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The QCD running coupling constant is studied in the perturbative re-
gion, considering the existing experimental data, and also in the nonpertur-
bative region, at low-momentum transfer. A continuous phenomenological
function is determined by means of three different models also calculating
the corresponding finite value of the vector quark self-energy. These two
quantities are used for the vector interaction of a Dirac relativistic model
for the charmonium spectrum. The process required to fit the spectrum is
discussed and the relationship with previous models is analyzed.
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1. Introduction

In a series of previous works, the author developed a Dirac relativistic
quark–antiquark model to study the spectrum of charmonium and, possi-
bly, of other mesons. The general structure of the quark vector interaction
potential was introduced in Ref. [1]. In the same work, the quark vector
self-energy, denoted V̄V in the present article, was studied, determining its
relationship with the potential.

Successively, in Ref. [2], considering the necessity of a relativistic study
of the hadronic spectroscopy, the reduced Dirac-like equation (RDLE) of
the model was introduced. This equation is written in the coordinate space
in a local form. An accurate calculation of the charmonium spectrum was
then performed using a small number of free parameters in Ref. [3]. Fur-
thermore, in a subsequent work [4], the Lorentz structure of the interaction
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terms was studied in more detail, developing a covariant form of the same
RDLE. The vector interaction used in those works (aimed at the study of
the charmonium spectrum) was essentially phenomenological, consisting in
a regularized Coulomb interaction where the regularization was given by
an effective structure of the interacting quarks. No attempt was made to
establish a relationship with the perturbative strong interaction given by
QCD. Those works also clearly showed that a vector interaction alone is not
sufficient to give an accurate reproduction of the charmonium spectrum.
For this reason, the contribution of a scalar interaction has always been in-
cluded in the interaction of the RDLE. In this respect, the role of the scalar
interaction was studied in more detail in another work [5], also considering
the possibility of using a mass interaction. The results obtained with the
two interactions were very similar. In the same work, the scalar and mass
interactions have been tentatively related to the excitation of the first scalar
resonances of the hadronic spectrum.

Finally, in work [6], the author started studying a possible relationship
between the vector interaction for the charmonium spectrum and the Quan-
tum Chromo-Dynamics (QCD) effective running strong coupling constant
αS(Q), where the argument Q represents the standard quark vertex mo-
mentum transfer. In that work, it was considered, for αS(Q), the effective
charge extracted from the experimental data using the generalized Bjorken
sum rule [7–9]. The properties of this quantity are analyzed in detail in the
extensive reviews on the QCD running coupling constant αS(Q) [10, 11], and
in the references quoted therein. The results of our work [6] showed that
αS(Q) can be parametrized by means of a unique function given by the sum
of two terms: a Gaussian function that dominates at low Q and another
function that, at high Q, has the behavior predicted by the perturbative
QCD, in accordance with the experimental data. This result can be consid-
ered encouraging because it shows that, in principle, a unique function for
αS(Q) can be used in the perturbative and nonperturbative regions.

However, many issues remain unclear, justifying the development of the
present exploration. In more detail, the author makes the following criti-
cisms:

— To fit the charmonium spectrum, it has been necessary to introduce a
general multiplicative constant, so that αS(0) ≃ 2, not in agreement
with the value of the effective charge at Q = 0 given by Refs. [7–9].

— In the same concern, one has to take into account that those experi-
mentally extracted data are referred to specific processes and the ex-
traction procedure, in the nonperturbative region, may be process-
dependent.
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— The determination of the vector self-energy V̄V was not analyzed in
Ref. [6] and, in consequence, that quantity was considered as a free
parameter not related to the model of the quark interaction.

— In Ref. [6], the quality of the fit of the charmonium spectrum was not
optimal and should be improved.

In consequence, the main interest of the present investigation is to study
a general definition of the strong coupling constant αS(Q), with the aim of re-
producing the hadronic spectroscopy (in particular, charmonium spectrum)
and, possibly, improve the understanding of other nonperturbative hadronic
phenomena, such as quark confinement and the emergence of hadronic mass.
In more detail, the low-Q behaviour of αS(Q), mainly related to hadronic
spectra, must be matched with the high-Q behaviour, determined by QCD.
We highlight here that an expression of αS(Q) “in accordance” with QCD
and, at the same time, able to reproduce the quark interaction for the
hadronic bound states still represents a challenge for theoretical physics.

A crucially relevant property of αS(Q) is that this quantity must not
present a divergence at low Q, as it would be obtained by applying incor-
rectly perturbative QCD. On the contrary, αS(Q) must go to a constant
value as Q → 0. In our previous works [1, 3, 5], this low-Q behaviour has
been obtained by introducing an effective interacting quark structure, i.e. a
form factor at the quark interaction vertex. A relevant consequence of this
procedure is to regularize the Coulombic potential for r → 0. A (different)
technique of regularization has been shown to be beneficial to avoid un-
wanted singularities of the S-wave functions of charmonia at the origin [12],
when using another model of relativistic equation.

Due to the interest in a comparison with a very different theoretical
approach, we recall that in the Holographic Light-Front QCD [11], the αS(Q)
behaviour at low Q is very similar to that given by the form factors of our
previous works [1, 3, 5]. In a recent work developed in the same theoretical
framework [13], the possibility of a smooth matching between the high-Q
and low-Q behaviour of αS(Q) is analysed. The authors find the matching
point above Q ≃ 2 GeV, not very different with respect to the results of the
present work. At Q = 0 they find, as in Refs. [7–9], αS(0) ≃ π, while our
relativistic model requires αS(0) ≃ 2.

Also, in the Richardson model [14], a static potential for the constituent-
quark interaction is introduced. This potential grows linearly with the quark
distance. From this potential, one can formally obtain an effective coupling
constant that, however, is divergent as Q→ 0.
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We conclude this introduction by pointing out that, in any case, fur-
ther effects must be considered to completely understand the charmonium
spectroscopy, in particular for the high-excitation states. A semirelativistic
screened potential model has been proposed for a comprehensive study of
the mass spectrum and decay properties of charmonium states [15].

Multiquark (virtual) states play a role of primary importance in the
spectroscopy of high-energy states, as discussed in Ref. [16] in the frame-
work of the unquenched quark model. The exotic multiquark states have
been studied also considering three-quark interactions [17]. A very recent
work proposes a comprehensive model of hadronic phenomenology by us-
ing a Born–Oppenheimer effective theory to describe standard and exotic
states [18]. Investigation on hadronic phenomenology is still very active and
no definitive conclusion has been obtained, suggesting the use of different
methods and techniques to understand all the aspects of the problem.

In this framework, the exploration performed in this work is organized
in the following way. We first recall the theoretical model on which the
investigation is based. In more detail, in Subsection 1.1, the notation and
conventions are introduced and explained. In Section 2, the dynamical model
of our RDLE is summarized for the present study. In Section 3, the vector
interaction in coordinate space is derived from the corresponding momentum
space expression, taking into account the form of αS(Q). The main prop-
erties of the vector self-energy V̄V are analyzed, considering its relationship
with αS(Q).

