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A simple one-equilibrium memristor-based chaotic system (MCS) is es-
tablished by combining a non-ideal memristor with a three-dimensional
(3D) chaotic system with six polynomial terms. Its dynamical characteris-
tics are studied and verified by some simulation experiments. The proposed
MCS produces chaos via period-doubling bifurcation and maintains steady
and robust chaotic behaviors unaffected by initial conditions. By changing
the parameter values, the oscillation amplitudes of all the variables will be
enlarged or shrunk on a large scale, indicating the existence of large-scale
chaotic amplitude modulation. The finite-time synchronization (FTS) of
the proposed MCS is studied, and the sufficient conditions of FTS based
on simple feedback control are established via strict theoretical analysis.
Numerical simulations demonstrate the correctness of the obtained results.

DOI:10.5506/APhysPolB.55.11-A2

1. Introduction

In the field of complexity science, chaos has always been an important
topic of continuous attention as it pervades every corner of human soci-
ety and nature, and displays mysterious influence in their normal opera-
tions. The rise of chaos research began with the discovery of the celebrated
Lorenz system with butterfly attractor in 1963 [1], and thereafter signifi-
cant achievements related to the chaos model, control, and application were
developed over the past half century. Another landmark event that has in-
spired the chaos research in recent years is the preparation of the physical
memristor in 2008 [2], which truly brought the memristor into the scien-
tific world and opened up the new field of memristor-based chaotic sys-
tems (MCSs) and circuits. It is universally acknowledged that the peculiar
non-linearity of memristor plays positive effects on chaos generation, thus
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scholars have shown a growing interest in integrating the memristors into
the design of chaotic systems. MCSs are capable of exhibiting complex and
potentially applicable dynamics, including chaos, multistability, hidden at-
tractors, offset boosting, amplitude modulation, etc. Ioth et al. [3] proposed
some memristor-based chaotic oscillators by simply substituting the diode of
the canonical Chua oscillator for one memristor featured by piecewise-linear
and monotone-increasing non-linearities. Muthuswamy [4] implemented the
memristor via some off-the-shelf elements and the memristor-based Chua os-
cillator with a two-scroll chaotic attractor on breadboard, and constructed
a simplest memristor-based chaotic circuit composed of a passive inductor,
a passive capacitor, and an active memristor [5]. Jin et al. [6] put for-
ward a local active memristor and coupled it with a passive inductor and
a passive capacitor to establish a new chaotic circuit. Gu et al. [7] de-
signed a no-equilibrium four-dimensional (4D) MCS with multiwing attrac-
tors and coexisting attractors via numerical and experimental verification.
Njimah et al. [8] used the memristor emulator with a diode bridge and RC
filter to connect a pair of Duffing oscillators for establishing a chaotic sys-
tem with a four-scroll chaotic attractor and coexisting attractors. Dong
and Yang [9] presented a memristor-based hyperchaotic system with hidden
chaos and unstable periodic orbit and studied its DSP implementation. Lai
et al. [10] established an effective method for generating 3D hyperchaotic
maps by applying discrete memristors, and studied their performance, real-
ization, and image encryption application. Liu et al. [11] designed a family
of discrete-time memristor-based chaotic maps with multistability inspired
by memristor initial-relied offset boosting, and considered their DSP real-
ization and PRNG application. Memristors can also be used as electromag-
netic radiations and synapses to generate memristive neurons and neural
networks with chaos. Han et al. [12] proposed a chaotic neuron on the basis
of a bi-functional memristor and studied its secure communicating applica-
tion. Lai et al. [13] introduced a new memristor as a synapse to construct
a memristor-based cyclic neural network with multiscroll chaos and broken
infinite coexisting attractors, and showed its superior application in design-
ing chaotic cipher. Liu et al. [14] investigated the firing properties of the
Rulkov neuron with a charge-controlled memristor for imitating the electro-
magnetic radiation through energy approaches. Hitherto more MCSs with
different model structures and dynamical properties have emerged.

