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Effective field theories which describe the coupling between gravity and
matter fields have recently been extended to include terms with operators
of non-minimal mass dimension. These terms preserve the usual gauge
symmetries but may violate local Lorentz and diffeomorphism invariance.
The number of possible terms in the field theory explodes once one allows
for non-minimal operators, with no criterion to choose between them. We
suggest as such a criterion to focus on terms which violate Lorentz invari-
ance via a (pseudo)vector background field, leaving a number of possible
terms in the Higgs, gauge, and gravitational sectors. Further study of
these terms is motivated by the proposed correspondence between the gen-
eral effective theory for Lorentz violation and emergent Lorentz symmetry
in condensed-matter systems, which is mostly unexplored for higher mass
dimension operators and couplings to gauge fields and gravity. We suggest
bounds in the Higgs sector and we show that some of the coefficients in
the gauge sector vanish at one loop, whereas others have bounds which
are comparable with those suggested by Kostelecký and Li for coefficients
in Lorentz-violating QCD and QED coupled to quarks. We also find new
bounds in the gravitational sector by considering the Robertson–Walker
model. Finally, we discuss the special case where only diffeomorphism in-
variance is spontaneously broken and explain why it does not allow for
non-trivial Nambu–Goldstone modes.
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1. Introduction

The search for a compelling theory which unifies classical gravity with
quantum mechanics is a major open problem in theoretical physics. The
nature of this theory is currently mysterious and may involve deviations
from non-Riemannian geometry. The underlying theory could even be non-
geometric and so completely distinct from the gravitational theories which
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we use now [1]. Given this uncertainty, it is clearly of interest to study
model-independent signals from the Planck scale which trickle down to the
low energies which we observe in the world around us. It should be possi-
ble (at least in principle) to determine certain properties of the underlying
theory by performing experiments at low energies. One way that this can
be done is to use the machinery of effective field theory [2]. In this ap-
proach, one starts with the Lagrangian of general relativity coupled to the
Standard Model and adds correction terms which are products of operators
built from known fields multiplied by coefficients associated with the un-
derlying theory. Background fields in the underlying theory are reflected at
the level of the EFT as coupling coefficients. Coupling coefficients in EFTs
are usually assumed to be constant scalars, but if the unifying theory has
more complicated backgrounds, these may manifest themselves in the EFT
as vector or tensor functions which depend on spacetime position. Tensor
background fields which are included as couplings in the EFT can trans-
form anomalously under spacetime transformations, so that the EFT may
have apparent or genuine violations of both local Lorentz invariance and
diffeomorphism invariance.

The general framework to construct an EFT which describes GR and
the SM along with possible violations of this kind was found by Colladay
and Kostelecký (known as the Standard Model Extension) [3]. In this frame-
work, terms in the EFT are arranged into a hierarchy depending on the mass
dimension d. Minimal terms are considered to be those whose background
fields have the mass dimension d ≤ 4. We emphasise that we are referring to
the mass dimensions of the backgrounds (the Lorentz-violating terms them-
selves have overall mass dimension 4 to comply with renormalizability). All
of the minimal terms were found by Kostelecký [4]. The possible terms have
been studied intensively in the case of Lorentz-violating quantum electrody-
namics [5]. The result for minimal terms was extended by Kostelecký and Li
to all terms with d ≤ 6 [6]. It is important to consider non-minimal terms,
since terms with larger d are expected to have weaker effects at low energies,
in agreement with the feebleness of quantum gravity effects at low energy.
The main problem with studying the non-minimal theory is that the num-
ber of possible terms explodes with exponential speed once we start moving
to terms with coefficients of the higher mass dimension, with no apparent
criterion to choose between them.

In this work, we consider a special form of Lorentz-CPT breaking theories
of scalar, gauge, and gravitational fields characterized by a single Lorentz-
violating (pseudo)vector. In terms of the theoretical reason to study these
models, it should be borne in mind that the data tables of [7] include both
Lorentz-invariant and Lorentz-violating terms, depending on the exact struc-
ture of the coefficients. Operators with odd numbers of spacetime indices
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are CPT-odd and always break Lorentz symmetry, hence these terms are
the simplest possible that must break Lorentz symmetry, and so the simplest
which could be phenomenologically viable for detecting Lorentz violation [8].

