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Causal Dynamical Triangulations (CDT) is a lattice theory of quantum
gravity. It is shown how to identify the IR and the UV limits of this
lattice theory with similar limits studied using the continuum, functional
renormalization group (FRG) approach. The main technical tool in this
study will be the so-called two-point function. It will allow us to identify a
correlation length not directly related to the propagation of physical degrees
of freedom.
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1. Introduction

Four-dimensional gravity is not perturbatively renormalizable. For many
years it has been discussed if the theory could be defined as a unitary,
non-perturbative quantum field theory. This putative theory could contain
other terms than the classical Einstein–Hilbert terms in the action and these
additional terms could make the theory UV well defined. This has been
well understood since the seminal work of Stelle [1] where an R2 term was
added to the classical GR action. Unfortunately, it was not so clear how to
ensure the unitarity of the corresponding quantum theory. A more general
setup is known as the asymptotic safety scenario [2] where one, appealing
to the Wilsonian renormalization group, tries to understand if the UV limit
of a quantum gravity theory can be associated with a fixed point of the
renormalization group. This fixed point could in principle be non-Gaussian,
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and starting with the seminal work of Reuter [3], a lot of evidence has been
accumulated supporting the existence of such a non-Gaussian fixed point
(see [4–6] for extensive reviews). The evidence for this non-Gaussian fixed
point comes from solving the renormalization group equations using the
so-called functional renormalization group technique (FRG) that goes back
to Wetterich (see [7] for a review). However, “solving” FRG also means
in this context a truncation of the full equation, and it can be difficult to
judge how reliable the results are. Thus, it would be reassuring if one could
verify the FRG results using an independent calculation and since we are
discussing non-perturbative quantum field theory, the use of lattice quantum
field theory is natural. In that case, one often has to use Monte Carlo
simulations, and they also represent an approximation, but of a different
kind than used in FRG. The purpose of this paper is to compare the two
approaches.

The rest of the paper is organized as follows: first we recall how one can
use the lattice field theory to test the existence of a putative non-perturbative
UV fixed point. Here, we use a ϕ4 theory in four dimensions as an exam-
ple. Next, we discuss ways in which quantum gravity can be formulated as
a lattice field theory, namely by the use of the so-called Dynamical Trian-
gulations (DT) or Causal Dynamical Triangulations (CDT). In this section,
we also discuss how to introduce the concept of a diffeomorphism invariant
correlation length in quantum gravity, and in what way it implies finite-size
scaling in the lattice quantum gravity theories. We then compare the lat-
tice results (obtained by Monte Carlo simulations) with the simplest results
obtained using the FRG approach. The final section contains a discussion
of the results obtained so far.

2. Identifying fixed points in ϕ4 lattice theory

Let us consider a ϕ4 lattice field theory in four dimensions. The lattice
action used is

S =
∑
n

(
4∑

i=1

(ϕ(n+ ei)− ϕ(n))2 + µ0ϕ
2
n + κ0ϕ

4(n)

)
, (1)

where n denotes a lattice point, ei is a unit vector in direction i, and the
fields ϕ(n) and the coupling constants µ0 and κ0 ≥ 0 are dimensionless, and
the length of the lattice links is 1. The theory has a second-order phase
transition line, starting at κ0 = µ0 = 0 and extending to κ0 = ∞. It
separates the symmetric phase (⟨ϕ⟩ = 0) from the broken phase (⟨ϕ⟩ ̸= 0).
We will consider only the symmetric phase. For each value of µ0 and κ0, one
has a correlation length ξ(µ0, κ0) defined by the exponential fall-off of the
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two-point function. It diverges when one approaches the second-order phase
transition line. Rather than using µ0, κ0 as variables defining the theory, we
will use ξ, κ0. Then the phase transition line will be at ξ−1 = 0. The possible
fixed points for the theory will be on this line and there can potentially be
both IR and UV fixed points as shown in Fig. 1. For each value of the
bare coupling constant κ0, we can define a renormalized coupling constant
κR(κ0, ξ). It can be expressed in terms of bare four-point and bare two-point
functions (see [9] for details). The theory will have a UV fixed point κUV

0 if
it is possible to find a path (ξ, κ0(ξ)) in the ξ, κ0 coupling constant plane
such that

κR(κ0(ξ), ξ) = κR for ξ → ∞ . (2)
Such paths for different κR are illustrated in Fig. 1. Differentiating (2)
w.r.t. ξ, we obtain

0 = ξ
d

dξ
κR(κ0(ξ), ξ) = ξ

∂κR
∂ξ

∣∣∣∣
κ0

+
∂κR
∂κ0

∣∣∣∣
ξ

ξ
dκ0
dξ

∣∣∣∣
κR

. (3)

Introducing the bare and the renormalized β-functions

β0(κ0) = ξ
dκ0
dξ

∣∣∣∣
κR

, βR(κR) = −ξ
∂κR
∂ξ

∣∣∣∣
κ0

(4)

