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In this paper, we study an ensemble of random matrices called the
Elliptic Volatility Model, which arises in finance as models of stock returns.
This model consists of a product of independent matrices X = ΣZ, where Z
is a T by S matrix of i.i.d. light-tailed variables with mean 0 and variance 1,
and Σ is a diagonal matrix. In this paper, we take the randomness of Σ
to be i.i.d. heavy-tailed. We obtain an explicit formula for the empirical
spectral distribution of X∗X in the particular case when the elements of Σ
are distributed as Student’s t with parameter 3.
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1. Introduction

A key problem in random matrix theory is understanding eigenvalue
properties when the matrix dimensions are large. There is a large body of
work on properties of the Sample Covariance Matrix Ensemble. The eigen-
value distribution has been shown to be the Marchenko–Pastur in a very
general case for the matrix of covariances of i.i.d. variables with a variance,
and then similar results were extended to matrices with various correlation
structures. In this paper, we explore a random matrix ensemble originating
from financial mathematics where the entries are heavy-tailed and uncor-
related but not independent. This dependence structure and its somewhat
heavy tails result in a different eigenvalue density in the limit of a large di-
mension. Unlike the Marchenko–Pastur distribution, the eigenvalue density
has a heavy tail as well. A similar eigenvalue density has been observed
in correlation matrices arising in diverse settings in multiple applied fields,
including in calcium imaging data in various types of tissue [1, 2], machine
learning [3], and finance [4]. The breadth of applications where such distri-
butions are found may indicate a new universal phenomenon.
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In financial mathematics, a volatility process is commonly defined as

Xt = σtZt ,

where Zt are independent N (0, 1) random variables (further, we will call
them noise), and variables Zt and σt are independent. The process σt is
called volatility and can be modelled in multiple ways. For example, in
the celebrated Black–Scholes model, centred log-returns of the price can be
modelled as Xt = σ0 (Bt −Bt−1), where Bt is the Brownian motion, the
volatility equals σ0 for any t.

A random variable X is called heavy-tailed (or fat-tailed, Pareto-tailed,
power-law tailed) if a power law can approximate its density p(x) for the
large x

p(x) ∼
|x|→∞

c

|x|α+1
. (1.1)

For arbitrary α such tails are regularly varying, and α is referred to as tail
exponent. A canonical example of a heavy-tailed distribution with tail ex-
ponent α is the Student’s t distribution with α degrees of freedom, which
we abbreviate as Student (α) throughout the manuscript. In his work [5],
Mandelbrot argued using the example of cotton price changes that the em-
pirical distribution of price changes is better approximated by an α-stable
distribution other than normal, i.e. a distribution with tail parameter α.
The log-returns of stock prices in developed countries are believed to follow
a power law with exponent α ≈ 3 [6]. This tail property is called cubic law.
Figure 1 illustrates the cubic law for log-returns of three examples of major
companies.

The heaviness of the tails in stock log-returns is important for portfolio
optimisation. If risky assets returns are i.i.d. and the second moment exists,
investing equally into each asset, i.e. diversifying the portfolio reduces risks,
and the distribution of portfolio returns can be approximated using the
Central Limit Theorem (see e.g. [7]). The diversification strategy may not
remain optimal for the distributions with heavier tails [8, 9]. For example,
in the case of Cauchy distributed price changes, the diversified portfolio will
have a similar risk distribution as the non-diversified because the sample
mean of the i.i.d. Cauchy random variables has the Cauchy distribution
with the same parameters. Considering even heavier tails would lead to the
optimality of the non-diversification of the portfolio [10].