We start our exploration of αS(Q) performing, in Section 4, a general
phenomenological survey of this quantity; we consider the main issues of per-
turbative QCD at high Q and the results of our previous works, concerning
the charmonium spectrum, at low Q.

Then, taking into account this survey, we study αS(Q) by introducing
three models with an increasing level of complexity. The results of each
model are used as an “input” for the following one. In particular, in Section 5,
a simple model is introduced by means of a piecewise function (with two
intervals) for αS(Q). We require continuity of αS(Q) and of its first derivative
at the matching point Q̄.

In Section 6, αS(Q) is represented by the sum of two functions: the first
one mainly takes into account the low-Q behaviour, while the second one
gives the high-Q behaviour by means of a regular expression inspired by the
perturbative QCD function.

We also study, in Section 7, a unique differential equation for αS(Q)
whose analytic (implicit) solution allows to represent the running coupling
constant for all values of Q. For the three models, different strategies are
studied to determine the finite value of the vector quark self-energy.
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Finally, in Section 8, the obtained charmonium spectrum is displayed and
discussed. Its structure is similar to that of our previous works, showing that
a general expression for αS(Q) can be also used to reproduce in detail the
cc̄ excitation states. Some general comments are made and the provisional
conclusions of this exploration are drawn.

1.1. Notation and conventions

The following notation and conventions are used in the paper:

— The invariant product between four vectors is standardly written as
V µUµ = V µUνgµν = V 0U0 − V⃗ · U⃗ .

— The lower index i = 1, 2 represents the particle index, referred to the
quark (q) and to the antiquark (q̄). The generic word “quark” will be
used for both particles.

— We shall use, for each quark, the four Dirac matrices γµi , the three
matrices α⃗i = γ0i γ⃗i, and βi = γ0i .

— The symbol qµ = (q0, q⃗ ) will denote the vertex 4-momentum transfer.

— We shall neglect the retardation contributions, setting q0 = 0 for the
time component of the 4-momentum transfer. This approximation is
consistent with the use of the center-of-mass reference frame for the
study of the qq̄ bound systems.

— In consequence, the positive squared four-momentum transfer Q2 takes
the form Q2 = −qµqµ = q⃗ 2, that is Q = |q⃗ |. As an argument of the
strong running coupling constant, we use the variable Q and not Q2,
as it is frequently done. For the calculations of Section 7, we shall
introduce t = Q2.

— The subindex X will be used to denote, for the parameters V̄X and rX ,
the scalar (X = S) or mass (X = M) character of the corresponding
interaction.

— Finally, throughout the work, we use the standard natural units, that
is ℏ = c = 1.

2. The dynamical model for the calculation of
the charmonium spectrum

For completeness, we recall here the main aspects of the dynamical model
that is used for the calculation of the charmonium spectrum [2, 3]. The
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starting point of this model is the Dirac-like equation for two interacting
particles, that is written in the following form:

(D1 +D2 +W )|Ψ⟩ = 0 , (1)

where we have used, for each quark, the Dirac operator

Di = α⃗i · p⃗i + βimi − Ei . (2)

The Dirac matrices have the standard definition given in Subsection 1.1; p⃗i,
Ei, and mi, respectively, represent the three-momentum, energy and, mass
of the ith quark; W is the whole interaction operator. In Eq. (1), the total
operator is applied to a two-particle Dirac state |Ψ⟩.

In Refs. [2, 3], we have introduced the reduction operators

Ki =

(
1

σ⃗i·p⃗i
mi+Ei

)
(3)

that vinculate the lower and the upper components of the Dirac spinors. By
means of these operators, the RDLE is written as

K†
1 ·K

†
2(D1 +D2 +W )K1 ·K2|Φ⟩ = 0 , (4)

where |Φ⟩ is now a two-particle Pauli state.
This kind of reduction is particularly suitable for systems in which a

vector and a scalar interaction are present. For the study of charmonium
(and other qq̄ systems), we consider equal mass quarks setting m1 = m2 =
mq; we use the center-of-mass reference frame, where the total momentum
is P⃗ = p⃗1 + p⃗2 = 0. In consequence, the quark momenta are p⃗2 = −p⃗1 = p⃗,
being p⃗ the quark relative momentum; its canonically conjugated operator
represents the relative quark distance r⃗; it means that in coordinate space,
one standardly has p⃗ = −i∇⃗. Furthermore, with the previous conditions, we
can assume that the two quarks, with equal masses, have the same energy:
E1 = E2 = M/2, where M represents the total energy of the system, that
is the mass of the resonant state.

In this way, the RDLE of Eq. (4) can be rewritten in the following form:

[(
1 +

p⃗ 2

(M/2 +mq)2

)(
2p⃗ 2

M/2 +mq
+ 2mq −M

)
+ Ŵ

]
|Φ⟩ = 0 , (5)

where we have introduced the reduced quark interaction operator

Ŵ = K†
1 ·K

†
2 W K1 ·K2 . (6)
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Equation (5) represents a relativistic, energy-dependent and three-dimen-
sional wave equation (in operator form) that is used, in this work, to study
the charmonium spectrum. It does not give rise to spurious free solutions
with vanishing total energy; in other words, it is not affected by the contin-
uum dissolution disease. This point and other formal properties of Eq. (5),
in comparison to different relativistic equations, have been studied in detail
in Ref. [2]. Analogously to the Schrödinger equation, the ket state |Φ⟩ can
be projected onto the bra ⟨r⃗ |, obtaining a coordinate space wave function.
Recalling that the reduction operators Ki of Eq. (3) are local operators, we
note that, if the original, relativistic interaction W is local, also the reduced
interaction Ŵ , given by Eq. (6), is local, and Eq. (5), projected onto ⟨r⃗ |,
gives a projected equation local overall. If nonlocal terms were present in the
original interaction W , also the reduced interaction Ŵ would be nonlocal. In
this case |Φ⟩ should be conveniently projected onto the momentum bra ⟨p⃗ |,
obtaining a momentum space wave function; in consequence, Eq. (5) would
give an integral equation in the momentum space. However, this second
possibility is not considered in this work where we take for the interaction
W a local expression. As analyzed in Ref. [4], this choice is not in disagree-
ment with the relativistic character of the model. The variational procedure
used to solve Eq. (4) is discussed in Section 7 of Ref. [2]; in this way, the
mass values of the resonant states of the charmonium spectrum are reliably
determined.