ξ−1

0 κ0
κir0 (2)κir0 (1) κuv0

κir
R (1) κir

R (2)κR
κR

κ0 const .
κuv

R

⋯

Fig. 1. The tentative ϕ4 phase diagram with a UV fixed point and two IR fixed
points. The dashed lines are paths where the renormalized ϕ4 coupling constant
κR is kept fixed, while on the dotted line, the bare coupling constant κ0 is fixed.
The thick red line illustrates the way the real renormalization group flow will be
in a ϕ4 theory with a fixed κR. It will never reach the critical line where ξ = ∞
and, accordingly, there will not be a continuum quantum field theory with a fixed
κR > 0, as first shown in [8].
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Eq. (3) can be written as1

βR(κR) =
∂κR
∂κ0

β0(κ0) . (5)

A typical β0(κ0) is shown in Fig. 2, and solving (4) for a fixed κR close to
the fixed point κUV

0 , we obtain

ξ
dκ0
dξ

∣∣∣∣
κR

= β′
0 (κ

UV
0 ) (κ0 − κUV

0 ) , i .e. |κ0(ξ)− κUV
0 | = c (κR) ξ

β′
0(κUV

0 ) ,

(6)
i.e. κ0(ξ) → κUV

0 for ξ → ∞ if β′
0(κ

UV
0 ) < 0. κUV

0 thus serves as a UV fixed
point. Similarly, solving (4) for κR as a function of ξ for fixed κ0, it is seen
from Fig. 1 that κR(ξ) flows to an IR fixed point κIR

R for ξ → ∞.

β0(κ0)

IR
UV

β0(κ0) ≈ β′ 0(κuv0 )(κ0 − κuv0 )

κuv0
κ0

κir0

Fig. 2. The expected form of the ϕ4 β-function if the ϕ4 theory would have a UV
fixed point.

In Eq. (1) we assumed the lattice spacing was 1. One can instead intro-
duce a lattice spacing of length a in (1) and a will then act as an adjustable
UV cut-off. At a UV fixed point, one can define a “continuum limit” where
a → 0 (and κR > 0) in the following way: introduce a physical length ℓph
between lattice points n1 and n2, and a physical (renormalized) mass mR by

ℓph (n1, n2) = a|n1 − n2| , mR =
1

aξ
. (7)

1 The β0(κ0) function as defined by (3) is strictly speaking also a function of ξ, but
for large ξ (the so-called scaling region), this dependence can be ignored. The same
remarks are true for βR(κR).
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This ensures that the exponential decay of the continuum, renormalized
two-point function is defined by mR since we have

e−mphℓph(n1,n2) = e−|n1−n2|/ξ , (8)

and for fixed mR (7) shows that ξ → ∞ leads to a → 0, i.e. a removal of
the UV cut-off and the definition of a continuum quantum field theory with
renormalized coupling constants mR and κR > 0.

The above discussion assumes that the lattice is infinite since we are
discussing the limit where ξ → ∞. In actual numerical lattice Monte Carlo
simulations, we are forced to have a finite lattice consisting of N4 = L4

lattice points. The correlation length can then not be larger than L = N
1/4
4 .

However, assuming that N4 is sufficiently large we have, according to (6),∣∣∣κ0 (N1/4
4

)
− κUV

0

∣∣∣ = c(κR)N
β′
0(κUV

0 )/4
4 , (9)

which is a so-called finite-size scaling relation that we will use also in the
case of lattice gravity. If we are in a regime of coupling constant space
where finite-size scaling is valid, we could have replaced the ξ−1 axis with
an N

−1/4
4 axis, or even an N−1

4 axis. The qualitative features of Fig. 1 would
be unchanged. This is precisely what we will do in the case of lattice gravity,
as will be explained below.

3. Lattice quantum gravity: CDT

Four-dimensional Dynamical Triangulations (DT) and four-dimensional
Causal Dynamical Triangulations (CDT) provide lattice regularizations of
4d quantum gravity (see [10–13] for reviews). For an ordinary lattice field
theory, such as the ϕ4 theory discussed above, the lattice is fixed and the
dynamics comes from the fields ϕ(n) living on the lattice points n. In DT
and CDT, the dynamics comes from summing over different lattices. One
considers 4d piecewise linear manifolds of a fixed topology, defined by gluing
together identical building blocks of four-simplices with link length a, the
a acting as a UV cut-off as in the case of the ϕ4 lattice theory. Viewing
the four-simplices as flat in the interior, a unique geometry is associated
with each such piecewise linear manifold since geodesic distances between
two points are well defined. At the same time, the gluing will define a four-
dimensional triangulation, a lattice. The path integral of quantum gravity
involves the integration over all geometries and it will now be represented
as a sum over all such triangulations or lattices of the given topology. Ac-
tion (1) used in the case of the ϕ4 lattice theory represents the simplest
discretized version of the continuum ϕ4 action. For piecewise linear mani-
folds, there exists a beautiful geometric discretization of the Einstein–Hilbert
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action, where the curvature in the four-dimensional case lives on the trian-
gles of the four-dimensional triangulation, the so-called Regge action [14].
In the case where the triangulation is constructed by gluing together iden-
tical building blocks, the Regge action becomes exceedingly simple since it
will just depend linearly on the total number of four-simplices and the total
number of triangles. We will use this simple action in the definition of the
path integral. The final ingredient entering in CDT is that we assume that
geometries have a proper time foliation that we implement in the following
way. Let time be discretized. At each time ti, we have a spatial slice Σ(ti)
with a fixed spatial topology. Here, we consider the simplest case where the
spatial topology is that of the three-sphere S3. We triangulate each Σ(ti) by
gluing together tetrahedra to form a triangulation with the topology of S3.
We then fill out the slab between Σ(ti) and Σ(ti+1) by four-dimensional sim-
plices, glued together in such a way that the topology of the slab is S3×[0, 1].
These four-dimensional triangulations can share a tetrahedron, a triangle,
a link or a vertex with the three-dimensional triangulation of Σ(ti), and
they will then share a vertex, a link, a triangle, or a tetrahedron with the
three-dimensional triangulation of Σ(ti+1), respectively. The construction
is shown in Fig. 3.