For the sequence of random matrices {XT } of the size S × T, where
S
T → y > 0, with i.i.d. entries with 0 mean and variance σ2, the limiting
spectral distribution of XTX∗

T
T exists, and is called the Marchenko–Pastur

law. This holds for heavy-tailed variables as well with tail parameter α > 2,
and the limiting spectral distribution changes only for α < 2. However, it is
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Fig. 1. Illustration of the cubic law. The tail F̄ (x) = 1 − F (x), where F (x)

is empirical c.d.f. of returns of the chosen stock has slope ≈ 3 when plotted on
a log–log scale. The box-whiskers plot displays the distribution of logarithms of
log-returns. On the left, the plot for three major companies. Data taken from
https://polygon.io/

well-known that Marchenko–Pastur law does not approximate the spectrum
of a stock returns correlation matrix, even though the returns have a tail
parameter close to 3, i.e. a lot bigger than 2. This discrepancy occurs due to
correlations or dependence between stocks. In [11], it is demonstrated that
a factor model with any number of factors (a model with k rank one ma-
trices added to an i.i.d. random matrix) does not approximate stock return
correlation eigenvalues either.

A model that does approximate the stock returns correlation eigenvalues
well is the Student-Wishart Elliptic Volatility Matrix [12]. In this paper, we
will be concerned with models that generalise this. We introduce a definition
here:

Definition 1.1. Let T×S random matrix X is an Elliptic Volatility Matrix
(EVM) if

X = (σtZt,s)t≤T
s≤S

, (1.2)

where random variables Zt,s are independent identically distributed random
variables with a finite variance and σts are independent of (Zt,s)t≤T

s≤S
and

whose empirical cumulative distribution function converges almost surely to
F (x), which is the c.d.f. of some heavy-tailed random variable σ with tail
exponent α. We denote F ′(x) =: f(x). Furthermore, we define the Elliptic

https://polygon.io/
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Volatility Sample Covariance Ensemble (EVSCE) as the following random
matrix ensemble:

A :=
X∗X

T
, (1.3)

when T, S → +∞ and T
S → y, where 0 < y < +∞. Denote Z := (Zt,s)t≤T

s≤S

and Σ = diag (σt)t≤T .

Notice that in the above definition, X = ΣZ for the diagonal matrix Σ
with Σtt = σt and then

X∗X

T
=

Z∗Σ2Z

T
. (1.4)

The Student-Wishart is defined with σts i.i.d. Student’s t distributed and
Zts i.i.d. normally distributed.

The EVSCE has many limitations. It cannot fully describe the market
data, as it is well-known that meaningful stock correlations e.g. stocks in
similar industries, account for some of the largest eigenvalues [4]. The dis-
crepancy between EVSCE and market data was demonstrated definitively
in [13] using a copula method. Nevertheless, understanding the spectrum of
EVSCE can be valuable as it helps elucidate mechanisms by which the large
eigenvalues of a correlation matrix can arise via dependence and heavy tails
in the distribution of the entries. Two limitations that could be relaxed in
a future work are volatility clustering (“large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by
small changes” [5]) and the “leverage effect” (negative past returns tend to
increase future volatilities and positive past returns tend to decrease future
volatilities). The “leverage effect” could be studied via a study of dependence
in the σts. Volatility clustering is already accounted for in EVSCE as the
spectrum of X∗X

T is preserved under the permutations of the rows of X but
a reasonable model design for σts with dependence is left for future work.

The object of study in this paper is the empirical spectral measure of
EVSCE when volatilities are Student(3) distributed. For a Hermitian N×N
matrix A with eigenvalues λ1, λ2 . . . λN , the probability measure µA is called
its empirical spectral measure (ESM) if

µA :=
1

N

N∑
i=1

δλi
. (1.5)

The corresponding c.d.f.

FA(x) :=
1

N
# {j ≤ N : λj ≤ x} (1.6)
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is called the empirical spectral distribution (ESD) of matrix A. Here, #E
denotes the cardinality of the set E. If for a given sequence of Hermitian
matrices {AN}

FAN (x) → F (x) , (1.7)

for all x ∈ R where F (·) is a c.d.f. of probability measure µ, F (·) is called lim-
iting spectral distribution (LSD) of this sequence and F ′(·) is called limiting
spectral density.

