
Acta Physica Polonica B 55, 12-A1 (2024)

DO ΛCC AND G RUN?∗ ∗∗

John F. Donoghue

Department of Physics, University of Massachusetts
Amherst, MA 01003, USA

donoghue@physics.umass.edu

Received 4 November 2024, accepted 25 November 2024,
published online 7 January 2025

No

DOI:10.5506/APhysPolB.55.12-A1

1. Introduction

When renormalizing coupling constants, one often finds a scale depen-
dence such that the coupling constant measured at one energy scale will
have large corrections when used in reactions at a different scale. The use of
a running coupling will capture this scale dependence and will describe the
correct coupling constant to be used at all energy scales. In the gravitational
interactions, there are often attempts to make G and ΛCC into running cou-
plings and to use the running versions in phenomenology1. That is the topic
of this short note.

The one-word abstract used above is meant to capture the essential point
of this discussion. By itself, it does not capture the full nuances of the
discussion, which is the goal of the rest of this paper. One can always
make theoretical constructs which look like running couplings, and these
may have some utility in certain contexts. However, the question of the
title, and the answer of the abstract, is meant to refer to running in the
same sense that we use running couplings such as the QCD coupling in the
Standard Model — as running couplings describing the changes with the
energy scale of physical amplitudes induced by quantum corrections. As
usual, energy and distance scales are inversely related, so this would apply
to distance-dependent couplings in gravity.
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1 A representative but incomplete set of examples in favor of running behavior is [1–7],

and arguments against running are found in [8–14].
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2. Varieties of running

There are various techniques used when describing running coupling con-
stants, and in the most familiar settings these give the same results. This
similarity leads to a lack of focus on the physics when dealing with somewhat
non-standard settings. In this section, I give a review of these techniques
with a focus on their differences, using a conventional example. I will distin-
guish physical running which refers to running of physical amplitudes with
the energy scale of the problem, cutoff running when using dimensional cut-
offs for regularization, and µ running when using dimensional regularization.
I will also use the Passarino–Veltman reduction to highlight the differences
between scalar tadpole and scalar bubble diagrams, and will describe non-
local effective actions as the way to describe running parameters.

2.1. Example — chiral perturbation theory

A sample theory which is useful to use as an example is chiral pertur-
bation theory — the low-energy limit of QCD describing the interactions
of spin-zero particles called pions. It is a non-linear effective field theory
which has many similarities to general relativity. It has also been studied
theoretically and experimentally for decades, so that we know exactly how it
works. The theory satisfies a chiral symmetry, which need not be described
here (see, for example, [15–17]) but leads to an effective Lagrangian which
can be described in a derivative expansion. For massless pions, this has the
form

L = L2 + L4 + L6 + L8 + . . .

=
F 2

4
Tr

(
∂µU∂µU †

)
+ ℓ1

[
Tr

(
∂µU∂µU †

)]2
+ℓ2Tr

(
∂µU∂νU

†
)
Tr

(
∂µU∂νU †

)
+ . . . (1)

Here, the pion fields are described by an exponential function

U(x) = exp

(
i
τ · ϕ
F

)
. (2)

The constant F is called the pion decay constant, F ∼ 93 MeV. Since it mul-
tiplies the two derivative Lagrangian, it plays the role that the Planck mass
does in general relativity with F 2 being roughly identified with 1/G ∼ M2

P.
The coefficients ℓ1, ℓ2 multiply terms of order 4 derivatives in analogy with
the curvature squared terms of general relativity. This effective field theory
of pions behaves similarly to the effective field theory of general relativity
[18, 19].
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Physical processes are independent of the method regularizing the diver-
gences of the theory. The functional form can depend on the ways that we
chose to define and measure the coupling constants — i.e. the renormaliza-
tion scheme — but the content of the resulting formulas is the same. For
example, using a particular renormalization scheme defining the couplings
at s = t = u = µ2

R, all regularization methods would yield the amplitude for
π+ + π0 → π+ + π0 as [17]

M =
t

F 2
+ [8ℓr1(µR) + 2ℓr2(µR)]

t2

F 4
+ 2ℓr2(µR)

s(s− u) + u(u− s)

F 4

− 1

96π2F 4

[
3t2 ln

−t

µ2
R

+ s(s− u) ln
−s

µ2
R

+ u(u− s) ln
−u

µ2
R

]
, (3)

with s, t, u being the usual Mandelstam variables. However, there will be
differences in how different regularization methods arrive at this result, and
I will describe these differences in the following subsections.