t

t+
1

2

t+1R3

R3

R3

83,2<

t

t+
1

2

t+1R3

R3

R3

84,1<

Fig. 3. The build-up of a CDT triangulation between the time-slab at t and at
t+ 1. Shown is a so-called (3,2) four-simplex and a (4, 1) four-simplex.

In the path integral, we then sum over all possible 3d triangulations
of the spatial slices Σ(ti)s and all possible 4d triangulations that fill out
the slabs. Finally, each such triangulation TL is associated with a weight
eiSregge[TL], where Sregge[TL] is the Regge action associated with TL. The
continuum path integral is then replaced by the following sum:
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Z(G,Λ) =

∫
D[g] eiSeh[g;G,Λ) → ZL(k2, k4) =

∑
TL

eiSregge[TL;k2,k4] , (10)

where the continuum Einstein–Hilbert action refers to the gravitational and
cosmological coupling constants G and Λ, while the Regge action refers to
the dimensionless lattice analogues k2 and k4.

A special property of the CDT setup is that for each Lorentzian trian-
gulation TL, we can perform a rotation to an Euclidean triangulation TE,
simply by changing the length assignment l2 = −a2 of the time-like links
connecting Σ(ti) and Σ(ti+1) to l2 = a2. Formally, this is a rotation to
imaginary time, i.e. Euclidean time. The Regge action will then change in
the standard way

iSregge[TL] → −Sregge[TE] , i .e. ZE[k2, k4] =
∑
TE

e−Sregge[TE;k2,k4] . (11)

In the following, we will always sum over this class of Euclidean triangu-
lations and drop the subscript E. We then have a theory with Euclidean
signature, like in the ϕ4 case, but the class of geometries is smaller than the
one provided by the full class of Euclidean triangulations since the triangu-
lations TE that enter in (11) still remember the time-slicing we imposed on
the triangulations2 TL.

As stated above, the Regge action becomes very simple when one uses
identical building blocks. In CDT we have, in a Wilsonian spirit, chosen
to generalize the Regge action slightly by allowing different cosmological
coupling constants associated with four-simplices of type (4,1) and type (3,2)
shown in Fig. 3. The action then becomes

S[T ] = −k2N2(T ) + k32N32(T ) + k41N41(T ) , (12)

where N2(T ) is the number of triangles in T , N32(T ) the number of (3, 2) plus
(2, 3) four-simplices, and N41(T ) the number of (4, 1) plus (1, 4) four-simples.
The total number of four-simplices in T is N4(T ) = N41(T )+N32(T ). Using
the so-called Dehn–Sommerville relations between the number of subsimples
Ni(T ) of the order of i, where N0(T ) is the number of vertices, we can write
(12) as follows (see [10] for details):

S[T ; k0, ∆, k4] = −(k0 + 6∆)N0(T ) + k4N4(T ) +∆N41(T ) . (13)
2 The four-dimensional DT lattice gravity formulation pre-dates the CDT formulation

[15, 16]. In the DT theory, one sums over the full class of Euclidean triangulations.
In this way, one avoids introducing a time foliation. However, it is unclear how to
relate the theory to a gravity theory with the Lorentzian signature. Also, it was not
clear how to obtain an interesting continuum limit of the DT lattice theory, although
this is still under investigation [17, 18].
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This is the action we will use in the regularized path integral

Z[k0, ∆, k4] =
∑
T

e−S[T ;k0,∆,k4] . (14)

Here, k0 is formally related to the a2/G via Regge calculus, ∆ affects the
ratio between (4, 1) and (3, 2) four-simplices, while k4 monitors N4, the
number of four-simplices.