As analyzed in the previous works, the interaction W is given by a vector
term WV , directly related to the QCD interaction, plus another term WX

that must be introduced to reproduce accurately the charmonium spectrum.
This term can be of scalar type (X = S) or of mass type (X = M). Both
interactions, used in the previous works, gave good results for the charmo-
nium spectrum. Also in the present work, we shall find that similar results
are obtained in the two cases. For clarity, we give (in the center-of-mass
reference frame) the Dirac structure of WV , WS , and WM

WV =
[
V̄V + VV (r)

]
γ01γ

0
2 · γ

µ
1 γ

ν
2gµν , (7)

WS = VS(r)γ
0
1γ

0
2 , (8)

and
WM = VM (r)γ01γ

0
2 ·

1

2

(
γ01 + γ02

)
= VM (r)

1

2

(
γ01 + γ02

)
. (9)

We note that the product γ01γ02 is present in all interactions listed above
because our RDLE is developed beginning from the Dirac-like Eq. (1), which
is written in the Hamiltonian form. Considering the interaction operators of
Eqs. (7), (8), and (9), we recall that the corresponding reduced operators ŴV

and ŴS have been calculated in Eqs. (C.1)–(C.5) of Ref. [2]; the operator
ŴM has been given in Eq. (A.4) of Ref. [5].
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The vector potential interaction function VV (r) of Eq. (7) will be ana-
lyzed for this work in Section 3. The positive constant term V̄V is, in any
case, necessary to fit the charmonium spectrum and, for the case of phe-
nomenological potentials with quark form factors [1, 3], represents the finite
vector quark self-energy. In the present work, this quantity will be calcu-
lated, in Sections 5, 6, and 7, by discarding the infinite contribution due
to the high-Q behaviour of αS(Q). In Eqs. (8) and (9), for the scalar or
mass potential function VX(r), we take the same Gaussian expression of our
previous works [3, 5, 6], that is

VX(r) = −V̄X exp

(
− r2

r2X

)
. (10)

Furthermore, as in Refs. [3, 5], V̄X is determined by means of the following
balance equation:

V̄V = 2mq − V̄X (11)

that expresses the equality between the positive vector self-energy V̄V and
the sum of the quark masses and the negativeX-interaction self-energy −V̄X .
Some comments about the values obtained for V̄X will be given in Section 8.

Finally, Eq. (5) will be solved with the same technique used in our pre-
vious works [2–6] by using the expressions of VV (r) and V̄V that will be
obtained in the models of Sections 5, 6, and 7.

3. The vector interaction in momentum and coordinate space;
the quark vector self-energy

Even though this subject has been accurately discussed in Ref. [6], for
clarity and completeness, we here analyse again this point. Our RDLE of
Eq. (5) has been formulated in the coordinate space. In order to introduce
into this model the momentum-dependent running coupling constant αS(Q),
it is strictly necessary to establish the connection between the expressions
of the vector interaction potential written in coordinate space and in mo-
mentum space.

In this work, we make the hypothesis that there exists a unique, nonsin-
gular function αS(Q) that represents both the QCD running of the strong
coupling constant and the nonperturbative structure effects at low-momen-
tum transfer. By means of this quantity, the tree-level vector interaction in
the momentum space, for a qq̄ system, can be written, in general, as

WV (Q) = −4

3

4π

Q2
αS(Q)γµ1 γ

ν
2gµν , (12)

where 4/3 represents the colour factor in the qq̄ case. Our model, in the
present form, does not contain retardation effects, that is we set q0 = 0.
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In this way, performing the Fourier transform, one determines the cor-
responding expression in the coordinate space

WV (r) =

∫
d3q

(2π)3
exp (iq⃗ · r⃗ )WV (Q) . (13)

Multiplying the previous expression by γ01γ02 from the left, one has

γ01γ
0
2WV (r) = VV (r)γ

0
1γ

0
2 · γ

µ
1 γ

ν
2gµν (14)

that represents the vector interaction WV introduced in Eq. (7), without
the self-energy term V̄V . In particular, VV (r), which represents the vector
interaction potential in the coordinate space, is given by the following Fourier
transform:

VV (r) = −4

3

∫
d3q

(2π)3
exp (iq⃗ · r⃗ ) 4π

Q2
αS(Q) . (15)

Considering the previous equation, in the first place, we recall that, in the
case of a constant αS(Q), one would go back to a standard Coulombic in-
teraction. More precisely, for αS(Q) = αCoul, one would obtain in the coor-
dinate space a pure Coulombic qq̄ potential

V Coul
V (r) = −4

3

αCoul

r
. (16)

In the case of QED, for point-like particles, the running of the coupling
constant is extremely slow (and growing with Q). For this reason, the use
of a truly constant quantity αem is suitable for the study of many electro-
magnetic processes. We also recall that the small value of αem allows for
a perturbative treatment of the interaction. On the contrary, in QCD, as
it will be discussed in Section 4, αS(Q) decreases at large Q, giving rise
to the asymptotic freedom of the theory, but grows at small Q, invalidat-
ing in any case a perturbative approach. Furthermore, at phenomenological
level, the potential of Eq. (16) is not able to reproduce with good accuracy
the charmonium spectrum, also if other interactions with different tensorial
structures are introduced.

For this reason, a model of the vector interaction was studied in Ref. [1]
and then used in Ref. [3] to calculate the charmonium spectrum by means of
the RDLE of Eq. (5). In this model, the quarks are considered as extended
particles that give rise to the chromo-electric field that, in turn, mediates
the strong interaction.

Specifically, an accurate reproduction of the charmonium spectrum has
been obtained by using a Gaussian colour charge distribution for each quark

ρ(x) =
1

(2πd2)3/2
exp

(
− x⃗ 2

2d2

)
. (17)
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From this distribution, one obtains, in the momentum space, the following
vertex form factor:

F (Q) = exp

(
−Q

2d2

2

)
. (18)

Considering one form factor for each quark vertex, one obtains for the (ef-
fective) strong coupling constant the following nonperturbative expression,
specific to our previous calculations:

αnp
S (Q) = αV [F (Q)]2 = αV exp

(
−Q2d2

)
. (19)

By setting
d = 1/τ , (20)

one gets the standard expression that will be displayed in Eq. (32) of Sec-
tion 4. For completeness, we recall the numerical values of the parameters [3]

αV = 1.864 , d = 0.1526 fm , τ = 1.293 GeV . (21)

The function αnp
S (Q) of Eq. (19) has no singularities and goes to the constant

limit αV as Q → 0 but clearly, its high-Q behaviour is not in accordance
with the experimental data that, on the contrary, are well reproduced by
the αS(Q) of perturbative QCD.