The scattering amplitude contains the visible results of a power counting
theorem of Weinberg [20]. Higher loops renormalize higher-order operators
in the effective Lagrangian. In particular, one-loop corrections renormalize
the operators of the order of (energy)4 but not the leading term of the order
of E2. We see this in the amplitude because the divergences and the logs
appear at order E4. The gravitational effective field theory has a similar
power counting theorem, and we will see that it is relevant to the topic
of this paper. Weinberg’s theorem uses dimensional regularization in its
proof, because that method does not introduce any powers of dimensionful
parameters. We will see that cutoff regularization violates this. But because
all physical quantities are independent of the regularization method, powers
of the cutoff must be absorbed into renormalized constants without leaving
behind any physical remnant in amplitudes.

2.2. Physical running

In particle physics, the use of running couplings refers to the dependence
of physical processes on the energy scale. When a reaction is observed at
some energy scale, one uses a running coupling appropriate for that energy.
This captures the quantum processes relevant to that energy and avoids the
appearance of large logarithms which could spoil perturbation theory.

This use is visible in the amplitude of Eq. (3). The coefficients ℓ1, ℓ2
could have been measured to be particular values near some renormalization
scale µR, but when applied at energies which are far different, one should use
different values determined by the renormalization group in order to avoid
the appearance of large logarithms. The physical invariance of the scattering
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amplitude leads to the beta functions

βℓ1 = µR
∂

∂µR
ℓ1 = − 1

96π2
,

βℓ2 = µR
∂

∂µR
ℓ2 = − 1

192π2
. (4)

These are typical running couplings. The running of yet higher-order chiral
logarithms is also well understood in chiral perturbation theory [21].

However, one can also see that F does not run. The portion of the am-
plitude which is governed by F has no energy dependence. If we measure F
at one energy scale, the same value can be used at all energies. The beta
function for the leading order coupling is

βF = µR
∂

∂µR
F = 0 . (5)

2.3. Cutoff running

If one uses an energy cutoff in describing quantum corrections, the results
for any observable will depend on the cutoff for any finite value of the cutoff.
One can consider lattice calculations within QCD as an archetype for this.
The lattice spacing a provides a UV cutoff of the order of Λ ∼ 1/a. The
calculation of F or any other parameter will depend on a when calculated
at finite values of a. The physical value is obtained by taking the continuum
limit a → 0 (Λ → ∞). Here the a dependence of the calculation does not
imply that F is a running coupling. It simply reflects that the calculation
is incomplete, and there are quantum corrections from energy scales beyond
Λ which have not yet been included in the calculation. When performing
a complete calculation using lattice QCD, one can actually account for these
contributions by extrapolating to the continuum. The result is the physical
coupling.

When using a cutoff as a regulator in perturbation theory, the logic is
similar. We calculate the physics that we know up to some scale Λ and
recognize that there is potentially unknown physics beyond that scale. We
would calculate it if we could. However, the beauty of the renormalization
program is that all that physics, the cutoff and all that lies beyond it, dis-
appears when we use the measured parameters, which obviously include all
the physics which is found in Nature.

The use of a cutoff will lead to renormalization of the parameter F
which is quadratic in the cutoff Λ. This can be addressed using either the
normalization of the propagator or the axial coupling. In both cases, the
relevant diagram is a tadpole diagram, for example as in Fig. 1 (a) and (b).
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Fig. 1. Examples of tadpole diagrams (a) and (b), and the bubble diagram (c).
The dashed lines can represent various external states but the key feature is that
external momentum flows through the bubble diagram but not through the tadpole
diagrams.