Synchronization refers to the process in which the states of two or more
dynamical systems reach a certain consistent behavior via internal or exter-
nal forces. It was proven to have potential applications in secure commu-
nication and thereby many scholars have shown great interest in studying
chaos synchronization. Up to now, different synchronization types (such
as complete synchronization, lag synchronization, FTS, etc.), synchroniza-
tion control technologies (such as sliding mode control, adaptive control,
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event-driven control, etc.), and related synchronization results have been
proposed [15–17]. The difference between FTS and the conventional syn-
chronization concept is that it focuses more on achieving the consensus state
within a finite time, determining its better practicality and operability in se-
cure communication. Mishra et al. [18] considered the FTS of a multiscroll
chaotic system with parameter uncertainties by using a single controller.
Sweetha et al. [19] investigated the FTS of a delayed fractional-order chaotic
system with disturbances, quantization, uncertainties, actuator faults, and
derived the FTS results in theoretical ways. Recently, the FTS of MCS
has become an upgrading research focus that is still in its early stage and
deserves further research.

Chaos generation is the foundation of chaos analysis, implementation,
control, and application. In the current situation where artificial and nat-
ural chaotic systems have not been fully and completely understood, the
generation and analysis of chaotic systems are one of the mainstream direc-
tions in chaos research. Simultaneously, there is currently no good unified
method for chaos generation, thus it is necessary to make targeted attempts
at generating chaotic systems. Moreover, diverse chaotic systems with dif-
ferent structures can bring more possibilities for engineering applications.
The emergence of memristors has brought new opportunities and challenges
to the generation and analysis of chaotic systems. It is widely believed that
memristors have the ability to enhance complexity of chaotic systems and
inspire them to show some unknown and interesting features, that is why
the researchers generally tend to introduce memristors into chaotic systems.
The generation and analysis of MCSs can further deepen the understand-
ing of chaotic systems and promote the application study of memristors in
chaotic systems. On the basis of proposing a new MCS with simple structure,
this paper provides a comprehensive observation of the dynamical behaviors
and FTS of the presented system. The steady chaos and diverse amplitude
modulation distinct from some existing chaotic systems are discovered. The
FTS of the system is studied and the corresponding synchronization results
are established. To the best of our knowledge, the FTS has better practical
value than general synchronization, and currently, there are only a few stud-
ies discussing the FTS of MCS. The paper is organized as follows. Section 2
gives the model of MCS and evaluates its equilibrium stability. Section 3
analyzes the dynamical behaviors of MCS. Section 4 theoretically studies
the FTS of MCS. Section 5 presents the conclusions of the work.

2. System description

Recall an autonomous chaotic system whose mathematical model is com-
posed of four linear and two non-linear terms that can be described as [20]
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ẏ = z ,
ż = x− z .

(1)

It can yield chaos in phase space (x, y, z) ∈ R3 by selecting suitable values
of parameter a. In order to improve the dynamical properties of system (1),
we will introduce the following non-ideal memristor model written as: i = M(w)u ,

ẇ = u− w ,
M(w) = 1 + 0.1w2 ,

where w and M(w) are the internal state and memductance of the memris-
tor, i and u are the terminal current and voltage. The pinched hysteresis
loop of the memristor is illustrated in Fig. 1. Based on literature [21, 22],
an important feature of the memristor is that its i–u characteristic curve is
an 8-shaped pinched hysteresis loop that contracts toward the origin, which
can partially reflect the memory function of the memristor.
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Fig. 1. Pinched hysteresis loop of the memristor with frequency f = 0.5, 0.6, 0.7 Hz.

Thus, the newly constructed system with a memristor can be written as
ẋ = z2 − yz − ay ,
ẏ = kM(w)z ,
ż = bx− z ,
ẇ = z − w ,

(2)

where a, b, k are all positive parameters. Both the system (2) and system (1)
are dissipative with only one equilibrium. However, the introduction of
memristor and the increase in dimensionality make it possible for system (2)
to generate more diverse dynamical behaviors.
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In terms of chaotic characteristics, system (2) is more prone to generat-
ing continuous and steady chaotic behavior than system (1), and its chaotic
parameter region is larger. Owing to the special non-linear features of the
memristor, system (2) has the possibility to generate chaotic sequences with
better randomness for enhancing the encryption application. Simulations
show that system (2) exhibits multi-parameter, multi-variable, and large-
scale amplitude modulation, which is difficult to be detected in system (1).
Thus, system (2) exhibits stronger parameter-based signal control capability
than system (1). In the next part, we will numerically study the dynamical
behaviors of system (2) and theoretically establish its finite-time synchro-
nization conditions.