The Fourier transform defined in Eq. (15), with αnp
S (Q) of Eq. (19), can

be performed analytically giving the following interaction potential:

V np
V (r) = −4

3

αV

r
erf

( r

2d

)
. (22)

In Eq. (17) of Ref. [3] the same result, denoted there as V int(r), was obtained
by means of a different procedure completely developed in the coordinate
space. For the following discussion, note that the potential of Eq. (22) is
regular for r → 0. More precisely, we have

V np
V (0) = −4

3

αV

d

1√
π
. (23)

We can now discuss another relevant point of this work, related to the
quark self-energy. We recall that a positive constant term is often introduced
phenomenologically, as a free parameter, in the vector interaction of the
quark models to improve the reproduction of the experimental spectra. In
Ref. [1], we showed that a nonpoint-like colour charge distribution of the
quarks gives rise to a positive self-energy V̄V that can be identified with the
constant recalled above. Furthermore, we showed [3] that this constant has
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the value of the vector interaction potential at r = 0, with the opposite sign

V̄V = −VV (0) . (24)
In consequence, evaluating Eq. (15) at r = 0, the following explicit expres-
sion for the self-energy is obtained:

V̄V =
8

3π

∞∫
0

dQ αS(Q) . (25)

In this way, V̄V is not introduced as an additional free parameter but is
determined within the model, improving its consistency and predictivity.

The total vector potential, obtained by adding V̄V to the interaction
term, vanishes at r = 0 and approaches the maximum value V̄V as r → ∞.

Considering, as in Ref. [3], the Gaussian αnp
S (Q) of Eq. (19), one can

obtain the corresponding V̄V by means of the integral of Eq. (25) or, with
Eq. (24), simply changing the sign in Eq. (23). We rewrite the result, using
Eq. (20)

V̄V =
4

3
αV

τ√
π
. (26)

The numerical value for the self-energy, obtained in Ref. [3], was V̄V =
1.813 GeV. The total vector potential function V̄V +V

np
V (r), with V̄V given by

Eq. (26), was used successfully in Ref. [3] to obtain an accurate reproduction
of the charmonium spectrum.

For the case of a general (phenomenological) αS(Q), the procedure re-
called above is possible only if the integral of Eq. (25) is convergent or,
equivalently, if VV (0) is a finite, negative quantity. Obviously, that proce-
dure does not work for the pure Coulombic case in which αCoul of Eq. (16) is
a constant quantity. Considering the high-Q behaviour of the QCD coupling
constant (see αS(Q) = αp

S(Q) of Eq. (28)), we note that this asymptotic be-
haviour does not allow for convergence of the integral of Eq. (25). For this
reason, different strategies will be studied in the next sections to avoid this
inconsistency. These strategies essentially consist in isolating in the αS(Q)
of the model a “nonperturbative” part, related to low values of Q, that gives
the correct self-energy V̄V ; at the same time, we make the hypothesis that
the infinite contribution, given by the “remainder” of αS(Q) and related to
the perturbative running coupling constant at high Q, can be discarded,
being not observed in the physical interaction.

4. Introductory survey of the running coupling constant αS(Q)

As a starting point, we recall that in the high-Q region, the momen-
tum dependence of αS(Q) is given by the perturbative running of the QCD
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coupling constant. In other words, in this region, αS(Q) can be completely
identified with the running coupling constant of QCD. As we shall see in the
following, the situation is much less clear at low momentum where, in any
case, it is necessary to construct a theoretical model for αS(Q).

In the first place, we focus our attention on αS(Q) as obtained from the
experimental data shown in Ref. [19]. These data are given for Q > 2.0 GeV
where the perturbative expansion of QCD is assumed to hold. In particular,
in this work, for the strong coupling constant, we consider the “reference”
value given by the current Particle Data Group average [19]

αS(MZ) = 0.118 with MZ = 91.1876 GeV . (27)

For our analysis, we try to reproduce the experimental data by using a func-
tion inspired by the standard QCD perturbative calculations at the leading
order, as given, for example, in Refs. [19–21]

αp
S(Q) =

1

b ln
(
Q2

Λ2

) , (28)

where Λ represents the overall scale for the interaction [20] and b (also de-
noted as b0 or β0) can be related, in perturbative QCD, to the number of
active flavours nf by the following expression [19]:

b =
33− 2nf

12π
. (29)

Equation (28) is obtained as a solution to the renormalization group dif-
ferential equation at the leading order. Some more details will be given
in Section 7. In perturbative QCD, Eq. (28), that takes into account the
one-loop contributions, characterizes the asymptotic freedom of the theory.
Higher-order contributions, corresponding to two loops, three loops, etc.,
have been carefully calculated as discussed in works [19–21] and in the ref-
erences quoted therein. The effects related to these terms will not be taken
into account in this phenomenological study because they should not be
very relevant for the calculation of the charmonium spectrum, at least at
the present level of precision.

The function αp
S(Q) of Eq. (28) cannot be used at low Q, say for Q <

2.0 GeV. In fact, this function grows when decreasing Q and becomes singu-
lar for Q = Λ [19–21]. This behaviour is incompatible with the perturbative
approach that was used to derive Eq. (28). For our study, it does not al-
low us to construct an interaction for the calculation of the charmonium
spectrum. Additionally, we anticipate that we shall introduce in Section 6
a regularized form of the function of Eq. (28) that will be used for Model II
of this article.
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For the following developments, we need to determine, in a phenomeno-
logical way, the values of the two parameters b and Λ of Eq. (28). To this
aim, we take:

— the numerical values of Eq. (27);
— the values

αS(Q1) = 0.215 with Q1 = 5.0 GeV , (30)

given by the data of Ref. [19].

With standard algebra we calculate the two parameters obtaining

b = 0.65842 , Λ = 0.14622 GeV . (31)

By using Eq. (29), one can determine the effective number of flavours for
our phenomenological expression, obtaining nf = 4.089.

In the low-Q region, the nonperturbative effects are dominant and no
universal measurement of αS(Q) exists, even though extractions of the data
for specific processes have been proposed, as discussed in Section 1.

For the present work, we recall that αS(Q) in this region is particularly
relevant for the determination of the charmonium spectrum. For this reason,
we take, indicatively, as an example to start our survey, the phenomenolog-
ical results of our previous works, in particular Ref. [3].

As it has been explained in Eqs. (17)–(20) of Section 3, these results
(transformed to momentum space) give rise to the following Gaussian ex-
pression:

αnp
S (Q) = αV exp

(
−Q

2

τ2

)
, (32)

where τ represents the scale of the strong interaction in the nonperturbative
region. The numerical values of the parameters αV and τ have been recalled
in Eq. (21). In our previous works [3, 5], to reproduce the charmonium
spectrum, we need αV ≃ 2 which is not compatible with the determinations
of Refs. [7–9, 13]. The physical meaning of Eq. (32) can be related to an
effective internal structure of the quarks [3, 5], as it has been explained in
Section 3.

We point out that, obviously, the complete αS(Q) cannot be obtained
by multiplying αnp

S (Q) (proportional to the product of two standard ver-
tex form factors) by a regularized perturbative running coupling constant
because, at high Q, the faster decay of the form factors would obliterate
the slower logarithmic decay of perturbative QCD. On the contrary, the
high-Q perturbative behaviour and the low-Q nonperturbative behaviour of
αS(Q) must coexist in the same function. Tentatively, we can say that the
quarks “partly” interact perturbatively as point-like particles and “partly” as
particles with an internal structure.
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For the reader’s orientation, we plot in Fig. 1 the example of αnp
S (Q)

given in Eq. (32) and αp
S(Q), as functions of Q. The reader can appreciate

that, as expected, the transition between the two regions is found around
Q ≃ 2 GeV.