The loop integral is

−i

∫
d4p

(2π)4
1

p2 + iϵ
=

1

16π2
Λ2 (6)

as it is quadratically divergent. Including the appropriate numerical factors
leads to a one-loop correction to F

δF =
Λ2

16π2F
. (7)

If we apply usual methods following the divergences of a parameter, this
would lead to the conclusion that F runs quadratically with the cutoff

βF = Λ
∂

∂Λ
F =

1

8π2
Λ2 . (8)

However, this loop integral is not sensitive to any of the energy scales of any
reaction. It is just a constant and is absorbed into the physical value of F
upon renormalization2

Fren = Fbare + δF . (9)

When calculating the scattering amplitude at one loop, we need the wave-
function renormalization (i.e. F ) and the scattering correction. There will
be both tadpole and bubble diagrams, as in Fig. 2. By using the Passarino–
Veltman reduction technique, to be reviewed below, these can be reduced
to scalar tadpole and scalar bubble diagrams with no momentum factors in
the numerators. The chiral symmetry ensures that the renormalization of F

2 If we had included a mass for the pion, there would in general be a sub-leading loga-
rithmic dependence on the cutoff too. This will also disappear into the renormalized
parameter, similar to the discussion related to µ running in the next subsection.
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Fig. 2. The diagrams giving corrections to the two- and four-point functions.

in the scattering amplitude will be the same as was calculated above — it
will again be a tadpole with no residual-energy dependence. There will also
be the scalar bubble diagram

IB(q) = −i

∫
d4p

(2π)4
1

[ p2 + iϵ][(p− q)2 + iϵ]
=

1

16π2
log

Λ2

−q2
. (10)

This contributes to the amplitude of the order of (energy)4 as required by
the Weinberg power counting theorem. The bubble diagram is logarithmi-
cally divergent and also depends logarithmically on the energy scale. The
divergences will be absorbed into the renormalized parameters ℓ1, ℓ2

ℓi(µR) = ℓi + δℓ1
(
s = t = u = µ2

R

)
. (11)

To measure these parameters, one must use some renormalization scale µR

and a renormalization scheme. This leads to the physical scattering ampli-
tude of Eq. (3).

For these parameters, one could also obtain the correct beta function by
following the dependence of the quantum correction on the cutoff

βi = Λ
∂

∂Λ
δℓi . (12)

In this case this is clear since there are no other dimensional parameters in
the theory and the logarithm must depend on log(Λ2/q2).

In theories with extra factors of masses, following logΛ does not always
give the correct beta function due to factors of log(Λ2/m2) which do not
depend on the energy scale in the amplitude. The general structure will be
of the form

M ∼ g2
[
1 + a log

Λ2

m2
+ b log

Λ2

q2
+ . . .

]
(13)

with a, b being constants. Upon renormalization of the coupling, the
logΛ2/m2 factors disappear into the renormalized coupling, and do not lead
to physical running. After renormalization, the logΛ2/q2 terms turn into
logµ2

R/q
2 physical effects, where µR is related to the renormalization scale

at which the renormalized coupling is measured.
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2.4. µ running

Another common technique is to define the beta functions by following
the parameter µ that occurs in dimensional regularization, i.e. µ∂/∂µ. This
always works in massless theories, because in dimensional regularization the
massless tadpole diagram vanishes

IT = 0 (14)

and in the bubble diagram, the logarithmic dependence on µ is always related
to the energy dependence

IB(q) =
1

16π2

[
1

ϵ̄
+ log

µ2

−q2

]
(15)

with 1/ϵ̄ = 2/(4−d)+log 4π−γ. The fact that the tadpole diagram vanishes
tells us that the parameter F is not renormalized at one loop. It is therefore
obvious that it does not run. In the scattering amplitude, the quantum
corrections will all be of the order of E4, and it is not hard to see that for
the coefficients ℓi tracing the µ dependence,

βi = µ
∂

∂µ
δℓi , (16)

will also give the correct beta function.
However, a point which I wish to emphasize here is that when masses

are involved, the µ dependence does not always indicate running. In the real
world, the chiral effective field theory does involve the pion mass. In this
case, there is a non-zero renormalization of F (or more precisely the pion
decay constant of the real world Fπ = 93 MeV). The loop correction to Fπ

is again the tadpole diagram and has the value [15]

δFπ =
m2

π

16π2F

(
ℓr4 + log

µ2

m2
π

)
, (17)

where ℓ4 is another coefficient which appears in the Lagrangian when includ-
ing masses. However, for our purposes, the important point is that despite
the fact that

µ
∂

∂µ
δFπ ̸= 0 (18)

the decay constant is not a running parameter. The quantum correction
is absorbed into the renormalized value but there is no dependence of Fπ

on any external energy scale which varies in physical reactions. There is
a wealth of phenomenology to demonstrate this empirically.
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2.5. Tadpoles and bubbles

Passarino and Veltman [22] showed that all one-loop Feynman integrals
can be reduced to functions of the scalar tadpole, bubble, triangle, and box
diagrams. Here, scalar means that there are no momentum factors in the
numerator. The only two of these scalar integrals which are divergent are the
tadpole and bubble diagrams, so that these are the ones which are involved
in renormalization.