The main result of this paper is a computation of the limiting spectral
density for the EVSCE with σt i.i.d. with Student(3) distribution and a gen-
eral distribution Zts provided it has finite moments. This result is important
as it can provide the solved “model” for further studies of the universality of
such ensembles as GOE and GUE do for the Wigner universality. Our ap-
proach to the problem is via the Stieltjes transform which, for a probability
measure µ(x) on the real line, is defined as

mµ(z) :=

∞∫
−∞

1

x− z
dµ(x) . (1.8)

The statement [14, Theorem 4.3] provides a formula for the Stieltjes trans-
form of the limiting density of the Elliptic Volatility Model (without any
requirements on volatility empirical moments convergence), which can be
reduced to (2.7) for the case of the Student(3) volatility. It is known that
for the measure µ on the real line with density function ρ(x) for x ∈ R

ρ(x) =
1

π
lim
ε→0+

Immµ(x+ iε) . (1.9)

Using (2.7), we carefully follow the construction of the solution of a quartic
polynomial to find the solution with the imaginary part in C+ and to show
that it is unique. Our construction furthermore allows us to obtain the exact
expression for the limit of its imaginary part when approaching the real
line. This new approach to solving a self-consistent equation for a Stieltjes
transform directly, using a carefully constructed solution whose imaginary
part is then easy to understand, could be useful in finding explicit limiting
densities in other random matrix ensembles.

Furthermore, we perform explicit data analytics to illustrate our results
via simulations and to compare them to real-world financial returns data.
Suppose that St(Open) and St(Close) denote the open and close prices of
the stock on the tth time interval. We are interested in log-return of the
price on time interval t, defined as

Xt := log
St(Close)

St(Open)
. (1.10)
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We directly study the distribution of returns at a given time t and compute
its standard deviation as an estimate of σt. Then, we observe that the tail
parameter of the σt is approximately 3.

2. Spectral properties of the Elliptic Volatility Matrix

The Stieltjes transform of limiting spectral distribution of matrix A can
be obtained, using the following simplification of [14, Theorem 4.3].

Theorem 2.1. Suppose that the entries of Y (n × p) are complex random
variables that are independent for each n and identically distributed for all n
and satisfy E(|Y11−E(Y11)|2) = 1. Also, assume that T = diag (τ1, . . . , τp),
τi is real, and the empirical distribution function of {τ1, . . . , τp} converges
almost surely to a probability distribution function H as n → ∞. Set B :=
1
nY TY ∗. Assume also that Y and T are independent. When p = p(n)

with p/n → y > 0 as n → ∞, then, almost surely, FBn, the ESD of the
eigenvalues of Bn, converges vaguely, as n → ∞, to a (nonrandom) d.f. F ,
where for any z ∈ C+ ≡ {z ∈ C : Im z > 0}, its Stieltjes transform s = s(z)
is the unique solution in C+ to the equation

s =
1

y
∫ τdH(τ)

1+τs − z
.

Remark 2.1. (1) There is no requirement for the moment convergence of the
empirical spectral distribution of T , thus H can have any regularly varying
tail. (2) While in Lemma 2.1 and Theorem 2.2 we introduce an assumption
of independence on σts, we only use it for the application of Theorem 2.1,
which does not require independence. Thus, this condition could potentially
be relaxed for sequences of σt such that the empirical distribution function
of {τ1, . . . , τp} converges almost surely to a Student(3).

The Stieltjes transform for the EVSCE model was obtained in [12] in
an integral form for a general Student’s t distribution. Here, we obtain an
explicit expression of the Stieltjes transform in the particular case of the
Student(3). The result follows directly from the theorem given above.

Lemma 2.1. For X as in Definition 1.1 with σt distributed as independent
Student(3) for all t, the Stieltjes transform of the limiting spectral distribu-
tion is given by

1

s(z)
+ z =

1(
1 +

√
s(z)
y

)2 . (2.1)
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Proof. Matching the notation in Theorem 2.1, we set Y := Z∗, T := Σ2,
n := S, and p := T , then the theorem gives the Stieltjes transform of the
matrix

X∗X

S
=

T

S
A =

Z∗Σ2Z

S
,

and in this case, y := limT→∞
T
S .

Let s0(z) be the limiting Stieltjes transform of X∗X
S , and s(z) the limiting

Stieltjes transform of X∗X
T . Then

ys0(yz) = s(z) .