3.1. Coupling constants and correlation lengths

The coupling constant k4 in (13) plays a special role. This is seen by
writing (14) as

Z[k0, ∆, k4] =
∑
N4

e−k4N4Z[k0, ∆;N4] , (15)

where Z[k0, ∆;N4] denotes the partition function for a fixed N4. It grows
exponentially with N4 and we can write

Z[k0, ∆, k4] =
∑
N4

e−(k4−kc4(k0,∆))N4F (k0, ∆;N4) , (16)

where F is subleading as a function of N4. We cannot perform the sum
analytically and the only way to study the partition function is via Monte
Carlo simulations, and in these studies we are interested in testing as large
N4 as possible. In principle, by changing k4 in the neighborhood of kc4(k0, ∆)
we can monitor N4. However, it is much more convenient to fix N4 in the
computer simulations. Then k4 will play no active role, and to compensate
for this, we perform independent computer simulations for different N4. In
reality, we are then studying F (k0, ∆;N4) where we can choose to view N4

as a “coupling constant”. This seems a little weird from the point of view of
the ordinary lattice field theory where N4 is simply the volume of spacetime.
However, as we discussed in the case of the lattice ϕ4 theory, the correlation
length ξ played a dominant role when we wanted to study the continuum
limit, and first we exchanged the bare mass for the correlation length, and
next, when the volume N4 was finite, we changed the maximal correlation
length with N

1/4
4 and studied finite-size scaling in the limit N4 → ∞. Thus,

even in that case, one could (under the right circumstances) view N4 as
a coupling constant and we were interested in the limit where this coupling
constant went to infinity. Here, in the case of gravity, we are of course also
interested in the limit where N4 goes to infinity, but the first obvious question
is: how can this limit, N4 → ∞, be related to a divergent correlation length?
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In fact, this question forces us to take a step back and ask the following
question: how does one define the concept of a correlation length in a theory
of quantum gravity? In an ordinary QFT-like the ϕ4 theory, one can define
the correlation length as the exponential fall-off of the two-point function
⟨ϕ(x)ϕ(y)⟩, as discussed above. It will be a function of the (geodesic) dis-
tance between x and y (apart from lattice artifacts for small lattice distances,
if we consider a lattice version of the ϕ4 theory). However, in a theory of
quantum gravity, we are integrating over all metrics, and it is the metric
that determines the geodesic distance between two points x and y. One way
to define a (non-local) two-point function that is a function of a geodesic
distance is the following:

Gϕ(D) =

∫
D[g]

∫
Dϕ e−S[g,ϕ]

×
∫ ∫

d4x d4y
√

g(x)
√
g(y) ϕ(x)ϕ(y) δ(Dg(x, y)−D) . (17)

In (17) Dg denotes the geodesic distance between points x and y measured
using the metrics g used in the path integral. This formula has been shown
to work well for Euclidean two-dimensional gravity coupled to conformal
fields [19]. We are here going to apply it in the very simplest case where
instead of fields ϕ(x) we just use the unit function 1(x). We then write

G(D) =

∫
D[g] e−S[g]

∫ ∫
d4x d4y

√
g(x)

√
g(y) δ(Dg(x, y)−D) . (18)

Let ⟨V4⟩ denote the average four-volume of our ensemble of geometries we
use in the path integral and let dH denote the Hausdorff dimension of the
ensemble of geometries. Then, under quite general conditions, one can show
[20] that the two-point function G(D) falls off exponentially as

G(D) = f(D) e−cD/⟨V4⟩1/dH , D ≫ ⟨V4⟩1/dH , (19)

where f(D) is subleading. The above expressions are readily translated to
the lattice formulation with V4 replaced by N4 and D being replaced by the
shortest graph distance n in a triangulation, and we write

G(n) = f(n) e−c n/⟨N4⟩1/dH , n ≫ ⟨N4⟩1/dH . (20)

The intuition behind the fall-off is illustrated in Fig. 4: the number of tri-
angulations where two points are separated by a distance n is a decreasing
function of n. The derivation in [21–23] for two dimensions and in [20] for
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four dimensions is for Euclidean quantum gravity. I.e. in the lattice version
it is for DT. In the case of CDT one has to modify the proof due to the
special role of the time direction. We will omit the details here.

n2
n1

n is the geodesic distance between the two points in the case of DT

P(n) ∝ exp [− n
⟨N4⟩1/dH ], n ≫ ⟨N4⟩1/dH

Fig. 4. Typical shape of a universe when n is small and when n is large.

From Eq. (20) it is seen that ⟨N4⟩1/dH plays the role of a correlation
length for the two-point function G(n). Let k0, ∆ be fixed. If k4 can be
chosen such that ⟨N4⟩ is very large, we expect that most observables will
have the same value in the grand canonical ensemble with that chosen value
of k4 and in the canonical ensemble where we fix N4 = ⟨N4⟩k4 , and thus the
interpretation of N1/dH

4 as a correlation length for the ensemble of fluctuating
geometries is a natural analogy to N

1/4
4 being the correlation length for the

ensemble of lattice ϕ(x) field configurations when the dimensionless mass
parameter is chosen such that the correlation length is equal to the linear
size of the lattice. In the standard finite-size scaling scenario, one chooses N4

and then adjusts the bare mass parameter such that the correlation length
is equal to N

1/4
4 and the critical surface is reached for N4 → ∞. In practical

applications, one does not actually measure correlation length, but uses
convenient scaling variables to observe finite-size scaling, taking for granted
that such scaling is only observed when the correlation length is comparable
to N

1/4
4 . In our CDT case, we will use the same philosophy: if we observe

finite-size scaling for some observables, when comparing measurements for
systems with different N4, we will take it as a sign that N1/dH