The tadpole diagram is independent of any external momentum. It can-
not lead directly to any energy dependence of the renormalized couplings.
The quadratic Λ2 behavior of the tadpole found when using a cutoff is then
never part of a physical beta function, nor are the m2 factors arising from
the tadpole. The scalar bubble diagram does carry energy dependence and
has a log q2 when the momentum is greater than the mass in the loop. It is
generally this logarithm which leads to the physical running of couplings.

In a theory with no mass parameters, dimensional analysis says that the
logarithms come with logΛ2/q2 or logµ2/q2, so that following the Λ or µ
dependence will correctly identify the beta functions. However, if there are
masses around, there can also be factors of logΛ2/m2 or logµ2/m2. These
do not lead to physical running, and here following Λ or µ can be misleading.

2.6. Non-local effective actions

A powerful way to represent the energy dependence that leads to physical
running is the use of non-local effective actions. For example, the running of
the QED coupling due to the vacuum polarization diagram with a massless
field can be represented in shorthand notation by3

Seff =

∫
d4x

(
−1

4
Fµν

[
1

e2(µ)
− b log

(
2/µ2

)]
Fµν

)
, (19)

where b is related to the beta function of the theory. This compact notation
actually hides a non-local effective action because the log2 represents a non-
local function ∫

d4x Fµν log
(
2/µ2

)
Fµν

=⇒
∫

d4x d4y Fµν(x)⟨x| log
(
2/µ2

)
|y⟩Fµν(y) (20)

describing the Fourier transform of log−q2,

⟨y| log2|x⟩ =
∫

d4q

(2π)4
eiq·(x−y) log−q2 . (21)

3 The reader who would like to see this derived in coordinate space can find the calcu-
lation in Ref. [23].
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The fact that physics is independent of the scale µ gives the beta function
β = be2. However, it is the log2 which tells us that matrix elements of this
effective action will depend on the energy involved in the reaction.

In the chiral theory that we have been using as an example, these non-
local effective actions also exist. They can be found in the so-called unitarity
corrections in both of the classic papers of Gasser and Leutwyler on chiral
perturbation theory [15, 16]. The authors also separate out the tadpole
corrections from the logarithms of momenta even in the presence of masses.
The curious reader is referred to there for the details. For the purpose of
this paper, it is not needed to describe these fully here, because a related
formalism for gravity and gauge theory has been developed by Barvinsky
and Vilkovisky [24–26], and we will apply this directly to gravity below.

3. The cosmological constant

The gravitational interaction can be organized in a derivative expansion
with local terms consistent with general covariance

Sgrav =

∫
d4x

√
−g

[
−ΛCC +

2

κ2
MR+ c1R

2 + c2RµνR
µν + . . .

]
, (22)

with ΛCC being the cosmological constant and κ2 = 32πG. The lessons
discussed above also apply to gravity. We will argue that while the renor-
malization of ΛCC and G can depend on cutoffs or on the scale factor µ in
dimensional regularization, these dependences do not amount to the running
of these parameters in physical processes.

3.1. One-loop renormalization

Let us start with a simple example of the renormalization of the cosmo-
logical constant by a massive scalar field, using dimensional regularization.
This can be explored in the weak field limit by calculating the coupling to
the gravitational field. Using gµν = ηµν + hµν , the cosmological term in the
action can be expanded

√
−gΛCC = ΛCC

(
1 +

1

2
hσσ +

1

8
(hσσ)

2 − 1

4
hσλh

σλ + . . .