By Theorem 2.1

s0(z) =
1

y
∫ τdH(τ)

1+τs0(z)
− z

.

Therefore,

s(z) = ys0(yz) =
y

y
∫ τdH(τ)

1+τs0(yz)
− yz

=
1∫ τdH(τ)

1+τs0(yz)
− z

=
1∫ τdH(τ)

1+ τ
y
s(z) − z

.

(2.2)
We will rewrite equation (2.2) for the case when the volatility has re-

normalised Student(ν) with ν > 2 degrees of freedom.
The probability density function of the standard Student(ν) is

gν(t) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

. (2.3)

It has 0 mean and variance ν
ν−2 . The density of re-normalised Student(ν)

(standard Student(ν) divided by
√

ν
ν−2 ) is

fν(t) :=

√
ν

ν − 2
gν

(√
ν

ν − 2
t

)
=

Γ
(
ν+1
2

)√
(ν − 2)πΓ

(
ν
2

) (1 + t2

ν − 2

)−(ν+1)/2

.

(2.4)
The diagonal elements of Σ2 are distributed as the squared re-normalised

Student’s t distributed random variable, therefore the empirical distribution
of diagonal elements of Σ2 has limiting density hν(τ) that we will find below.
Let Fν(·) be the c.d.f. of re-normalised Student’s t distribution, and Hν(·)
be the c.d.f. of the diagonal elements of Σ2. For τ > 0, it holds

Hν(τ) = Fν

(√
τ
)
− Fν

(
−
√
τ
)
.
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Thus,

hν(τ) =
1

2
√
τ

(
fν

(√
τ
)
+ fν

(
−
√
τ
))

=
1√
τ

Γ
(
ν+1
2

)√
(ν − 2)π Γ

(
ν
2

) (1 + τ

ν − 2

)−(ν+1)/2

(2.5)

for τ > 0. Particularly, for ν = 3, we can compute

h3(τ) =
2

π
(1 + τ)−2 × 1√

τ
. (2.6)

Equation (2.2) yields

1

s(z)
+ z =

+∞∫
0

τh3(τ)dτ

1 + τ s(z)
y

=
2

π

+∞∫
0

√
τ

(1 + τ)2
(
1 + τ s(z)

y

)dτ =
1(

1 +
√

s(z)
y

)2

(2.7)
where the principal branch cut of the square root is taken.

While the tail asymptotic of the Stieltjes transform is given in equa-
tion (11) of [12], in the following corollary we offer a simple proof in the case
of Student(3) for volatilities:

Corollary 2.1. Let ρ(x) be the limiting density of eigenvalues in the EVSCE
with i.i.d. Student(3)-distributed σts. Then the tail asymptotic is given by

lim
x→∞

ρ(x)

x2.5
=

2
√
yπ

. (2.8)

Proof. First, we observe that since the branch cut of the square root is
principal, thus has a positive real part∣∣∣∣∣∣ 1

1 +
√

s(z)
y

∣∣∣∣∣∣ ≤ 1 . (2.9)

Thus for large x, equation (2.1) implies that

1

s(x+ i0+)
= −x+ o(x) (2.10)

which yields that Re s(x+i0+) = −1/x+o(1/x) as well as that |s(x+i0+)| =
1
x + o(1/x), which furthermore implies that Im s(x + i0+) = o(1/x). This
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implies that arg(
√
s(x+ i0+)) is near π/2. Now from equation (2.1), we see

that

−Im s(x+ i0+)

|s(x+ i0+)|2
= Im

1

1 + s
y + 2

√
s(x+i0+)

y

= −2 Im

√
s(x+i0+)

y
+ o

(
1

x

)

=
2

√
yx

+ o

(
1√
x

)
(2.11)

yielding that Im s(x+ i0+) = 2
x2.5√y

+ o(1/x2.5) and via equation (1.9), we
obtain the corollary.

2.1. Derivation of the limiting density when ν = 3

Here, we offer a derivation of the limiting density for EVSCE with Stu-
dent(3) volatilities.