4 can be used as
the correlation length and that the critical surface is reached when N4 → ∞.
What is different in our case is that: (1) we cannot separate the correlation
length from the (average) size of the system and (2) the existence of the
two-point function G(n) with a divergent correlation length does not imply
that we have propagating degrees of freedom associated with this two-point
function.
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3.2. The CDT phase diagram

The Monte Carlo simulations using (14) reveal that there are a number
of different phases in CDT, called A, B, Cb, and CdS [24]. We have cou-
pling constants k0, ∆ and we have N4. The corresponding three-dimensional
phase diagram is shown in Fig. 5. It should be compared to the ϕ4 phase
diagram shown in Fig. 1. Only in the so-called de Sitter phase CdS do we
observe finite-size scaling when N4 → ∞. Thus, only this phase will have
our interest. We view the other phases as lattice artifacts. In Fig. 6, we
show the surface corresponding (approximately) to N4 = ∞. The only part
of this surface that we view as a critical surface is the part corresponding to
phase CdS.

N−14

κ0

Δ

CdSCb

AB

Fig. 5. The CDT phase diagram where N−1
4 is also included. Criticality can only

occur when N−1
4 = 0. The straight vertical line corresponds to keeping the bare

lattice coupling constants κ0, ∆ fixed, while the other line illustrates the flow when
the renormalized coupling constants are fixed and one has to change the lattice
coupling constants when approaching the critical surface.

Let us now discuss how we observe finite-size scaling in phase CdS [25].
In the Monte Carlo simulations, we have direct access to the three-volume
N3(i), the number of three-simplices at time-slice i. For a fixed N4, we can
now measure ⟨N3(i)⟩ and ⟨N3(i1)N3(i2)⟩. For N3(i), we observe for fixed
k0, ∆ that

⟨N3(i)⟩N4 ∝ N4
1

ωN
1/4
4

cos3

(
i

ωN
1/4
4

)
, (21)

see Fig. 7. ω depends on k0 and ∆, but is independent of N4 for N4 suf-
ficiently large. Equation (21) shows finite size scaling with the Hausdorff
dimension dH = 4. If we introduce scaling variables

si =
i

N
1/4
4

, n3(si) =
N3(i)

N
3/4
4

, (22)
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we can write
⟨n3(s)⟩ =

3

4ω
cos3

( s
ω

)
. (23)

Similarly, the correlations behave like

⟨∆N3(i1)∆N3(i2)⟩ = ΓN4F

(
i1

ωN
1/4
4

,
i2

ωN
1/4
4

)
,

∆N3(i) = N3(i)− ⟨N3(i)⟩ . (24)
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Δ

Fig. 6. The CDT phase diagram. In phase A, different time slices seem not to
couple. In phase B, the time extension of the universe is only one time-slice. In
phase Cb, the time extension of the universe is larger, but it does not scale when
N4 is increased. Only phase CdS seems to represent a four-dimensional universe.
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Expressed in scaled variables we have

⟨∆n3(s1)∆n3(s2)⟩ =
Γ√
N4

F
(s1
ω
,
s2
ω

)
. (25)

Equations (23) and (25) are very well described by the following effective
action:

Seff [k0, ∆] =
1

Γ

∑
i

(
(N3(i+ 1)−N3(i))

2

N3(i)
+ δ N

1/3
3 (i)

)
(26)

or, expressed in scaling variables (with dsi = 1/N
1/4
4 )

Seff [k0, ∆] =

√
N4

Γ

πω/2∫
−πω/2

ds

(
ṅ2
3(s)

n3(s)
+ δ n

1/3
3 (s)

)
,

πω/2∫
−πω/2

ds n3(s) = 1 .

(27)
The solution to the “classical” eom associated with Seff is precisely (23)
provided δ and ω are related as follows:

δ

δ0
=
(ω0

ω

)8/3
, δ0 = 9

(
2π2
)2/3

, ω0 =
3√
2

1

δ
3/8
0

. (28)

If δ = δ0, (23) represents a “round” S4 sphere with four-volume 1. We
will denote (23) ncl

3 (s) and the data are then well described by ncl
3 (s) and

Gaussian fluctuations around ncl
3 (s).

In the computer simulations producing these results we have kept k0 and
∆ fixed and varied N4, that is, we have followed a straight blue path shown in
Fig. 5. The effective action describing our data close to the surface N4 = ∞
contains two effective coupling constants Γ and δ. For k0, ∆ in the interior of
phase CdS, Γ , and δ will depend on k0, ∆, but will be independent of N4 for
N4 sufficiently large. However, how large N4 has to be before Γ (k0, ∆,N4)
and δ(k0, ∆,N4) becomes independent of N4 will depend on k0 and ∆. We
will now compare these lattice gravity results to the simplest FRG results.