)
. (23)

One can study the renormalization of the cosmological constant by calcu-
lating the renormalization of the one-point, two-point etc. coupling in the
weak-field limit. It is the simplest and most instructive to calculate the cou-
pling to a single hµν field. This is just the tadpole loop of Fig. 1 (a). One
finds

δΛ = − m4

32π2

[
1

ϵ
− γ + log(4π) + log

µ2

m2
+

3

2

]
. (24)
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This result depends on the parameter µ and exhibits what I referred to above
as µ running

µ
∂δΛ

∂µ
= − m4

16π2
̸= 0 . (25)

However, this cannot depend on any external momentum scale and the quan-
tum correction just provides a constant shift in the value of the cosmological
constant. When renormalized,

ΛCC = Λbare + δΛCC , (26)

the measured value will be the same at any energy scale. This implies that
there is no physical running of the cosmological constant.

The fact that you can renormalize the cosmological constant by using
the single graviton coupling — which always must be independent of the
external energy scales — makes this a general result. One might worry that
the second-order coupling will bring in a bubble diagram, and this could
bring in energy dependence. However, the explicit calculation yields the
same result for the renormalization.

When using cutoff regularization in the evaluation of this integral, it is
common to say that the result is of the fourth order in the cutoff, i.e. Λ4.
However, there is a little appreciated contribution which cancels that contri-
bution, arising from the path integral measure [27, 28]. There are residual
effects of the order of m2Λ2 and m4 logΛ. However, because these can be
calculated from the tadpole diagram, there is no energy dependence. Like
the µ dependence discussed above, the quantum correction is a constant and
is absorbed into the renormalized value of the cosmological constant.

3.2. Non-local actions

At one loop, gravitons and matter fields produce divergences at the or-
der of the curvature squared. These are local terms in position space, and
the divergences can be absorbed into the coefficients in the local action.
Accompanying these divergences come logarithmic corrections. In momen-
tum space, these are logs of the momenta found in the bubble diagram. As
described above in Section 2.6, in coordinate space, they are generally no-
tated as log2, which is the non-local function of Eq. (21). Barvinsky and
Vilkovisky and collaborators have developed this program as a non-local
expansion in the curvature [24–26]. In curved spacetime, there is consid-
erable ambiguity in the covariant form of log2 although the effect of that
ambiguity can be shifted to higher order in the curvature expansion. After
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renormalization, the curvature squared terms of the effective action are

Sgrav =

∫
d4x

√
−g

[
c1(µ)R

2 + d1R log

(
2

µ2

)
R

+ c2(µ)RµνR
µν + d2Rµν log

(
2

µ2

)
Rµν

]
. (27)

The coefficients di are known as these follow from the one-loop divergences
of gravity and matter. These tell us that the curvature squared couplings
are running couplings in the physical sense.

Once we understand how running couplings are represented using non-
local effective actions, we see clearly the lack of running of the cosmological
constant. To my knowledge, this form of the argument was first given by
Barvinsky [9]. The key point is that quantum corrections do not generate
an isolated log2 term in an effective action. The expression

S
?
=

∫
d4x

√
−g [Λ+ d log2] (28)

is not a possible quantum correction. The log2 factor has nothing to act on.
Even if ∫

d4x
√
−g(x) d4y

√
−g(y) ⟨y| log2|x⟩ (29)

were somehow interpreted to make sense, its matrix element would not con-
tain a running coupling for the single hµν matrix element in the weak-field
limit. Thus, the argument here is that Λ and also G cannot run because
we cannot have non-local actions for these parameters which are consistent
with general covariance.

There can be a related non-local Lagrangian which appears formally at
the same order in the derivative expansion, but which however is distinct
from the cosmological constant. This can be found as a part of the bub-
ble diagram of Fig. 1 (c). There is a leftover energy-dependent interaction,
which has a different structure from the cosmological constant [29]. I have
called this the non-local partner of the cosmological constant, and have cal-
culated the form of the two-graviton bubble diagram and used the methods
of Barvinsky–Vilkovisky to make a covariant operator, finding

L =
m4

40π2

[(
1

2
Rλσ

)
log

((
2+m2

)
/m2

)( 1

2
Rλσ

)
−1

8

(
1

2
R

)
log

((
2+m2

)
/m2

)( 1

2
R

)]
+

m2

240π2

[
Rλσ

1

2
Rλσ − 1

8
R

1

2
R

]
(30)
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with the shorthand notation

⟨x| log
((
2+m2

)
/m2

)
|y⟩ =

∫
d4q

(2π)4
eiq·(x−y)

1∫
0

dx log

[
m2 − x(1−x)q2

m2

]
.