Theorem 2.2. Let

q := y6(x− 1)6 + 6y5(x− 1)3
(
x2 + 4x+ 1

)
+3y4

(
5x4 + 16x3 + 30x2 + 16x+ 5

)
+ 3y2

(
5x2 + 2x+ 5

)
+4y3

(
6x3/2

√
3y3(x− 1)3 + 9y2 (x2 + 7x+ 1) + 9y(x− 1) + 3

+5x3 + 12x2 − 12x− 5
)
+ 6y(x− 1) + 1 , (2.12)

and let w∗ be given by

12x2w∗ := −y2
(
x2 + 10x+ 1

)
− 2 3

√
q + 2y(x− 1) + 1

−
2
(
y4(x− 1)4 + 4y3

(
x3 + 3x2 − 3x− 1

)
+ 6y2(x+ 1)2 + 4y(x− 1) + 1

)
3
√
q

.

(2.13)

Furthermore, let

A := −
y2

(
x2 + 10x+ 1

)
+ 2y(x− 1) + 1

2x2
,

B := −4y3(1 + x)

x2
,

C :=
y4(x+1)2

(
x2−14x+1

)
+4y3(x−1)(x+1)2+6y2(x+1)2+4y(x−1)+1

16x4

(2.14)
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and let R± ∈ R be given by

R+ := 2w∗ −A ,

R− := −2w∗ −A . (2.15)

For X as in Definition 1.1 with σt distributed as independent Student(3) for
all t, the limiting density of eigenvalues for x > 0 of A as in (1.3) is given
by

ρ(x) =
1

2π

√
−R− − 2B√

R+
. (2.16)

Proof of Theorem 2.2. By equation (2.7), the limiting density ρ(x) =
limη↓0 Im s∗, where s∗ has a positive imaginary part and is the solution
of the equation derived above in (2.1). To find the solution s∗ we rewrite
the equation as follows:√

4s

y
=

s

sz + 1
−

(
s

y
+ 1

)
. (2.17)

Now, we square both sides and multiply through by the denominator to
obtain a quartic polynomial

Q(s) :=
4s(sz + 1)2

y
−
(
s−

(
s

y
+ 1

)
(sz + 1)

)2

= 0 . (2.18)

When we do this, we will introduce spurious solutions. We will first demon-
strate that these spurious solutions are real for all values of z > 0 and y > 1.

The spurious solutions will satisfy the following equation:√
4s

y
= −

(
s

sz + 1
−
(
s

y
+ 1

))
(2.19)

equivalent to √
4s

y
− s

y
= − s

sz + 1
+ 1 . (2.20)

We notice that the LHS is a parabola in
√

s
y with zeros at 0 and 2, and

maximum at 1. The RHS is 1 at 1 and is strictly decreasing to 1 − 1
z as

s → ∞. Thus, there are two real solutions to equation (2.20) in the interval
(0, 2) for any z > 0.

The quartic equation was first solved by Cardano and Ferrari in 1540.
Here, we follow a more modern construction of the solution to a quartic
polynomial using a resolvent cubic equation, see e.g. Theorem 4 in [15].
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Throughout this proof, we use Mathematica to assist with labour-intensive
computations, and our Mathematica notebook is available upon request. We
know from algebra that a quartic polynomial has exactly two complex solu-
tions if and only if its discriminant is negative. As we have shown that for
z > 0, Q has real solutions, we deduce that when the discriminant is positive,
Q has 4 real solutions and thus no solution with positive imaginary part.
To find the spectral edge, it suffices to find z > 0 where the discriminant is
negative. Taking the discriminant of Q, we obtain

Disc(Q) = −256

y6
(
y3z6 − 3y3z5 + 3y3z4 − y3z3 + 3y2z5

+21y2z4 + 3y2z3 + 3yz4 − 3yz3 + z3
)

(2.21)

yielding the following equation, after division by common factors,

1− 3y+3y2 − y3 +3yz+21y2z+3y3z+3y2z2 − 3y3z2 + y3z3 = 0 . (2.22)

For y > 0, this equation has the following solutions:

z =

(
3
√
y − 1

)3
y

, (2.23)

or z =
3y2/3 − 3 3

√
y + 2y − 2

2y
± i

3
√
3
(

3
√
y + 1

)
2y2/3

. (2.24)

Noting that (2.24) has a non-zero imaginary part for all y > 0, we deduce
that (2.23) yields the spectral edge.