4. FRG

In the FRG approach, one attempts to calculate an effective action as
a function of a scale k. In actual calculations, one uses a trial action with
adjustable coefficients and tries to determine their k dependence. Their
behavior in the IR is then obtained for k → 0, while the behavior in the
UV is revealed for k → ∞. The simplest effective action considered is the
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Einstein–Hilbert action where the gravitational constant G and the cosmo-
logical constant Λ are functions of the scale k that enters the FRG

Γk[gµν ] =
1

16πGk

∫
d4x
√
g(x) (−R(x) + 2Λk) . (29)

In (29), Γk[gµν ] is written for the Euclidean signature of spacetime. In the
seminal work of Reuter [3], it was found that there is a UV fixed point for
the “running” coupling constants Gk and Λk. More elaborate calculations
have not changed this conclusion (see [4–6] for details). Since the scale k
has the dimension of mass, we can write

Gk := gk/k
2 , gk → g∗ , Λk := λkk

2 , λk → λ∗ , (30)

where gk and λk are dimensionless coupling constants that approach their
UV fixed point values g∗ and λ∗ for k → ∞, and one might try to com-
pare gk, λk to suitable dimensionless lattice gravity coupling constants. In
particular, we have for the dimensionless combination GkΛk

GkΛk = gkλk → g∗λ∗ for k → ∞ . (31)

It has been argued [26] that the dimensionless combination GΛ is the only
relevant coupling in the truncation (29), or even for a more general class
of truncations [27], and both in [27] and [26], a β-function for η =

√
GΛ is

found. In [26], it is even provided as an explicit rational function of η, shown
in Fig. 8 that should be compared to Fig. 2. Around the UV fixed point,
they behave qualitatively in the same way. The only difference is that the
β-function shown in Fig. 2 is for the bare lattice coupling constant κ0, while
the β-function shown in Fig. 8 is for the continuum, renormalized coupling
constant η. The FRG is an equation for continuum, renormalized fields, and

β(η)

IR UV
β(η) ≈ β′ (η*)(η − η*)

η*
η

η* = 0.386, β′ (η*) = − 0.0132

η = 8 πλg = 8 πΛG

Fig. 8. A qualitative picture of the β-function provided in [26].
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coupling constants. According to Eq. (5), the β-functions for the bare and
the renormalized coupling constants agree qualitatively, and one can show
that they are identical to lowest non-trivial order at a UV fixed point.

We now treat (29) as a standard effective action3 and find the extremum
for Γk[gµν ]. It is the (Euclidean) de Sitter universe with cosmological con-
stant Λk, i.e. a four-sphere, S4, with radius Rk = 3/

√
Λk. This four-sphere

has the four-volume

V4(k) =
8π2

3
R4

k =
8π2

3

81

λ2
k

1

k4
→ 8π2

3

81

λ2
∗

1

k4
for k → ∞ . (32)

In order to compare the FRG effective action with the CDT effective action,
we will further restrict the effective action to only include global fluctua-
tions where V4(k) is kept fixed rather then Λk and write the corresponding
minisuperspace action using a proper time metric

ds2 = dt2 + r2(t)dΩ2
3 , V3(t) = r3(t)

∫
dΩ3 = 2π2r3(t) . (33)

The effective action for r(t), or more conveniently V3(t), is then

Seff = − 1

24πGk

∫
dt

(
V̇ 2
3

V3
+ δ0V

1/3
3

)
,

∫
dt V3(t) = V4(k) . (34)

One can now study fluctuations around this solution and compare them
to the fluctuations observed in CDT4. Introducing dimensionless variables
v3 = V3/V

3/4
4 and s = t/V

1/4
4 , we can write

Seff = − 1

24π

√
V4(k)

Gk

∫
ds

(
v̇23
v3

+ δ0v
1/3
3

)
,

∫
ds v3(s) = 1 . (35)

Here, s and v3(s) will be of the order of O(1) and the “classical” solution
to the eom, vcl3 (s) is the four-sphere with volume 1. We note that the

3 In the actual FRG calculations, one often makes the decomposition gµν = gBµν +hµν ,
where gBµν is a fixed background metric (i.e. a fixed de Sitter metric) that is fixed
even when the scale k is changing. From first principles, the effective action can only
depend on gµν , not the arbitrary choice gBµν . Our treatment here is the most naive
implementation of what is suggested in [28, 29], namely that the background one
should use for a given scale k should be the one that satisfies the equations of motion
at that scale. In [29] it is called the choice of self-consistent background geometries.

4 In [30] it is shown that when calculating fluctuations for “global” quantities like the
three-volume, only constant modes contribute when space is compact. These modes
are precisely the modes used when calculating fluctuations in the minisuperspace
approximation.
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fluctuations around vcl3 (s) will, for a given k, be governed by the effective
coupling constant

g2eff(k) =
24πGk√
V4(k)

=
4√
6
ΛkGk ≈ 1.63λkgk . (36)

In the FRG analysis, λkgk is an increasing function of k, but even at the
UV fixed point it is not large. Thus, somewhat surprising, simple Gaussian
fluctuations around vcl3 (s) seems to be a good approximation all the way to
the UV fixed point. This might explain the related observation mentioned
above for CDT.