In this work, we shall try to construct a unique, regular function αS(Q).
Roughly speaking, we have to match the two curves in Fig. 1. In this
respect, we anticipate that much care must be exercised when performing
this procedure because the charmonium spectrum is extremely sensitive to
the form of the interaction that is obtained by means of this matching.
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Fig. 1. The black line represents an example of phenomenological nonperturbative
strong coupling constant, that is αnp

S (Q) of Eq. (32) with the numerical values of
the parameters given in Eq. (21); the blue line represents αp

S(Q) of Eq. (28) that
describes the experimental data in the perturbative region with the values of the
parameters given in Eq. (31). The transition between the nonperturbative and
perturbative regime is around Q ≃ 2.0 GeV.

5. Model I. Piecewise function

In this section, as a starting point of our exploration, we introduce a
very simple definition of a (unique) strong coupling constant as a function
of the momentum transfer Q. In Model I, we consider a piecewise function
of Q with two intervals. We make the hypothesis that in the first interval,
defined by 0 ≤ Q < Q̄, αS(Q) is mostly related to the nonperturbative
effects of the quark interaction. On the other hand, we assume that in the
second interval, defined by Q ≥ Q̄, αS(Q) is given by the perturbative form
of the QCD interaction. We require the continuity of αS(Q) in Q̄ and also
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the continuity of its first derivative, in the same point. The definition of the
piecewise αS(Q) function of Model I is given by the following equation:

αS(Q) =

{
αV − αG + αG exp

(
−Q2

τ2

)
for 0 ≤ Q < Q̄ ,

αp
S(Q) for Q ≥ Q̄ .

(33)

As discussed above, the definition of the coupling constant function in the
second interval is given exactly by the standard αp

S(Q) of Eq. (28). Moreover,
the parameters b and Λ are fixed and have the same numerical values of
Eq. (31). In the first interval, as suggested by our previous studies [3, 5], we
have a Gaussian term, proportional to αG; furthermore, we have to add the
constant contribution αV −αG. Note that, in this way, we have αS(0) = αV .
The form of Eq. (33) has been chosen in order to reproduce the experimental
data of the running coupling constant and to fit the charmonium spectrum.

The conditions of continuity of the function and of the first derivative,
both calculated in Q̄, give, respectively, the following equations:

αV − αG + αG exp

(
−Q̄

2

τ2

)
= αp

S

(
Q̄
)
, (34)

−2αG
Q̄

τ2
exp

(
−Q̄

2

τ2

)
= α′p

S

(
Q̄
)
, (35)

where
α′p

S

(
Q̄
)
= − 2

b Q̄ ln2
(
Q̄2

Λ2

) (36)

represents the first derivative of αp
S(Q) calculated at Q = Q̄.

In order to obtain the finite quark self-energy V̄V , we take the definition
of Eq. (25) but perform the integral only up to Q̄, disregarding the infinite
contribution that would be obtained by integrating from Q̄ to ∞. It means
that for Model I, we have

V̄V =
8

3π

Q̄∫
0

dQ αS(Q) . (37)

By means of the definition given in Eq. (33), this integral can be calculated
analytically, obtaining the following expression:

V̄V =
8

3π

[
(αV − αG)Q̄+ αG

√
π

2
τ erf

(
Q̄

τ

)]
. (38)

We note that in Model I, we have four parameters: αV , αG, τ , and Q̄ that
are vinculated by the two conditions of Eqs. (34) and (35).
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In Fig. 2, we plot αS(Q) of Model I. The charmonium spectrum is re-
produced by using the scalar interaction and the mass interaction. The
numerical values of the parameters, determined by the fit procedure, are
shown respectively for the two interactions in column I S and I M of Table 1.
We note that αV is slightly bigger for the case of the scalar interaction. The
values of the constant τ of the Gaussian function are very similar in the two
cases. Also the values of Q̄ (that separates the perturbative and nonper-
turbative interval) are very similar for the scalar and the mass interaction.
The quality of the fit of the spectrum, given by the parameter Θ, that will
be defined in Eq. (68), is displayed at the bottom of Table 1, showing that
a better reproduction is obtained with the scalar interaction.
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Fig. 2. We plot αS(Q) of Model I, defined in Eq. (33) with the conditions of
Eqs. (34) and (35). To fit the charmonium spectrum, we have used the scalar
interaction with the parameters of column I S of Table 1; in this case, αS(Q) is
plotted with a red line. For the case of the mass interaction, with the parameters
of column II S of Table 1, αS(Q) is plotted with a green line. The blue line represents
the perturbative function αS(Q) of Eq. (28), with the values of Eq. (31), that fits
the experimental data. The arrow indicates the values of Q̄ for the scalar and mass
interaction. As given in Table 1 and discussed in Section 5, these two values are
very close and are not distinguishable in this graphic.

In summary, by means of Model I, we have learned that a two-interval
piecewise function (constructed requiring continuity and first derivative con-
tinuity) can represent αS(Q) for all the values of the momentum transfer Q.
The value Q̄ ≃ 2.362 GeV which separates the two intervals, is also used as
integration limit to calculate the finite value of V̄V . In the first interval, it
was necessary to use a Gaussian function plus a constant term.
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Table 1. Numerical values of the parameters of Model I and Model II; for more
details and for the definitions of the parameters αV , τ , αG, αL, Q̄, and τL, see
Sections 5 and 6. The quark mass mq is fixed at the value of Ref. [19]. V̄V is
the vector quark self-energy. For the scalar or mass interaction of Eq. (10), the
parameter V̄X is determined by Eq. (11), rX is a fit parameter. The parameter Θ,
defined in Eq. (68), gives the quality of the fit.

