserving crucial topological information about particle collisions. The
application of GNNs presents a novel approach to particle physics analyses,
reflecting the data structure more accurately by modeling the interactions
between particles as graphs. This allows GNNs to capture complex depen-
dencies and relational information inherent in collision events, which are
often challenging to address with traditional methods.

By leveraging the inherent connections in the data, GNNs offer a unique
advantage in detecting subtle patterns and correlations that may be indica-
tive of new physics phenomena. This suggests that GNNs could be a valuable
tool in future particle physics analyses, offering a complementary approach
to traditional methods. It is worth noting that while the DNN model pro-
vided slightly better results in this study, the performance of GNNs could
potentially be enhanced with access to larger datasets and further optimiza-
tion, underscoring their promise in this field for advancing BSM searches.

The study’s methodology, including undersampling to address class im-
balance and careful feature engineering, proved to be effective in creating
models that generalize well to unseen data. The high recall and precision
scores across all models indicate their ability to accurately identify rare sig-
nal events, a crucial capability in BSM physics research. While this study
focused on gluino–gluino pair production, the strong performance of these
models suggests potential applicability to other BSM processes. This versa-
tility, coupled with the rapid advancements in machine learning, positions
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these techniques at the forefront of high-energy physics research. As the
field continues to evolve, deep learning approaches like those explored in
this study are poised to play an increasingly important role in pushing the
boundaries of our understanding.

Building on these promising results, future research should explore the
scalability and adaptability of these models. Particularly, incorporating
GNNs into larger, more representative datasets typical in full-scale par-
ticle physics experiments could further enhance their effectiveness. Such
advancements may contribute significantly to refining the current limits of
BSM searches and potentially uncovering new physics. This study under-
scores the potential of deep learning approaches in particle physics analysis
and motivates further investigation of GNN architectures for BSM signal
detection.
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