Now we proceed to construct the solution of the quartic with positive
imaginary part. First, we transform the quartic Q into a monic depressed
quartic Q̃ via

Q̃(s) = −y2

z2
Q

(
s− 1

4

(
−2y

z
− 2y +

2

z

))
= s4 +As2 +Bs+ C , (2.25)

where we have set A,B,C as in (2.14). We now construct and solve the
resolvent cubic equation

P (w) := (2w −A)(w2 − C)− B2

4
= 0 . (2.26)

Recalling equations (2.12) and (2.13) for q and w∗, we note that w∗ is a
real solution of (2.26). We notice that w∗ ∈ R whenever q ∈ R and q ∈ R
whenever

3y3(z − 1)3 + 9y2
(
z2 + 7z + 1

)
+ 9y(z − 1) + 3 > 0 . (2.27)
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We notice that this inequality is identical to (2.22) and is satisfied whenever
z is above the spectral edge. Thus, q and w∗ are real whenever z is above
the spectral edge.

Let R± be as in (2.15). Then for j, k ∈ {0, 1}, the four solutions of the
depressed quartic equation Q̃ are given by

2s = (−1)j
√
R+ + (−1)k

√
R− + (−1)j+1

2B√
R+

. (2.28)

We will prove that R+ > 0 for z above the spectral edge using the established
fact that exactly two of the solutions are real.

Suppose for contradiction that R+ < 0. We take the standard branch
cut of the square root along the negative x-axis, with

√
−1 = i, making

√
R+

purely imaginary with positive imaginary part. Recall also that B < 0 for
z, y > 0, making Im

(
2B√
R+

)
> 0. Then if

(−1)j
√
R+ + (−1)k

√
R− + (−1)j+1

2B√
R+

∈ R ,

we must have j = k, which would yield two real solutions. This would imply
that the two solutions with j ̸= k must be complex conjugates. However,
taking the complex conjugate of the solution with j = 0 = k − 1, we check
that its conjugate does not equal the solution with j = 1 = k + 1

√
R+ −

√
R− − 2B√

R+
= −

√
R+−

√
R− +

2B√
R+

̸= −
√
R++

√
R− +

2B√
R+

,

(2.29)
where for the last statement, we recall that R− ∈ R, while 2B√

R+
would be

purely imaginary. Thus by contradiction, we have established that R+ > 0
and thus

√
R+ > 0.

Thus, 2 Im s = Im
(√

R− ± 2B√
R+

)
. We recall again that the solutions

form exactly one conjugate pair, implying that one of R− ± 2B√
R+

is positive
and the other is negative. As B < 0, we deduce that R−+ 2B√

R+
< 0, yielding

that

Im s =
1

2

√
−R− − 2B√

R+
. (2.30)

We notice that −R− − 2B√
R+

is continuous in z as a complex variable for z

strictly above the spectral edge, thus the identity ρ(x) = 1
π limη↓0 Im s(x+iη)

yields the desired result.
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3. Comparison of EVSCE and historical data

We conduct research on S&P500 15-minute intervals of stock-returns
from January 2020 to October 2022. Data were obtained from https://
polygon.io/.

3.1. Data preparation: removing the “market mode” and re-normalisation

The return of the stock s over the time interval t is calculated in the
following way:

x′
ts := log

(
Close prices(t)

Open prices(t)

)
, (3.1)

where Close prices(t) and Open prices(t) denote Close and Open price of the
stock s on the time interval t respectively. If there were no sales of the stock s
on the time interval t and, consequently, Open and Close prices can not be
determined, we assume the value of x′

ts to be equal to 0. Denote the matrix
X ′ := (x′

ts)t≤T
s≤S

. Below, we describe the procedure of re-normalisation and

“market mode” removal.
For a T × S matrix Y re-normalization is conducted in the following

way:

— For each entry of the matrix Y subtract the empirical mean of the
entries of its column.