Secondly, although studies of symmetry breaking are naturally moti-
vated by searches for limits of applicability of Lorentz symmetry, they may
also be used to develop effective models applied in various contexts, includ-
ing condensed-matter physics and phenomenology of elementary particles.
It is well known that Lorentz invariance is absent in condensed-matter sys-
tems but more specifically, a correspondence has been proposed for the SME
and the description of emergent Lorentz symmetry in these systems [9, 10].
Terms from the minimal SME have been employed in condensed-matter
physics, but the correspondence has not been explored for operators with
the mass dimension > 4 and couplings to all gauge fields and gravity [11].
These terms may modify the Dirac operator in a large number of interesting
ways which have not been considered, leading to a possibility of new materi-
als with emergent Lorentz symmetry violation. Besides these modifications
in the fermion sector, it may be possible to model other new condensed-
matter systems using SME terms from the Higgs, gauge, and gravitational
sectors. Several studies focus directly on CPT-odd (axial) contributions
since this sector can describe the anomalous Hall effect and contribute to
the chiral magnetic effect [12, 13]. As another example, CPT-odd terms in
the fermion–photon sector of the minimal QED extension of the SME can
be used to yield a restricted version of axion electrodynamics [14].

In summary, we will consider the Higgs, gauge, and gravity couplings
which are CPT-odd and which are also the simplest possible examples of such
couplings represented by the higher mass dimension operators. These terms
were identified in [4] and it was argued that it would be desirable if they
vanished since CPT-odd terms likely generate instabilities in the minimal
theory, but the possibility of using experimental data to bound the associated
coefficients was not discussed. Besides this, although it might be desirable
to require CPT-odd terms to vanish when considering elementary particle
physics, as stated above CPT-odd contributions may still be important for
modelling condensed-matter systems [12]. In the other direction, insight
into the stability or interpretation of these coefficients in the SME may
be increased by studying them in the emergent Lorentz symmetry context
[10]. The main aim of this article is to take a step in this direction by
using theoretical predictions for various physical processes to bound these
coefficients where possible and otherwise to discuss plausibility arguments
on their size when this is not feasible. In the case of the coefficient k̂0,
a bound is not provided but we provide an argument that it vanishes at one
loop. An interesting qualitative prediction is suggested using k̂3, although
it would require simulations to be verified.
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This paper is organized as follows. In Section 2, we study various physi-
cal processes and make predictions which enable us to bound several of the
coefficients. We note that the bounds which we achieve in the gauge sector
match those which were suggested as feasible (but not proved) for coeffi-
cients in the limit of Lorentz-violating QED and QCD coupled to multiple
quarks [6]. The type of term we study is the simplest possible which allows
for breaking of diffeomorphism invariance. It is a general result that diffeo-
morphism invariance is spontaneously broken in a theory if and only if local
Lorentz invariance is also spontaneously broken, so that the distinction is not
important but there is a special case where diffeomorphism invariance can
be spontaneously broken whilst preserving local Lorentz invariance. In Sec-
tion 3, we clarify that this would not have observable consequences in terms
of the usual analysis of the associated Nambu–Goldstone modes, hence this
case does not need to be considered. We finish with conclusions in Section 4.

2. Violation of Lorentz invariance with a vector background field

Whereas previous studies consider the minimal terms to be the ones
where the backgrounds have the mass dimension ≤ 4, we instead include only
terms where the coupling coefficients are single-index tensors. The number
of possible terms is relatively small and is restricted to the gauge, Higgs,
and gravity sectors. The usual minimal gauge sector of the Standard Model
Extension is reproduced but there are some additional higher-dimension
terms in the Higgs and gravity sectors. In the gauge sector, we have

Lgauge =
(
k̂0

)
κ
Bκ +

(
k̂1

)
κ
ϵκλµνBλBµν

+
(
k̂2

)
κ
ϵκλµνtr

(
WλWµν +

2

3
igWλWµWν

)
+
(
k̂3

)
κ
ϵκλµνtr

(
GλGµν +

2

3
ig3GλGµGν

)
, (1)

where the background in the first term has the mass dimension 1 and the
remaining backgrounds have the mass dimension 3. Gµ is a Hermitian SU(3)
adjoint matrix which describes the gauge fields for the strong interaction,
Wµ is an SU(2) adjoint matrix describing the gauge fields for the weak
interaction, and Bµ is the singlet hypercharge gauge field. The corresponding
field strengths for the gauge fields are denoted by Gµν , Wµν , and Bµν . In
the Higgs sector, we have

LHiggs =
(
k̂ϕ

)µ
ϕ†iDµϕ+H.c.+

1

2

(
k̂ϕDϕ

)µ (
ϕ†ϕ

)(
ϕ†iDµϕ

)
+H.c. , (2)
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where the background has the mass dimension 3 in the first two terms and
the mass dimension 5 in the last two. In the gravity sector, we have

Lgravity =
1

2κ

[(
k̂Γ

)µ
Γα
µα +

(
k̂CS,1

)
κ
ϵκλµνηacηbd

(
ωab
λ ∂µω

cd
ν +

2

3
ωab
λ ωce

µ ωd
νe

)
+
(
k̂CS,2

)
κ
ϵκλµνϵabcd

(
ωab
λ ∂µω

cd
ν +

2

3
ωab
λ ωce

µ ωd
νe

)]
, (3)

where the background in the first term has the mass dimension 3 and the
Chern–Simons backgrounds have the mass dimension 5.