5. Comparing CDT and FRG

We want to compare the lattice effective action (27) and the FRG effec-
tive action (35)5,6. Let us for the moment ignore that δ ̸= δ0. Then it is
natural to identify

√
N4

Γ (κ0, ∆,N4)
=

√
V4(k)

24πGk
≈ 1

1.63λkgk
. (37)

Recall the discussion for the ϕ4 theory. A renormalized coupling constant κR
could take values between κIR

R and κUV
R . In the ϕ4 theory, these values were

obtained from the bare coupling constants as shown in Fig. 1. However,
they could equally well be obtained by solving the renormalization group
equation using the βR(κR). This β-function would look more or less like the
β-function shown in Fig. 2, just with κ0 replaced by κR. The renormalized
running coupling constant would then run between κIR

R and κUV
R , and any

value in this range will qualify as the renormalized coupling constant, defined
from the bare lattice coupling constants when the continuum limit of the
lattice theory is defined by approaching the lattice UV fixed point. This is
the way we will view (37): the r.h.s. is a renormalized coupling constant and
the l.h.s. expresses how it is defined in terms of lattice coupling constants,

5 A first such comparison was done in [31]. However, at that time the so-called bifur-
cation phase Cb had not been discovered. It was viewed as part of phase CdS.

6 The alert reader might have noticed a disturbing sign difference between (27) and (35).
We will argue that it is a good thing. Our lattice theory provides a regularization
of the path integral and is finite. On the other hand, the effective action (35) is sick
since the kinetic term has a wrong sign. This is why Hartle and Hawking made a
further analytic continuation [32]. Using (Euclidean) conformal time, they made an
analytic continuation of the conformal factor such that the kinetic term changed a
sign. Using proper time instead of conformal time, this analytic continuation leads
precisely from (35) to (27). Thus, the CDT version of the effective action is the
Hartle–Hawking effective action.
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i.e. in terms of k0, ∆, and the lattice correlation length N
1/4
4 (for notational

simplicity, we will use N4 instead of N1/4
4 below). In this context, the scale k

that appears in the continuum renormalization group equation just becomes
a parametrization that determines how ηk “runs” between ηIR and ηUV = η∗
shown in Fig. 8.

Recalling again the discussion surrounding Fig. 1, we have two ways to
approach the critical surface N4 = ∞: (1) we can keep k0, ∆ fixed. Then
the renormalized coupling, i.e. λkgk should flow to an IR fixed point and (2)
we keep the renormalized coupling λkgk fixed while approaching the critical
surface N4 = ∞. This is only possible if we also change the bare coupling
constants k0, ∆, and if it is possible to take N4 → ∞ while keeping λkgk
fixed, the bare couplings k0, ∆ should flow to a UV fixed point. If it is not
possible, then there is no UV fixed point7.

5.1. The IR limit

Let us first study case (1): we keep the bare coupling constants k0, ∆
fixed and located in the interior of phase CdS. As already mentioned, this
implies that Γ (k0, ∆,N4) (and δ(k0, ∆,N4)) will be independent of N4 for
sufficiently large N4. From (37) it follows that when we approach the critical
surface N4 = ∞, then λkgk → 0. Thus, λkgk = 0 should be an IR fixed point.
Does this agree with the FRG picture? If both λk and gk go to zero, we
precisely approach the so-called Gaussian fixed point of the renormalization
group flow and in fact lowest order perturbation theory tells us (e.g. see the
linear approximation to Eq. (74) in [4])

gk = gk0
k2

k20
, λk =

(
λk0 −

gk0
8π

) k20
k2

+
gk0
8π

k2

k20
, k ≈ k0 , gk0 , λk0 ≪ 1 .

(38)
When k → 0, then λk → ∞ unless gk0 = 8π λk0 , in which case we start out
precisely at the unique renormalization group trajectory that leads to the
Gaussian fixed point. Unless that is the case, naive lowest order perturba-
tion theory will become invalid for k → 0, since λk → ∞. However, it has
been argued [27] that using a somewhat more general setup, called Essen-
tial Quantum Einstein Gravity, instead of the simple effective action (29),
one obtains the Gaussian fixed point as the end point of a whole class of
renormalization group trajectories for k → 0. This makes the Gaussian fixed
point a natural IR fixed point.

In addition, the k → 0 limit has been studied using FRG for time-foliated
spacetimes [33]. This setup is closer to the CDT approach and a new IR
fixed point was found with the property that a whole set of renormalization

7 Recall that this was actually the case in the ϕ4 theory in four dimensions.
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group trajectories starting out at the UV fixed point will converge to this
fixed point for k → 0

(gk, λk) →
(
0,

1

2

)
for k → 0 . (39)

More precisely, it was found that

gk ∝ k4

k̃4
, λk −

1

2
∝ k

k̃
for k → 0 , (40)

where k̃ is some fixed, small scale. This scenario is also compatible with
the CDT limit for N4 → ∞ and k0, ∆ fixed. This IR fixed point is different
from the Gaussian fixed point since the approach to the Gaussian fixed
point can be parametrized by a classical gravitational coupling constant
gk/k

2 = Gk → G0, while Λk → 0 as k2. For the other IR fixed point we
have Gk ∝ k2 → 0, and also Λk ∝ k2 → 0.