By linearizing system (2) at the equilibrium O(0, 0, 0, 0), the character-
istic equation is obtained

(λ+ 1)
(
λ3 + λ2 + abk

)
= 0 . (3)

Accordingly, O is an unstable equilibrium. For a = 0.8, b = 1, and k = 1, the
eigenvalues of Eq. (3) are calculated as λ1 = −1, λ2 = −1.4052, and λ3,4 =
0.2026±0.7268i implying the instability of equilibrium, and single-scroll at-
tractor around the equilibrium is observed from initial value (0.1,0.1,0.1,0.1),
as illustrated in Fig. 2.
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Fig. 2. Chaotic attractor in different phase planes with parameters a = 0.8, b = 1,
k = 1: (a) x− y; (b) x− z; (c) x− w; (d) y − z; (e) y − w; (f) z − w.
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3. Dynamical analysis

This section will show the route to chaos and amplitude modulation of
chaotic signals of system (2) via simulation experiments with the fourth-
fifth-order Runge–Kutta integrator with a fixed step size of ∆t = 0.01 and
the initial value (x(0), y(0), z(0), w(0)) = (0.1, 0.1, 0.1, 0.1). By selecting
the parameters a = 1, k = 1, and varying parameter b within [0.1, 1.4],
the bifurcation diagram and Lyapunov exponents (LEs) of system (2) are
numerically drawn in Fig. 3, which, to some extent, displays its parameter-
relied dynamical evolution process. It is clear that system (2) follows the
pattern of period-doubling bifurcation to yield chaos, and undergoes period,
chaos, period and ultimately almost maintains chaos with the increase of b.
Fixed b = 0.1, 0.2, 0.3, 0.5, 0.63, 0.69, 0.9, 1, 1.4, the phase portraits with re-
spect to periodic-1, periodic-2, periodic-4, and chaotic attractors are given
in Fig. 4 which visually verify the chaos generation and attractor switching
of system (2) accompanied by parameter changes.
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Fig. 3. Dynamical evolution for b ∈ [0.1, 1.4]: (a) bifurcation diagram; (b) LEs.

Given a = 1, k = 1, and b = 1, we can generate the bifurcation diagrams,
respectively, from the initial states y(0) ∈ [0, 100], w(0) ∈ [0, 100] as illus-
trated in Fig. 5. The bifurcation diagrams remain almost unchanged with
the variation of w(0), which indicates that the initial condition has no es-
sential impact on the final state of system (2). This, to some extent, reveals
that system (2) can generate steady chaotic motion that is independent of
initial conditions, exhibiting strong robustness of chaos.

The bifurcation diagram and LEs versus the parameter k ∈ [1, 3.8] can
also be plotted by fixing parameters a = 0.8 and b = 1. As shown in
Fig. 6 (a), the local maximum values of y are constantly increasing when k
increases. It implies that the boundaries of the attractors and the oscillation
amplitudes of variables are expanded, leading to the emergence of chaotic
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Fig. 4. Phase portraits of system (2): (a) periodic-1 with b = 0.1; (b) periodic-2
with b = 0.2; (c) periodic-4 with b = 0.3; (d) chaotic with b = 0.5; (e) periodic-1
with b = 0.63; (f) periodic-2 with b = 0.69; (g) chaotic with b = 0.9; (h) chaotic
with b = 1; (i) chaotic with b = 1.4.

amplitude modulation in system (2). The chaotic amplitude modulation
can be visually demonstrated by using the phase portraits and time series
with given parameter values of k = 1.0, 2.5, 3.0, 3.5. Figure 7 shows that
the chaotic feature and attractor shape do not change but the size of the
attractor and the amplitude of the time series of y change for different values
of k. In fact, it is not difficult to verify that all other variables x, y, w
uniformly occur amplitude modulation phenomenon.
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(a) (b)