We stated in Introduction that we are considering the simplest possible
case of Lorentz violation, but we should emphasize that we are not con-
sidering single-index Lorentz-violating backgrounds in full generality. The
reason is as follows. The hatted coefficients used in equations (1)–(3) in-
clude the possibility of Lorentz- and CPT-violating terms with the higher
mass dimensions. The point of the hat notation is that such a coefficient
is not just a number, but may be a sum of terms with additional factors of
the covariant derivative. Inserting additional derivatives increases the mass
dimension of the operators and it usually also increases the number of free
Lorentz indices, but a structure of the form of ∂µ∂µ = ∂2 can always be
inserted between operators without requiring introduction of another exter-
nal index. For massless fields, the free propagator is not affected by terms
which only have an additional ∂2, but such terms cannot generally be omit-
ted for massive fields, non-linear interactions, or radiative corrections (see,
for example, [15]).

2.1. Higgs sector

We will begin by considering the Higgs sector. Taking the Hermitian
conjugate of (1/2)(ϕ†ϕ)(ϕ†iDµϕ) only adds a total divergence after inte-
grating by parts and commuting through with ϕ†ϕ. Taking the Hermitian
conjugate of ϕ†iDµϕ also adds a total divergence, so that we have

LHiggs =

((
k̂ϕ

)µ
+
(
k̂ϕ

)†µ
)
ϕ†iDµϕ

+
1

2

((
k̂ϕDϕ

)µ
+
(
k̂ϕDϕ

)†µ
)(

ϕ†ϕ
)(

ϕ†iDµϕ
)
. (4)

The first term is minimal and was studied by Anderson, Sher, and Turan [16],
who stated that the one-loop effects on the photon propagator due to this
term can provide strong bounds on the coefficient (k̂ϕ)

µ. We will provide
a few more details in support of this statement.



11-A3.6 H. Williams

If we consider the covariant derivative Dµϕ in the minimal term and
suppress gauge indices, we have

Dµϕ = ∂µϕ− i
[
g2A

a
µT

a + g1BµY
]
ϕ , (5)

where Y is the hypercharge generator and T a = 1
2σ

a. Note that the regular
derivative ∂µ should be replaced in this setting with the covariant derivative
of general relativity (which we denote by D∗

µ), but this is just a regular
derivative because it acts on a scalar field. In a matrix form, equation (5)
can be written as

Dµϕ = ∂µϕ− i

2

[
g2A

3
µ − g1Bµ g2

(
A1

µ − iA2
µ

)
g2

(
A1

µ + iA2
µ

)
−g2A

3
µ − g1Bµ

]
ϕ , (6)

where the gauge indices have been suppressed again. The physical fields are
defined by

W±
µ =

1√
2

(
A1

µ ∓ iA2
µ

)
, (7a)

Zµ = cWA3
µ − sWBµ , (7b)

Aµ = sWA3
µ + cWBµ , (7c)

where sW and cW denote the sine and cosine of the Weinberg angle θW,
respectively. The Higgs doublet ϕ is written in unitary gauge in the form
of ϕ = (v + ϕ1, 0)

T /
√
2, where ϕ1 is the Higgs field and v is the corre-

sponding vacuum expectation value. Taking the interaction part of ((k̂ϕ)µ+
(k̂ϕ)

†µ)ϕ†iDµϕ, we arrive at a term of the form

1

4

((
k̂ϕ

)µ
+

(
k̂ϕ

)†µ
)
[(g2sW − g1cW)ϕ1ϕ1Aµ + (g2cW + g1sW)ϕ1ϕ1Zµ] .

(8)
The first interaction vertex leads to the existence of a Higgs loop contribution
to the vacuum polarization of the photon, where each vertex includes an
insertion of a Lorentz-violating interaction. By comparison with similar
diagrams which appear for minimal terms with coefficients k̂ϕB and k̂ϕW ,
it is expected that Re((k̂ϕ)

µ) ≤ O(10−16) GeV for all components. On the
other hand, modifications of electroweak symmetry breaking which occur
with this term imply much stronger bounds (Re((k̂ϕ)µ) ≤ 10−31 GeV for
the X and Y components and Re((k̂ϕ)

µ) ≤ 10−27 GeV for the Z and T
components) [16]. The symmetry breaking argument of Anderson et al. [16]
cannot be used for the term proportional to (k̂ϕDϕ)

µ(ϕ†ϕ)(ϕ†iDµϕ), but it is
plausible that the coefficient should be of the same size or smaller than the
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coefficient for the minimal term, given that the analogue of equation (8) is
identical apart from being higher order in the fields and having an additional
two ϕ1 fields. This would then give a bound Re((k̂ϕDϕ)

µ) ≤ 10−31 GeV−1

for the X and Y components and Re((k̂ϕDϕ)
µ) ≤ 10−27 GeV−1 for the Z

and T components [17].