Units

mq 1.273 GeV

Λ 0.1462 GeV

b 0.65842

Model I S I M II A S II A M II B S II BM

αV 1.9036 1.9740 1.9010 1.9042 1.8997 1.8994

τ 1.0405 1.0361 1.0199 1.0238 1.0196 1.0204 GeV

αG 1.6401 1.7105

αL 0.39802 0.44694 0.37300 0.36462

Q̄ 2.3608 2.3629 2.3379 2.4496 GeV

τL 2.2599 2.3951 GeV

V̄V 1.8100 1.8600 1.8045 1.8340 1.80505 1.8350 GeV

V̄X 0.73000 0.68000 0.73546 0.70596 0.73495 0.70496 GeV

rX 1.8437 2.0041 1.8022 1.8718 1.8097 1.8894 fm

Θ 12.5 14.0 12.9 12.2 12.9 12.0 MeV

6. Model II. One analytic function with the same definition
for all the values of Q

In this model, we try to represent the strong coupling constant as an
analytic function with the same definition along the whole Q axis. The
simplest way to construct this function is to use the sum of a Gaussian
function for the nonperturbative region “plus” a function that describes the
perturbative behaviour of αS(Q) at high Q. However, for the latter function,
it is not possible to take directly αp

S(Q) of Eq. (28) because this function
presents a singularity at Q = Λ. To “cure” this singularity, we add the
constant term cL > 1 to Q2/Λ2 in the argument of the logarithm. We
denote this new function as ξL(Q). In this way, we define αS(Q) for the
Model II, in the following form:
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αS(Q) = (αV − αL) exp

(
−Q

2

τ2

)
+ ξL(Q) (39)

with
ξL(Q) =

1

b ln
(
cL + Q2

Λ2

) . (40)

Furthermore, we define cL as

cL = exp

(
1

b αL

)
. (41)

Note that, by means of the previous definition, cL does not represent a new
free parameter ; furthermore, its form has been chosen in such a way that,
in Eq. (40), ξL(0) = αL; in consequence, for the strong coupling constant of
Model II, given by Eq. (39), we have αS(0) = αV . Finally, the numerical
value of b given in Eq. (31) and the value of αL that will be obtained in the
following, numerically give cL > 1 so that, as discussed above, the function
ξL(Q) does not present any singularity. We conclude this discussion recalling
that the parametrization of αS(Q) given in Eq. (39) is similar to that adopted
in Ref. [6].

To calculate the self-energy of the vector interaction V̄V in Model II, we
propose two different techniques, denoted as Technique A and Technique B.
For Technique A, we note that at high Q (where the contribution of the
Gaussian term is negligible), αS(Q) of Eq. (39), due to the presence of cL,
is slightly less than αp

S(Q) of Eq. (28); on the contrary, decreasing Q, αS(Q)
becomes greater than αp

S(Q).
We can define, for Technique A, Q̄ as the value of momentum transfer

for which the following equality is satisfied:

αS

(
Q̄
)
= αp

S

(
Q̄
)
. (42)

By using the expressions given in Eqs. (39) and (28), the value of Q̄ can be
determined numerically.

Then, for the calculation of the self-energy, we can use the same expres-
sion used for Model I, that is Eq. (37), but integrating αS(Q) of Eq. (39)
up to the value Q̄ determined by Eq. (42). In this way, the finite self-energy
is given by the nonperturbative effects that dominate at Q ≤ Q̄, while the
infinite contribution given by the integration from Q̄ to infinity is discarded.

The numerical results of the parameters that reproduce the experimental
data of the strong coupling constant and fit the charmonium spectrum are
shown in columns II A S and II A M of Table 1 for the scalar and mass
interaction, respectively. The behaviour of αS(Q) is displayed in Fig. 3
where the procedure discussed above for finding Q̄ is also illustrated.
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Fig. 3. We plot αS(Q) of Model II A (see Eqs. (39)–(41)) with the parameters of
the scalar and mass interaction; the red and the green lines are used for the two
interactions, respectively. The two lines are partly superimposed. See Table 1,
columns II A S and II AM for the values of the parameters in the two cases. The
blue line represents αp

S(Q). The dotted blue line represents this last function at
low Q and is plotted to illustrate the method used to find Q̄. The values of this
last quantity are represented by the red and green arrows for the scalar and mass
interaction, respectively.

In order to introduce Technique B, we consider, in the first place, that
the Gaussian function (that is the first term of αS(Q) in Eq. (39)) can be
integrated up to infinity and gives a standard, finite contribution to the self-
energy. This contribution can be calculated as in Eq. (26) but by replacing
αV with αV −αG. However, also the second term of Eq. (39), that is ξL(Q),
“contains” some nonperturbative effects that give a contribution to the total
self-energy. To calculate this contribution, we “approximate” (at low Q) the
function ξL(Q) with a Gaussian function of the form

ξaL(Q) = αL exp

(
−Q

2

τ2L

)
, (43)

where the parameter τL is fixed in such a way that the functions ξaL(Q) and
ξL(Q) have the same Taylor expansion up to order Q2. The result for τL is
the following:

τL = Λ

[
1

b αL
exp

(
1

b αL

)]1/2
. (44)
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By using Eq. (43), we calculate the corresponding self-energy in the standard
way, integrating up to infinity. The total result for the self-energy calculated
with Technique B has the following analytic form:

V̄V =
4

3

1√
π
[(αV − αL) τ + αLτL] . (45)

The values of the parameters that reproduce αS(Q) and fit the charmonium
spectrum are given in columns II B S and II BM of Table 1, for the scalar
and mass interaction, respectively. Note that the values of V̄V obtained
with Technique A and Technique B are very similar. The behaviour of the
obtained αS(Q) is shown in Fig. 4. We have checked that αS(Q) of Model II
correctly gives the numerical values of Eqs. (27) and (30).
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Fig. 4. We plot αS(Q) of Model II B for the scalar and mass interaction. The
definitions and conventions are the same as in Fig. 3.

Summarizing the results of this section, we have learned that a unique
function, with the same definition for all the values of Q, can reproduce the
strong coupling constant of the quark–antiquark interaction. This function
is represented by the sum of a Gaussian plus a regularized perturbative
QCD function that gives a contribution also at low Q. We shall take into
account this last point for the study of Model III. The numerical results of
Model II are similar to those of Model I corroborating the physical validity
of the two models. The self-energy V̄V for Model II can be calculated in two
different ways: first, with Technique A, by introducing (analogously to what
learned in Model I), the quantity Q̄ that, for this model, defines the upper
limit of the integration; second, with Technique B, we have also studied an
analytic procedure that “extracts” the nonperturbative contribution from the
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second term of the function that represents αS(Q). A procedure of the same
kind well be used also in Model III. As shown in Table 1, columns II A S,
II A M, II B S, and II BM, the numerical values of the parameters are similar,
demonstrating that Techniques A and B are almost equivalent.

7. Model III. A differential equation for αS(Q)

In this section, we obtain αS(Q) as the solution of a (unique) differential
equation that represents the low-Q and the high-Q physical behaviour of
the strong coupling constant. This model is developed taking account of the
results of the previous sections.

We start with some aspects related to notation and definitions.

— For clarity in the calculation of the derivatives, we prefer to use, in
this section, the variable t = Q2, in GeV2.

— Only in the initial part of the model, we shall introduce the indices “l”
and “h” for the low-t and high-t regions, respectively. For the strong
coupling constant we have: αl(t) and αh(t). The reader can assume
that, approximately, the low-t region is defined by t ≤ t̄ and the high-t
region by t > t̄, being t̄ = Q̄2, where Q̄ has been introduced in the
previous sections. In the final form of the model, we shall consider
simultaneously all the values of t and drop those indices.