(31)
This operator is of zeroth order in the derivative expansion, like the cosmo-
logical constant. However, it starts at the second order in the gravitational
field and hence is distinct.

3.3. Unimodular gauge

For the cosmological constant, there is an independent argument against
running, which is unique to gravity. Due to the general covariance of the
theory, it is possible to make a gauge choice [31–34] such that

√
−g = 1.

In this gauge, the vacuum energy ΛCC does not couple to the metric and
the equations of motion does not involve ΛCC. However, the cosmological
constant, as we know it, re-emerges in this gauge as an initial condition for
a constraint. The issue is that the equations of motion in this gauge do
not satisfy the conservation equation for the stress tensor. There is a need
for a constraint equation to enforce conservation. That equation requires
the specification of an initial condition. Using this, one obtains the usual
predictions of general relativity.

While the use of this gauge does not change general relativity, it is useful
for the topic of this paper. The initial condition is just a number. It does
not have the possibility to be a running parameter depending on the energy
or distance scales.

4. Newton’s constant G

The reasoning for the non-running of G is roughly similar. Direct cal-
culation of the contribution of a matter loop of a massive particle yields
a divergence

δ
1

G
∼ m2 (32)

without any log q2. As with ΛCC this will be absorbed into the renormalized
G with no residual running. This is as it must be because there cannot be
a non-local effective action of the form of Γ λ

αβ log2Γ
αβ

λ as this is forbidden
by the general coordinate invariance4.

4 The “non-local partner” of G is the term of the order of m2 in Eq. (30) but this has
a different structure from the Einstein action.
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For the case of G, there is an additional phenomenological case against
the definition of a running constant. I have argued above that the power-
law dependence on a cutoff does not constitute running behavior, using the
example of F in the chiral perturbative scattering amplitude. In general
relativity, 1/G plays the same role that F plays in the chiral case, as the
coefficient of the two-derivative term in the Lagrangian. The real running
behavior happens with the four-derivative terms. However, one might try
to argue that the Λ2 dependence was in some way a proxy for the higher
derivative terms that come with extra powers of the energy. Perhaps there
is some phenomenological way to define a running coupling with power-law
running. In the case of gravity, this has been checked and found not to work
[12–14], by calculating several observables and looking for common features.
Part of it is numerical, in that the quantum corrections to different processes
come with very different numerical factors and signs. This is because there
is no reason for them to be related, as they are not the renormalization
of the same object. Part of the reason is also kinematical. Higher-order
corrections come with different kinematic invariants, and can be of different
magnitudes and signs5. In some cases, corrections which are positive in, say,
the s channel would need to be negative in the t channel. There is no useful
definition of power-law running parameters.

5. Summary

Most of the statements and techniques described here are well-known
in the context of other interactions. However, quantum gravity does not
have a long tradition of phenomenological applications, and so it is perhaps
less clear how these techniques apply to G and ΛCC. Hopefully by seeing
the example of a very similar effective field theory in Section 2.1, one can
translate them to the case of gravity.

I would like to here also continue the discussion of the use of cutoffs,
which was started by the discussion of lattice cutoffs in Section 2.3. When
using a cutoff in a theoretical calculation, there will always be a dependence
on the cutoff for intermediate results. While one can use this dependence
to define a beta function, and it can be useful to do so within that calcu-
lation, it is not necessarily a function related to the behavior of couplings
in physical amplitudes. Rather, it is an indication of an incomplete calcu-
lation. The example previously was the coupling F which does not run at
all in amplitudes, but which would appear to have cutoff dependence when
using the lattice or any other method involving a cutoff. The real world is
obtained only by removing the cutoff. While such a running coupling can be
useful within the context of the particular theoretical calculation, it can be

5 This can also be seen in the chiral amplitude of Eq. (3).
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disconnected from physical running. In gravitational theories, the Asymp-
totic Safety program [35–38] uses the Functional Renormalization Group in
a similar way. The quantum corrections are accounted for above some sep-
aration scale k, and the couplings have a k dependence. The real world is
obtained by integrating over all values down to k = 0. The k dependence
involves both power-law running and logarithmic running. However, neither
is guaranteed to be present in physical amplitudes. There are by now sev-
eral counter examples [39–42]. A clear takeaway is that the running with a
cutoff found in such schemes is not to be naively used in phenomenological
applications of physical quantities.
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