2.2. Gauge sector

We will next consider the gauge sector, which has four terms when we
restrict to pseudovector backgrounds.

2.2.1. Bounds on k̂1

To begin, we consider the term (k̂1)κϵ
κλµνBλBµν . Using

Bµ = cWAµ − sWZµ , (9a)
Bµν = cWFµν − sWZµν , (9b)

we find that one can have interactions of the form Zγγ, γZZ, γγγ, and
ZZZ. Triple interactions amongst the neutral gauge bosons are absent at
tree level in the Standard Model and strongly suppressed at loop level, so
interactions of this form are an important probe of new physics.

To start with the Zγγ interaction, experimental searches for forbidden
decays of the Z boson have established that the upper bound on the branch-
ing ratio for Z → γγ is 1.46 × 10−5 [18]. The term we wrote above cannot
be used to make predictions in a straightforward way due to the interdepen-
dence of the components of (k̂1)κ on those of BλBµν . We may simplify by
assuming that each component of the coupling constant vector (k̂1)κ has the
same value (denoted here by K1) and the same bound. The Lorentz-violating
vertex function is then

iV νµρ
Zγγ = −16isWc2W [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ]K1 , (10)

where r = −p − q is defined to be the outgoing momentum of the second
photon.

The corresponding decay amplitude is

iT = −16isWc2Wϵ∗ν
(
λ′
2, k

′
2

)
ϵ∗ρ

(
λ′
3, k

′
3

)
× [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ] ϵµ (λ1, k1)K1 , (11)

where ϵµ denotes the polarization of a particle. Calculating the matrix
element squared and summing over polarizations, we then have〈

|T |2
〉
= 1072s2Wc4WM2

ZK
2
1 . (12)
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The decay width is

ΓZ→γγ = 21.32s2Wc4WMZK
2
1 . (13)

Dividing through by the total decay width Γ of the Z boson, we have

Br(Z → γγ) = 779.16s2Wc4WK2
1 . (14)

Re-arranging for K1, we find an upper bound on each component of (k̂1)µ
of 3.74 × 10−4 GeV. We note that this sensitivity is comparable to the one
which was conjectured (but not proved) by Kostelecký and Li [6] for the
coefficients a(5)µαβ in the limit of QCD and QED coupled to quarks, where
it was suggested that the bound could be proved using direct simulations of
the experimental effects on the cross section for deep inelastic scattering.

Moving on to the γZZ interaction, there is no decay process in this case
so we could instead consider the photon propagator. Considering CPT-odd
terms only, the photon Lagrangian can be written as

Lphoton = −1

4
FµνF

µν +
1

2

(
k̂AF

)κ
ϵκλµνA

λFµν . (15)

The equation of motion from this Lagrangian is

MαδAδ = 0 , (16)

where
Mαδ = gαδp2 − pαpδ − 2i

(
k̂AF

)
β
ϵαβγδpγ . (17)

To bound the coefficient, we can calculate the vacuum polarisation contribu-
tions to the photon propagator using the Lorentz-violating Lagrangian [16].
The result will be of the same form as the above equation and the value of
the coefficient can be read off directly. The k̂AF may differ order by order in
perturbation theory, so for simplicity, we would have to restrict to divergent
contributions to one-loop diagrams. Cancellation of anomalies in the SME
enforces the vanishing of k̂AF at one loop, but this does not necessarily im-
ply that k̂1 must also vanish at one loop, so we should instead consider the
contributions of this interaction to other processes.