— Divide each entry of the matrix you got in the previous step by the
empirical standard deviation of the entries of its column.

This way, the ts element of the re-normalized matrix will be given by

y′ts :=
yts − ȳs

σs
,

where ȳs :=
1

T

T∑
t=1

yts and σs :=

√√√√ 1

T − 1

T∑
t=1

(yts − ȳs)
2 . (3.2)

The “market mode” causes the overwhelming majority of entries of the
matrix X∗

dataXdata

T to be positive and drives its maximal eigenvalue. It also
causes the maximal eigenvalue of X∗

dataXdata

T to be significantly larger than
the typical maximal eigenvalue EVSCE with Student(3)-distributed σts.

https://polygon.io/
https://polygon.io/
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For the second step, we apply standard PCA to separate the “market
mode” of Xdata and re-normalize the result. To “clear” T × S matrix Y
using the S-component vector y0, such that ∥y0∥ = 1, we replace each row
yt of the matrix Y with

y′
t := yt − ⟨yt,y0⟩y0 . (3.3)

To separate the “market mode”, we apply the procedure of “clearing” to
the matrix Xdata using the vector xmax, where xmax is the eigenvector of
X∗

dataXdata

T corresponding the maximal eigenvalue λmax. We obtain the ma-
trix X ′

cl, and after applying re-normalization procedure to X ′
cl, we obtain

the matrix Xcl.

Note, that the eigenvalues of X∗
dataXdata

T and (X′
cl)

∗
X′

cl

T , apart from λmax,

are matching, and (X′
cl)

∗
X′

cl

T has 0 instead of λmax. Nevertheless, after re-
normalization, eigenvalues can shift depending on the sample variances of
columns of the matrix X ′

cl. Further, we compare the spectrum of the ma-
trix X∗

clXcl

T with the spectrum of the matrix X∗X
T , where the matrix X is

obtained from the Elliptic Volatility Model and has the same size as Xcl.

3.2. Data analytics: comparing EVSCE and market data

First, we observe that data suggests that the distribution of empirical
standard deviations of the rows of “cleared” returns is heavy-tailed (see fig-
ure 2) and the tail parameter is approximately 3.

Tail of CDF of STD
for raw data
Tail of CDF of STD
for “cleared” data

Tail of CDF of row std's from normalised
centred data on log-log scale

Ta
il 

pr
ob

ab
ili

ty

Fig. 2. Cubic law for standard deviations of return vectors at a fixed time. Data
taken from https://polygon.io/

https://polygon.io/
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Figure 3 (top left) shows that the histogram of spectrum of the matrix
X∗

clXcl

T is well approximated by the limiting spectrum of EVSCE with σts
i.i.d. as Student(3). Figure 3 (top right) shows that it is not well approxi-
mated by the spectrum of EVSCE with normally distributed volatility. In
EVSCE, the heaviness of the tail of the limiting spectrum depends on the
heaviness of the distribution of the volatility as shown in equation (11) of [12]
and Corollary 2.1. Figure 3 (bottom) shows the histograms of eigenvalues for
the data and the simulation EVSCE with σts i.i.d. as Student(3), where the
entries of X are randomly shuffled. The Marchenko–Pastur law is plotted as
well, and we see that the shuffled data approximates the Marchenko–Pastur
law well. This is a control to verify that the dependence and correlation
structures in the two data sets cause the heavy tails in the corresponding
spectral measures.
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Fig. 3. Top left: Histograms of spectrum of simulated Student(3) EVSCE and
matrix X∗

clXcl

T , and the limit obtained in Theorem 2.2. Top right: Comparison of
the spectrum of X∗

clXcl

T , randomly generated EVSCE with normally distributed σts
and the Marchenko–Pastur law. Bottom: Comparison of the spectrum of covariance
matrix of shuffled data and similarly shuffled EVM to the Marchenko–Pastur law.
Data taken from https://polygon.io/

https://polygon.io/
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