— To simplify the intermediate mathematical calculations, we also intro-
duce: yS(t) = 1/αS(t), yl(t) = 1/αl(t), and yh(t) = 1/αh(t).

— Finally, we shall consider, in some expressions, yS, yl and yh as inde-
pendent variables and t as a dependent variable.

We now study the differential equations for the strong coupling constant in
the high-t and low-t regions, performing some transformations that allow to
find a unique equation for the two cases.

We start from the low-t region, where, as suggested by the results of
the previous sections, αl(t) has essentially a Gaussian behaviour. It can be
easily verified that αl(t) satisfies the following differential equation:

dαl(t)

dt
= − 1

τ2
αl(t) . (46)

The corresponding equation for yl(t) is

dyl(t)

dt
=

1

τ2
yl(t) . (47)

Taking yl as an independent variable, we can write equivalently

dt

dyl
= τ2

1

yl
. (48)
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For completeness, we write the solution of the previous equation in the form

t = τ2 ln(yl) + al (49)

being al the integration constant. With standard algebra, one can verify
that the Gaussian expression for αl(t) is obtained

αl(t) = αl(0) exp

(
− t

τ2

)
(50)

with
αl(0) = exp(al) . (51)

We now consider the high-t region where the strong coupling constant
is given asymptotically by αp

S(t) of Eq. (28). For this region, we have the
following differential equation:

dαh(t)

dt
= −b

t
[αh(t)]

2 , (52)

where b is the usual constant introduced in Section 4 with the numerical value
given in Eq. (31) for our phenomenological calculation. At fundamental
level, the previous differential equation represents the renormalization group
equation for αS(Q) at the leading order [19–21].

The corresponding equation for yh(t) is

dyh(t)

dt
=
b

t
. (53)

Taking yh as an independent variable, we can write equivalently

dt

dyh
=
t

b
. (54)

The solution has the form

t = ah exp
(yh
b

)
, (55)

where ah is the integration constant. To reproduce the experimental data
in the perturbative regime, we set

ah = Λ2 , (56)

where Λ is the usual QCD scale introduced in Section 4 with the numerical
phenomenological value given in Eq. (31). With standard passages, one can
verify that αh(t) takes the form

αh(t) = αp
S(t) , (57)

where αp
S(t) is the perturbative expression of Eq. (28).
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Taking into account the specific form of Eqs. (48) and (54), we can write
a unique differential equation that holds for all the values of t, that is

dt

dyS
= τ2

1

yS
+
t

b
+ k . (58)

In the r.h.s. of the previous equation, the second term t/b is dominant at
high t, while the first term contributes essentially at low t. We have also
introduced the additional constant term k, in GeV2. This term will be
related to the other parameters of Model III in Eq. (64); we shall also discuss
in the following its physical relevance. Here we note that, in Eq. (58), this
constant term k is negligible at high t; on the other hand, it does not alter
too much the low-t behaviour that is given by the first term of the previous
equation. We have used the symbol τ in the first term of Eq. (58) even
though we shall not obtain a Gaussian term in the solution. In this sense, τ
has here a different meaning with respect to Model I and Model II.

In conclusion, Eq. (58) represents the “unique” differential equation for
the strong coupling constant of our Model III. The same equation can be
rewritten as a differential equation for αS(t) in the following form:

dαS(t)

dt
= − [αS(t)]

2 1

τ2αS(t) +
t
b + k

. (59)

We shall check that, with the solution for our model, the denominator in the
r.h.s. of the previous equation does not vanish and αS(t) does not present
any singularity.

The solution of Eq. (59) is easily found with the help of Maxima (A Com-
puter Algebra System), in the following implicit form:

t+ kb =

[
aS − τ2Γ

(
0,

1

b αS(t)

)]
exp

(
1

b αS(t)

)
, (60)

where it has been introduced the incomplete gamma function Γ (0, x) whose
properties can be found in Ref. [22]. In particular, we recall

Γ (0, x) =

∞∫
x

exp(−v)
v

dv (61)

given by Eq. (8.350.1) of Ref. [22]. In consequence, one has for the derivative

dΓ (0, x)

dx
= −exp(−x)

x
. (62)

By means of this last equation, one can easily check that the expression of
Eq. (60) really represents a solution to Eq. (58).
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The integration constant aS of Eq. (60) is determined by comparing that
equation, at large t, with Eq. (55) and using the same definition given in
Eq. (56), that is,

aS = Λ2 . (63)

In this way, the correct high-t behaviour of αS(t) is obtained. In order to
determine the constant parameter k, we calculate Eq. (60) at t = 0. Using
Eq. (63) and the definition αS(0) = αV , we obtain the following expression:

k =

[
Λ2 − τ2Γ

(
0,

1

b αV

)]
exp

(
1

b αV

)
. (64)

We note that the parameter k is related to αV . In this way, due to the
presence of k, it is possible to fix αV at the value αV ≃ 2 that is needed
to reproduce the charmonium spectrum. In the following, we shall see that
k takes a negative value. We observe that, at low Q, αS(Q) is not given
exactly by a Gaussian function of Q. In this respect, we recall that also in
Model I, we had a Gaussian plus a constant term, and in Model II, we had
a Gaussian plus a regularized perturbative QCD function.

In summary, Eq. (60) represents the implicit solution to Eq. (59); the
integration constant aS is given by Eq. (63), and the parameter k is given
by Eq. (64). The only two free parameters of this model are αV and τ .

For the following calculations, we have to invert numerically Eq. (60) to
obtain αS(t).

We now have to calculate the finite self-energy V̄V . To this aim, we take
advantage of Model II, Technique B. We “approximate”, at low t, αS(t), with
the following function:

αa
S(t) = αV exp

(
− t

τ2S

)
. (65)

We also require that αS(t) (implicitly defined in Eq. (60) ) and αa
S(t) have the

same Taylor expansion up to order t = Q2. With standard calculations, one
finds that this condition is satisfied when the parameter τS has the following
form:

τS =

(
τ2 +

k

αV

) 1
2

. (66)

Then, V̄V is obtained, as in Eq. (25), integrating αa
S(t) up to infinity. The

result is
V̄V =

4

3
αV

τS√
π
. (67)

The values of the parameters that reproduce αS(Q) and fit the charmo-
nium spectrum are given in columns III S and III M of Table 2, for the
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scalar and mass interaction, respectively. The behaviour of the obtained
αS(Q) is shown in Fig. 5. We have checked that αS(Q) obtained by solving
the differential equation of this model correctly gives the numerical values
of Eqs. (27) and (30).

Table 2. Numerical values of the parameters of Model III. The values of the quark
mass mq, Λ, and b, not shown here, are exactly the same as in Table 1. For more
details, in particular for the definitions of τ, k, and τS , see Section 7. For the
meaning of the other parameters also see Table 1.