One such process is ZZ production, which also includes a contribution
from the anomalous ZZZ interaction. Experimental measurements of these
anomalous couplings are difficult because it would be involved in a pro-
cess like qq̄ → ZZ which has many contributing diagrams in the Standard
Model. Measurements of such a coupling usually rely on an effective ver-
tex approach, where the new couplings are assumed to conserve U(1) and
Lorentz invariance [19]. Calculation of the cross section with the Lorentz-
violating term included would be complicated, since there is interference
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between the Lorentz-violating and conventional amplitudes, so we will leave
this for future work in the interest of simplicity here. It is not clear if this
calculation would lead to a stronger bound than the one we derived using
the decay rate, although this is possible. One simplification would be to as-
sume that the production cross section for a Lorentz-violating coupling is qq̄
initiated only. The Lorentz-violating vertex functions in this case would be

iV νµρ
ZZZ = −8is3W [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ]K1 , (18a)

iV νµρ
γZZ = 4is2WcW [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ]K1 . (18b)

Another simplification we will mention is that the quarks would be effectively
massless, because we would be working in the high-energy limit. In this
approximation, one could take the vector and axial-vector coupling constants
to be the average for the valence quarks which might be involved during a
collision. This would give us

cV − cAγ
5 = −1

3
sin2 θW . (19)

We may also do the same with the charges of the quarks which may be
involved, which would give us

Qq =
2

3
. (20)

2.2.2. Bounds on k̂2

The arguments for the term with k̂2 are similar, but we will mention
a few relevant points. To begin, consider the parts of (k̂2)κϵκλµνtr(WλWµν+
2
3 igWλWµWν) which involve A1

µ and A2
µ. Using equation (1) and

1√
2

(
F 1
µν + iF 2

µν

)
= D†

µW
−
ν −D†

νW
−
µ , (21a)

1√
2

(
F 1
µν − iF 2

µν

)
= DµW

+
ν −DνW

+
µ , (21b)

DµW
+
ν = D∗

µW
+
ν − ig2 (sWAµ + cWZµ)W

+
ν , (21c)

we find that all the possible interactions involve an odd number of W bosons
or some combination of a neutral gauge boson with an odd number of W
bosons, so these terms are forbidden by conservation of charge.

If we instead consider the part which involves A3
µ and use

A3
µ = sWAµ + cWZµ , (22a)

F 3
µν = sWFµν + cWZµν − ig2

(
W+

µ W−
ν −W+

ν W−
µ

)
, (22b)
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we find that there is again a Z → γγ process, with the only difference being
that the Lorentz-violating vertex function is now

iV νµρ
Zγγ = 4is2WcW [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ]K2 , (23)

with the same notation as before. Following through with the calculation of
the branching ratio, we reach a similar conclusion that (k̂2)µ < O(10−4 GeV)
for each component.

2.2.3. Bounds on k̂3

There still remains the part involving the SU(3) gauge fields. In this case,
the (k̂3)κϵκλµνtr(GλGµν) part yields a triple-gluon vertex with a correspond-
ing vertex function but a full comparison with experiment is complicated by
the fact that one must consider all the possible interactions between quarks,
antiquarks, and gluons, and combine the results with parton distribution
functions to produce a prediction for the cross section for jet formation,
which is beyond the scope of our work [20]. We note that there is only one
diagram which contributes to this process at tree level if we use the Lorentz-
violating vertex. The gluon–gluon scattering would be more complicated
and would also presumably not allow for a good bound, since two Lorentz-
violating vertices would contribute four powers of the coupling constant k̂3
which would have to be cancelled out instead of two. Although we are not
able to bound these coefficients, we conjecture that they should have a sen-
sitivity of the order of 10−4 GeV given currently available collider energies.
Our justification for this is that the same bound was found for the other
coefficients k̂1 and k̂2 in the gauge sector and also that the same bound was
suggested as plausible by Kostelecký and Li for the coefficients aµαβ in the
limit of QCD and QED coupled to quarks [6].

A dramatic qualitative prediction of Kostelecký and Li for the coefficients
aµαβ is that there should be a difference between the differential cross section
for deep inelastic scattering depending on whether a proton or an antiproton
is used

dσ

dx dy dϕ

∣∣∣∣
e−,p,a

̸= dσ

dx dy dϕ

∣∣∣∣
e−,p̄,−a

. (24)

This follows because the coefficients govern CPT-odd operators, hence their
contributions change sign when the proton is replaced with its antiparticle.
Since the same is true for (k̂3)κ, one might ask if a similar effect is observable
here. The relevant leading order Feynman diagrams which are possible with
the Lorentz-violating triple-gluon vertex are shown in figure 1. Due to the
CPT-odd operator, the contribution of the coefficient changes the sign when
a gluon is swapped with its antiparticle. In high-energy scattering events,
there may be processes where certain gluon exchanges dominate strongly,
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in which case the Lorentz-violating interaction suggests that the cross sec-
tion should, in principle, be different depending on whether the gluon was
exchanged or its antiparticle. This may be interesting to explore in direct
simulations, although as mentioned in the previous paragraph, this would
be beyond the scope of this paper.