Fig. 5. Dynamical evolution for w(0) ∈ [0, 100]: (a) bifurcation diagram; (b) LEs.
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Fig. 6. Dynamical evolution for k ∈ [1, 3.8]: (a) bifurcation diagram; (b) LEs.
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Fig. 7. Amplitude modulation of attractors for k = 1.0, 2.5, 3.0, 3.5: (a) projection
on y–w; (b) time series of y.
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For k = 1, b = 1, and a ∈ [1, 8], the amplitude modulation with respect
to parameter a can also be observed from the bifurcation diagram in Fig. 8,
which shows that the local maximum values of variable y will be expanded
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Fig. 8. Dynamical evolution for a ∈ [1, 8]: (a) bifurcation diagram; (b) LEs.
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Fig. 9. Dynamical evolution for a ∈ [1, 8]: (a) bifurcation diagram; (b) LEs.
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from 0 to nearly 700 with the increase of a. Other variables x, z, and w of
system (2) undergo similar changes as well. By selecting a = 4, 5, 6, 7, 8, we
can plot the projection diagrams of attractors and time series of variables as
shown in Fig. 9. The constantly expanding motion regions of attractors and
amplified oscillation amplitudes of variables in Fig. 8 with respect to the
parameter a indicate the existence of chaotic amplitude modulation of sys-
tem (2). Actually, system (2) will perform larger scale amplitude modulation
as parameters continue to increase.

4. Finite-time synchronization

The FTS which generally refers to all the states of two or more dynamical
systems reaches synchronization within a finite time depending on initial
conditions, and parameters have better practical value in engineering fields
than normal synchronization types. Thus, this section will investigate the
FTS of system (2) via the analytical method with numerical verification.

Taking system (2) as the drive system, and assuming that the response
system has the same mathematical expression as system (2) with variables
(x1, y1, z1, w1) and control inputs (u1, u2, u3, u4), it can be written as follows:

ẋ1 = z21 − y1z1 − ay1 + u1 ,
ẏ1 = kM(w1)z1 + u2 ,
ż1 = bx1 − z1 + u3 ,
ẇ1 = z1 − w1 + u4 .

(4)

Denote the errors of variables as e1 = x1 − x, e2 = y1 − y, e3 = z1 − z, and
e4 = w1 − w, then the corresponding error system can be derived as

ė1 = (z + z1 − y1)e3 − (z + a)e2 + u1 ,
ė2 = kM(w1)e3 + 0.1kz(w + w1)e4 + u2 ,
ė3 = be1 − e3 + u3 ,
ė4 = e3 − e4 + u4 .

(5)

It is clear that the FTS synchronization problem of system (2) and system
(4) is transformed into the finite-time stability problem of the error system
(5). Based on the finite-time theory, if there exists a constant T > 0 such
that limt→T |ei| = 0 and |ei| ≡ 0, i = 1, 2, 3, 4 when t ≥ T , then we can say
that system (2) and system (4) reach the FTS. Here, we will first introduce
some Lemmas for facilitating the establishment of the FTS results.

Lemma 1. If there exists differential positive function V (t) such that V̇ (t)+
cV η(x) ≤ 0 for any c > 0, 0 < η < 1 and V (t) ≡ 0 with t ≥ T , then the
inequality T (x0) ≤ V 1−η(x0)/(c− cη) with initial condition x0 holds.
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Proof. Since V̇ (t) + cV η(x) ≤ 0, then one has dV (t)/V η(t) ≤ −cdt. Inte-
grating it in time region [t0, T ], we get

T∫
t0

dV (t)

V η(t)
≤ −c

T∫
t0

dt , V 1−η(T ) ≤ V 1−η(t0)− c(1− η)(T − t0) . (6)

Thereby, it can be concluded that V (t) ≡ 0 with t ≥ T and T (x0) ≤
V 1−η(x0)/(c− cη). The proof is completed.

Lemma 2. For real numbers τ1, τ2, · · · , τn, the inequality
∑n

j=1 |τj |
r ≤

(
∑n

j=1 |τj | )r with any constant r > 1 holds.

Lemma 3. For real numbers τ1, τ2, · · · , τn, the inequality (
∑n

j=1 |τj |
2)

µ+1
2 ≤∑n

j=1 |τj |
µ+1 with any constant 0 < µ < 1 holds.