Units

Model III S III M

αV 1.8647 1.8659

τ 1.9146 1.9501 GeV

k −3.7306 −3.8781 GeV2

τS 1.2904 1.3145 GeV

V̄V 1.8100 1.8450 GeV

V̄X 0.729955 0.69503 GeV

rX 1.8732 1.9852 fm

Θ 12.55 14.01 MeV
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Fig. 5. We plot αS(Q) of Model III for the scalar and mass interaction. The defini-
tions and conventions are the same as in Fig. 3.
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8. The results of the charmonium spectrum

We give here some details about the reproduction of the charmonium
spectrum and comment on the results of the calculations. The technique for
solving the RDLE of Section 2 and the procedure to fit the experimental
data [19] are exactly the same as in our previous works [2, 3, 5, 6]. For the
mass of the quark, we have taken the value mq = 1.273 GeV. This value
represents the charm quark mass renormalized at the MS mass [19].

The vector potential function VV (r) is calculated by performing numeri-
cally the Fourier transform of Eq. (15) for each model of αS(Q). The results
obtained for the different models are very similar so we only show in Figs. 6
and 7 the results for Models II B M and III S, respectively. For comparison,
we also plot, in the same figures, the pure Coulombic potential functions
observing that, at large r, our potential functions go to zero exactly as the
Coulombic ones. Also the quark vector self-energy V̄V is calculated according
to the specifications of each model.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  0.2  0.4  0.6  0.8  1

V
V
(r

) 
(G

e
V

)

r (fm)

Fig. 6. The blue line represents the vector potential function VV (r) for Mod-
el II BM; the black line represents the Coulombic potential with the same αV

of Model II B M. The two functions coincide for large r.

The X-potential function VX(r) has the (negative) Gaussian form given
in Eq. (10). The parameter V̄X is determined, in this work, by means of
Eq. (11). On the other hand, in Ref. [5], the value of V̄X was fixed at
0.735 GeV, phenomenologically related to the excitation of the first two
scalar meson resonances that have the vacuum quantum numbers [19]: the
f0(500) with the mass peak at (roughly) M [f0(500)] = 0.475 GeV and the
f0(980) with the mass peak at (roughly) M [f0(980)] = 0.995 GeV. Being
(indicatively) the mean value of these two mass peaks at ⟨M0⟩ = 0.735 GeV,
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Fig. 7. The vector function potential VV (r) for Model III S; the conventions are
the same as in Fig. 6.

we took, in work [5], V̄X = ⟨M0⟩. In this work, V̄X is determined by Eq. (11);
as shown in Tables 1 and 2, it assumes values not far from ⟨M0⟩ and, in any
case, it belongs to the interval given by the first two scalar resonances, that
is: M [f0(500)] < V̄X < M [f0(980)].

For the quality of the fit, as in [5, 6], we have defined

Θ =

√∑
k

(
Eth

k −M exp
k

)2
Nd

, (68)

where Eth
k and M exp

k , respectively, represent the result of the theoretical
calculation and the experimental value of the mass, for the kth resonance
and Nd = 16 is the number of the fitted resonances.

The spectra obtained with the different models are very similar. For this
reason, we only give in Table 3 the results of Models II B M and III S.

For completeness, we also note that, as in [5], it is not possible to re-
produce the resonance χc0(3915). The new experimental data [19] give, for
this resonance, a mass of 3922.1±1.8 MeV. Our model, taking the quantum
numbers 23P0, gives the mass values of 3846 MeV and 3857 MeV, for Mod-
els II B M and III S, respectively. Our model and other quark models give
a wrong order for the masses of this resonance and its partner χc1(3872).
A possible solution to this problem has been proposed by using three-body
forces in the framework of a phenomenological nonrelativistic model [17].
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Table 3. Comparison between the theoretical results of the charmonium spectrum
and the experimental average values [19], listed in the last column. All the masses
are in MeV. As examples, we only show (in the corresponding columns) the results
of Models II MB and III S, respectively, studied in Sections 6 and 7. The values
of the parameters used for these models can be found in Tables 1 and 2. The
quantum numbers n, L, S, and J , introduced in Ref. [3], respectively represent
the principal quantum number, the orbital angular momentum, the spin, and the
total angular momentum. A line divides the resonances below and above the open
charm threshold.

Name n2S+1LJ II M B III S Experiment

ηc(1S) 11S0 2983 2984 2984.1 ± 0.4

J/ψ(1S) 13S1 3113 3099 3096.9 ± 0.006

χc0(1P ) 13P0 3403 3420 3414.71 ± 0.30

χc1(1P ) 13P1 3497 3503 3510.67 ± 0.05

hc(1P ) 11P1 3514 3516 3525.37 ± 0.14

χc2(1P ) 13P2 3572 3565 3556.17 ± 0.07

ηc(2S) 21S0 3630 3638 3637.7 ± 0.9

ψ(2S) 23S1 3681 3679 3686.097 ± 0.011

ψ(3770) 13D1 3790 3797 3773.7 ± 0.7

ψ2(3823) 13D2 3827 3829 3823.51 ± 0.34

χc1(3872) 23P1 3890 3895 3871.64 ± 0.06

χc2(3930) 23P2 3933 3929 3922.5 ± 1.0

ψ(4040) 33S1 4015 4013 4040 ± 4

χc1(4140) 33P1 4147 4145 4146.5 ± 3.0

ψ(4230) 43S1 4221 4211 4222.1 ± 2.3

χc1(4274) 43P1 4287 4269 4286 ± 9

Concerning the general structure of our interaction, we note that (ne-
glecting the spin-dependent terms and recalling that VV (r) goes to zero as
the Coulombic potential) the maximum value of the total vector potential
V̄V +VV (r) is given by V̄V . In consequence, the maximum value for the mass
of a bound state is, roughly, Mmax = V̄V +2mq. As shown in Table 1, V̄V as-
sumes slightly different values in the different models. Taking, indicatively,
V̄V = 1.83 GeV, we have the numerical value Mmax ≈ 4.376 GeV. Comparing
this result with the analysis of the experimental data given in Ref. [19], we
note that the only state with the properties of a conventional cc̄ state and
with a value of mass greater than Mmax would be the ψ(4415). This fact
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indicates that our value of Mmax (that represents the highest value of mass
for which our cc̄ model can be safely applied) is approximately in accordance
with the experimental findings. At higher values of mass, new physical ef-
fects should be taken into account [15–18] and an explicit mechanism for
confinement should be introduced.

We conclude this paper with the following considerations. The momen-
tum dependence of αS(Q) given by perturbative QCD, in accordance with
high-Q experimental data, can be matched with the phenomenological be-
haviour of the same quantity at low Q. By discarding an infinite contribu-
tion, the vector quark finite self-energy can be consistently calculated. In
this way, the charmonium spectrum is accurately reproduced. Further inves-
tigation is necessary to establish a deeper connection between the effective
bound state quark interaction and the phenomenology related to the QCD
analysis.
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