Fig. 1. Leading order diagrams for qq̄ → gg and gg → gg with a Lorentz-violating
triple-gluon vertex from the (k̂3)κϵ

κλµνtr(GλGµν) term.

2.2.4. Bounds on k̂0

We will finish by returning to the first term in Lgauge, which is of the
form (k̂0)κBκ. One might naively expect this term not to contribute to any
diagrams, since it only involves one field. However, if we consider a scalar
theory with an interaction term jϕ, where j(x) is a classical field, this term
can be treated as a perturbation which generates vertices in Feynman di-
agrams. These linear terms are usually counterterms which are present to
cancel tadpole graphs which appear at loop level, so we will bound (k̂0)µ by
considering it to be part of a term of this form. The associated counterterm
vertex factor for a Z boson is

V ρ = −isW

(
k̂0

)ρ
. (25)

Using the Lorentz-violating ZZZ vertex, one can write an expression for
a tadpole graph which contributes to a vacuum expectation value for Zµ.
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This expression is set to be equal to the counterterm vertex factor

−isW

(
k̂0

)ρ
= −8isWc2W [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ]

×K1

∫
ddk

(2π)d

gµν +
kµkν
M2

Z

k2 +M2
Z − iϵ

. (26)

The integral on the right-hand side is Lorentz-invariant, but the only Lorentz-
invariant tensor of rank 2 is the metric, so we must have

−isW

(
k̂0

)ρ
= −8isWc2W [(q − p)ρgµν + (r − q)µgνρ + (p− r)νgρµ]

×K1gµν

∫
ddk

(2π)d

1 + k2

dM2
Z

k2 +M2
Z − iϵ

. (27)

The right-hand side vanishes after tracing over the spacetime indices, which
implies that all components of (k̂0)µ vanish at one loop.

2.3. Gravitational sector

The gravitational sector with single-index tensor coupling coefficients has
three additional new terms, which we will repeat for convenience

Lgravity =
1

2κ

[(
k̂Γ

)µ
Γα
µα +

(
k̂CS,1

)
κ
ϵκλµνηacηbd

(
ωab
λ ∂µω

cd
ν +

2

3
ωab
λ ωce

µ ωd
νe

)
+
(
k̂CS,2

)
κ
ϵκλµνϵabcd

(
ωab
λ ∂µω

cd
ν +

2

3
ωab
λ ωce

µ ωd
νe

)]
. (28)

We note that the first term is somewhat similar to the k̂0 term in the gauge
sector if we were to view a set of Christoffel symbols as being analogous
to a bare gauge field. It is difficult to see how to bound these coefficients,
since Lorentz violation in gravitational fields is usually considered only in
the context of weak fields where the metric and vierbein are linearised [21].
Rather than working with approximately flat spacetimes, another possibility
might be to work with a realistic spacetime which is simple to write down
but which still has non-trivial curvature. An example is the Robertson–
Walker metric, which is known to describe the current Universe up to a very
good approximation

ds2 = dt2 − a2
(

dr

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

))
, (29)
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where k is the curvature parameter and a is the scale factor. Using this
metric, the first term of Lgravity becomes

1

2κ

(
k̂Γ

)µ
Γα
µα =

1

2κ

((
k̂Γ

)t ȧ

a
+
(
k̂Γ

)x
(
2

r
+

kr

1− kr2

)
+
(
k̂Γ

)y
cot θ

)
.

(30)
ȧ/a at our current time is equal to the Hubble constant H0, which was
recently measured to be 73.3+1.7

−1.8 km s−1 Mpc−1 using galactic lensing of
quasars [22]. In units of s−1, we may take H0 ≈ 2.2 × 10−18 s−1. The
gravitational coupling constant is 1/2κ ≈ 3 × 1036 GeV2, so if we assume
that the t component of (k̂Γ )µ gives a term of the order of unity or lower
when the coefficient multiplies the rest of the term, we find that a bound
on (k̂Γ )t is of the order of 1 × 10−18 GeV. Repeating the above calculation
with the Schwarzschild metric does not result in any useable bounds. On the
other hand, the coefficient of (k̂Γ )x becomes infinite in the limit as r goes to
zero. This could be due to the fact that the Robertson–Walker spacetime
is not an exact description of the Universe or we could require that (k̂Γ )µ
vanish to evade the infinity, since it is hard to see how it would be removed
by using a more complicated cosmological metric.