Theorem 1. System (2) and system (4) will achieve FTS with the following
controller:

u1 = −m sgn(e1)|e|β − (z + z1 − y1)e3 + (z + a)e2 ,

u2 = −m sgn(e2)|e|β − kM(w1)e3 − 0.1kz(w + w1)e4 ,

u3 = −m sgn(e3)|e|β − be1 ,

u4 = −m sgn(e4)|e|β − e3

(7)

and the finite time T satisfies the inequality

T ≤ V
1−β
2 (0)

2
β−1
2 m(1− β)

, 0 < β < 1 , m is any constant . (8)

Proof. Selecting the Lyapunov function as

V (t) =
1

2

4∑
i=1

e2i (9)

and differentiating V (t), we can get

V̇ (t) =

4∑
i=1

eiėi = e1 [(z + z1 − y1)e3 − (z + a)e2 + u1]

+e2 [kM(w1)e3 + 0.1kz(w + w1)e4 + u2]

+e3 (be1 − e3 + u3) + e4 (e3 − e4 + u4) . (10)
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Substituting the controller (7) into the above equation, we have

V̇ (t) = e1e3(z + z1 − y1)− (z + a)e1e2 + e1

(
−m sgn(e1)|e1|β

−(z + z1 − y1)e3 + (z + a)e2

)
+ e2

(
−m sgn(e2)|e2|β

)
−e23 − e3

(
−m sgn(e3)|e3|β − be1

)
− e24

−e4

(
−m sgn(e4)|e4|β − e3

)
= −e23 − e24 −m

(
|e1|β+1 + |e2|β+1 + |e3|β+1 + |e4|β+1

)
≤ −m

(
|e1|β+1 + |e2|β+1 + |e3|β+1 + |e4|β+1

)
. (11)

Based on Lemma 2 and Lemma 3, we can get that

V̇ (t) ≤ −m
(
|e1|2 + |e2|2 + |e3|2 + |e4|2

)β+1
2 (12)

≤ −m(2V (t))
β+1
2 . (13)

Therefore, system (2) and system (4) can realize synchronization in a finite
time according to Lemma 1, and the finite time is given by inequality (8).
The proof is completed.

We can verify the effectiveness of Theorem 1 via some simulations. When
a = 0.8, b = 1, and k = 1, system (2) is chaotic from the initial value
(0.1, 0.1, 0.1, 0.1) with its phase portraits shown in Fig. 2. Let the initial
value of system (4) be (−1, 2, 2,−1) and control parameters m = 5, β = 0.6,
then we can compute that the finite time T ≤ 0.946 according to Theorem 1.
The errors e1(t), e2(t), e3(t), and e4(t) approach zero as shown in Fig. 10
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Fig. 10. Errors e1(t), e2(t), e3(t), and e4(t) of system (2) and system (4).
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and all the variables of system (2) and system (4) reach consensus within
the finite time T as shown in Fig. 11, which demonstrates the achievement
of FTS in accordance with Theorem 1.
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Fig. 11. State variables of system (2) and system (4): (a) x(t), x1(t); (b) y(t), y1(t);
(c) z(t), z1(t); (d) w(t), w1(t).

5. Conclusions

This paper tried to create a simple chaotic model with rich dynamics
by combining the memristor to a 3D chaotic flow. The presented MCS in
this paper has a simple mathematical model with the non-ideal memristor
and only one equilibrium. The dynamical properties including the chaotic
attractor, period-doubling bifurcation, and parameter-relied amplitude mod-
ulation of the MCS were numerically analyzed. It was shown that all the
variables of the MCS can be enlarged or shrunk on a large scale with the
change of parameter values. The FTS problem of the MCS was studied and
the sufficient conditions for achieving FTS were constructed via theoretical
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and numerical means. In the future, we will further focus on the model, con-
trol and engineering application of MCS. The MCSs with more memristors
and complex dynamics (such as hyperchaos, multiscroll attractors, etc.) will
be yielded, and their stability and synchronization control under different
constraints will be studied. Furthermore, more potential application aspects
of MCS will be discovered.
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