We may instead consider the Chern–Simons-type terms. A vierbein eaµ
for the metric can be written down explicitly as

e00 = 1 , e11 =
a√

1− kr2
, e22 = ar , e33 = ar sin θ . (31)

The spin connection ωab
µ is defined via

ωab
µ = eaγΓ

γ
σµe

σb + eaγ∂µe
γb . (32)

Using this to evaluate the Chern–Simons terms results in expressions which
are complicated and not especially illuminating. For example, we have

1

2κ

(
k̂CS,1

)
0
ϵ0λµνηacηbdω

ab
λ ∂µω

cd
ν =

1

2κ

(
k̂CS,1

)
t
ar

(
15a6ȧr6 cos θ sin7 θ

−15a6ȧr5 sin8 θ + 3a7r8
(
2kr2 − 3

)
cos θ sin7 θ − 15a7r5 cos θ sin7 θ

+6a7r5 cos θ sin6 θ − 3a7

1− kr2
r5

(
5kr2 − 4

)
cos θ sin8 θ

−12a3r2 cos θ sin2 θ
(
a4r4 sin4 θ cos θ − 3a4r3 sin3 θ

)
−3a7r6 sin3 θ

(
4 cos2 θ sin3 θ − sin5 θ

)
+9a7r6 cos2 θ sin6 θ + a7r6 cos2 θ − 3a7r6 sin2 θ

)
. (33)
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The main point is that this term vanishes when a or r is zero, but not when
ȧ, k or θ are zero. Since this is physically reasonable, we argue that it is
plausible that (k̂CS,1)

µ and (k̂CS,2)
µ can both be taken as non-vanishing,

with no a priori reason why we should set them to zero.

3. Spontaneous diffeomorphism violation
and Nambu–Goldstone modes

An interesting possibility for Lorentz violation in the EFT is that it is
determined by spontaneous breaking of Lorentz symmetry in the underlying
quantum gravity theory. This possibility is especially popular in string the-
ory scenarios [23]. It is a general result that spontaneous violation of local
Lorentz symmetry occurs if and only if there is also spontaneous violation
of diffeomorphism invariance. There is, however, an important exception.
This is when the tensor background fields are formed from combinations of
the Minkowski metric ηab or the Levi-Civita tensor ϵabcd, since in this case,
the fields can spontaneously break diffeomorphism invariance whilst acci-
dentally preserving local Lorentz invariance. The simplest example of terms
of this kind can be found in the Higgs sector, since the tensor backgrounds
k̂µν could be proportional to the metric ηµν

LHiggs =
1

2

[(
k̂ϕϕ

)µν
(Dµϕ)

†Dνϕ+H.c.

−
(
k̂ϕW

)µν
ϕ†Wµνϕ−

(
k̂ϕB

)µν
Bµνϕ

†ϕ
]
, (34)

where the background fields have the mass dimension 4. One can also have

LHiggs = −
(
k̂ϕR

)µνρσ
Rµνρσϕ

†ϕ , (35)

since (k̂ϕR)
µνρσ could be proportional only to ϵµνρσ or ηµνηρσ.

The existence of Nambu–Goldstone modes due to spontaneous Lorentz
violation has been studied by Kostelecký and Bluhm [24]. In general, ten
such modes can appear when a tensor acquires a vacuum expectation value,
but only four of these are diffeomorphism modes associated with violation
of diffeomorphism invariance. The other six are Lorentz modes due to spon-
taneous breaking of local Lorentz invariance and would not be present for
the backgrounds specified in the terms above. However, the observability of
these modes depends on the dynamics of the tensor field which causes the
spontaneous breaking, as well as the geometry of the spacetime. Given an
arbitrary tensor Tλµν... and a vacuum value of the tensor tλµν..., an excitation
about the vacuum value is the difference between them

δTλµν... = Tλµν... − tλµν... . (36)
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Tλµν... is some combination of ηµν and ϵµνρσ, so the vacuum value is a con-
stant. Since Tλµν... is also a constant, it follows that these fluctuations will
not have any long-range effects and are not observable at long ranges. An-
other way to see this is to consider the expression for the fluctuations due
to infinitesimal diffeomorphisms

δTλµν... ≈ − (∂λζα) t
α
µν − (∂µζα) t

α
λν − · · · − ζα∂αtλµν , (37)

where ζµ is a vector used to define an infinitesimal diffeomorphism in a co-
ordinate basis

xµ −→ xµ + ζµ . (38)

More generally, in the case of constant vacuum values for tensors, one can-
not form a kinetic term in the Lagrangian which allows for propagation of
diffeomorphism modes. For this reason, in the rest of the article, we do
not distinguish between explicit and spontaneous diffeomorphism breaking,
although the explicit case is usually ruled out by no-go theorems in Rieman-
nian geometry [4, 25].

4. Conclusion

To conclude, we will summarize the new results in the paper in system-
atic fashion and compare them with previous studies. The results obtained
are shown in Table 1, where one can see the coefficient studied and the
constraint obtained (where possible). To begin with the Higgs sector, the
coefficients (k̂ϕ)µ were already bounded by Anderson, Sher, and Turan [16]
and we argued that it was plausible that the higher-order Higgs coefficients
(k̂ϕDϕ)µ should have the same bound. In Section 2.2, we considered the four
sets of coefficients which appear in the gauge sector, which have not been
studied numerically before. Bounds on (k̂1)µ and (k̂2)µ were obtained simi-
larly to calculations of Kostelecký and Li by considering physical processes
which would be predicted to be modified by these coefficients and then us-
ing experimental constraints on the process to bound the Lorentz-violating
coefficients. As an example, the presence of the term with (k̂1)µ predicts
a modification to the branching ratio for the forbidden decay of a Z boson
to a pair of photons which can be directly compared with experimental data.
We wish to emphasize that the bounds which we found for (k̂1)µ and (k̂2)µ
match the bound on the coefficients aµαβ in the limit of QCD and QED cou-
pled to quarks which was suggested as feasible by Kostelecký and Li given
current experimental sensitivities [6]. The fact that we were able to consider
different physical processes (for example, decay processes which are forbid-
den in the Standard Model) and use existing experimental measurements to
match these bounds for the gauge sector suggests that this bound is likely
to be correct for aµαβ given current data and simulations.
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Table 1. Summary of results obtained for coefficients compared to previous work.

Coefficient Constraint(
k̂ϕ

)
µ

Re

((
k̂ϕ

)
X,Y

)
≤ 10−31 GeV,

Re

((
k̂ϕ

)
Z,T

)
≤ 10−27 GeV [8]

(
k̂ϕDϕ

)
µ

N/A but plausible Re

((
k̂ϕDϕ

)
X,Y

)
≤ 10−31 GeV−1,

Re

((
k̂ϕDϕ

)
Z,T

)
≤ 10−27 GeV−1

(
k̂0

)
µ

= 0 at one loop(
k̂1

)
µ

< 10−4 GeV(
k̂2

)
µ

< 10−4 GeV(
k̂3

)
µ

N/A but plausible < 10−4 GeV(
k̂Γ

)
µ

(
k̂Γ

)
t
< 1× 10−18 GeV(

k̂CS,1

)
µ

N/A but plausible ̸= 0(
k̂CS,2

)
µ

N/A but plausible ̸= 0

Given the scope of this study, we were unable to bound the coefficients
(k̂3)µ which take part in gluon interactions. However, we noticed an inter-
esting implication for processes dominated by certain gluon exchanges that
the contribution from a coefficient changes sign when a gluon is exchanged
with its antiparticle. This is similar to the prediction of Kostelecký and
Li that the presence of the aµαβ coefficients in QCD and QED coupled to
quarks would ultimately lead to a difference between the deep inelastic scat-
tering cross section for protons and antiprotons, although this would require
further simulations to show conclusively. Finally, we were also not able to
bound the coefficients (k̂0)µ but by considering the predicted counterterm
vertex factor for a Z boson, we were able to observe that the coefficients
vanish at one loop (this has not been pointed out previously).
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In Section 2.3, we studied the coefficients (k̂Γ )µ, (k̂CS,1)µ, and (k̂CS,2)µ
in the gravitational sector. These have not been bounded numerically in
previous work, although Altschul [26] showed that radiatively-induced grav-
itational Chern–Simons terms due to a term in the fermion sector with
a preferred axial vector are vanishing. By assuming that the Universe is
described to a very good approximation by the simple Robertson–Walker
metric, the calculations for these terms are relatively tractable and result
in a bound on the coefficient (k̂Γ )t. We also calculated an exact expression
for one of the components of (k̂CS,1)µ and argued that it was plausible that
these coefficients do not vanish.

We note that the type of term studied in the article allows for multi-
ple scenarios where diffeomorphism invariance may be explicitly or sponta-
neously broken without necessarily breaking local Lorentz invariance. The
case of explicit diffeomorphism violation is excluded by no-go theorems, but
these theorems only apply to explicit breaking in Riemannian geometry, so
there may still be loopholes if the breaking is due to a quantum gravity
theory which is formulated in terms of non-Riemannian or Finsler geometry.
This could be another clue that the correct quantum gravity theory should
be formulated using a type of geometry which is different from the familiar
Riemannian one. It is also possible that the consistency conditions of the
SME can be satisfied with explicit diffeomorphism breaking in a wide range
of theories [27]. Explorations of gravity theories with new geometric settings
are well-motivated even without quantum gravity, so this suggestion also fits
in with wider work on modified gravity theories [28].

The author thanks Brett Altschul and Cosmas Zachos for helpful discus-
sions.
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