Again, it is instructive to compare it to the ϕ4 lattice theory. Keeping
the bare coupling κ0 fixed and increasing the correlation length ξ to infinity
(or, in a finite-size scaling setup, N4 → ∞), we end up at a critical line
associated to the IR fixed point: the renormalized coupling constant flows
to its IR fixed point value when we approach the ξ = ∞ line. Similarly here,
keeping the bare coupling constants k0, ∆ fixed and in the interior of the CdS

region, the renormalized ΛG flows to its IR or Gaussian fixed point, and the
whole interior CdS region is thus associated with this IR or Gaussian fixed
point.

5.2. The ultraviolet limit

We now turn to scenario (2) and try to localize a putative lattice UV
fixed point. We thus keep the r.h.s. of Eq. (37) fixed and try to find paths
N4 → (k0(N4), ∆(N4)) such the l.h.s. of (37) stays fixed for N4 → ∞. From
the behavior of Γ (k0, ∆,N4) discussed above, such a path has to lead to the
boundary of the CdS phase region since Γ (k0, ∆,N4) stays finite for any k0, ∆
in the interior of the CdS phase. More precisely, we only see a substantial
increase of Γ (k0, ∆,N4) when k0, ∆ approaches the A–CdS boundary, see
Figs. 5 and 6. This is thus where a possible UV fixed point has to be located.
However, before we discuss this in more detail, we have to deal with the fact
that δ ̸= δ0 in Eq. (27), since δ(k0, ∆) also increases a lot when we get close
to the A–CdS boundary, i.e. according to (28), ω(k0, ∆) decreases, implying
that the time-extension of the four-dimensional computer universe shrinks.
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5.2.1. Dealing with δ ̸= δ0

The measured values of ω in the lattice simulations are in general differ-
ent from the value ω0 dictated by GR. Since we explicitly break the symme-
try between space and time in our lattice regularization, we also have the
freedom to scale space-like links and time-like links differently in order to ob-
tain continuum results compatible with the spacetime symmetry present in
GR. Denote the length of the time-like links by at and the length of the space-
like links by as ≡ a. The continuum three-volume of a spatial slice at time
ti ≡ ati, consisting of N3(ti) tetrahedra will then be V3(ti) ∝ N3(ti)a

3. Sim-
ilarly, the continuum four-volume of N4 four-simplices will be V4 ∝ N4ata

3.
Strictly speaking the situation is somewhat more complicated for the four-
simplices. We refer to [10, 34] for details. However, for notational simplicity,
we will simply write

V4 = N4ata
3 , V3 = N3a

3 . (41)

Then Eq. (26), where a was chosen to be 1, can be rewritten as

S =
1

Γ

∑
i

(
(N3(ti + at)−N3(ti))

2

N3(ti)
+ δ N

1/3
3 (ti)

)
(ti ≡ ati) (42)

=
at
a3Γ

∑
i

at

(
(V3(ti + at)− V3(ti))

2/a2t
V3(ti)

+
a2

a2t
δ V

1/3
3 (ti)

)
, (43)

→ 1

24πG

∫
dt

(
V̇ 2
3

V3
+ δ̃ V

1/3
3

)
, δ̃ =

a2

a2t
δ , 24πG =

a3

at
Γ , (44)

and ∑
i

N3(i) = N4 →
∫

dt V3(t) = V4 , V4 = ata
3N4 , (45)

where δ̃ and ω are related as in (28): δ̃ ω8/3 = δ0ω
8/3
0 . If ω ̸= ω0, the

lattice configurations are the “deformed” spheres because the time extension
Ntat = ωN

1/4
4 at does not match the spatial extension N

1/3
3 a, when we write

N4 = NtN3 and at = a. We can correct that by writing

at =
(ω0

ω

)4/3
a . (46)

From Eq. (44) it then follows that δ̃ = δ0 for the round S4 and thus this
choice of at leads to an action Seff given in (27) that we can identify with
the FRG effective action (35) for some value of the scale parameter k.
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So given computer data N4, ω, Γ , we can associate a corresponding con-
tinuum, round S4 with four-volume V4 and gravitation constant G via

(N4, ω, Γ ) → (V4(k), ω0, Gk) , (47)

where

V4(k) =
(ω0

ω

)4/3
N4a

4 , 24πGk =

(
ω

ω0

)4/3

Γ a2 (48)

and, in particular,
√
N4

Γ
=

ω2

ω2
0

√
V4(k)

24πGk
or

ω2Γ (k0, ∆,N4)

ω2
0

√
N4

≃ 1.63λkgk . (49)

From what is said above, it is clear that the only chance to satisfy (49)
for N4 → ∞ is by approaching the A–CdS transition line from the CdS side.
We will discuss this below.

5.2.2. Scaling at the UV limit

As discussed in the numerical results section below, the observed depen-
dence on ∆ is weak in the region of interest, and for notational simplicity
we will omit most references to ∆ in the following. In this way, the critical
surface N4 = ∞ becomes a critical line, precisely as was the case for the
ϕ4 theory. This line is then naturally associated with the IR fixed point of
the FRG, in the same way as the critical line for the ϕ4 theory was associ-
ated with an IR fixed point of the renormalized coupling κR. We want to
investigate if there should be a lattice UV fixed point on the critical line.

Approaching a point (k0, N4 = ∞) on the critical line, we have for all k0
different from such a UV critical point kUV

0 that

Γ (k0, N4) → Γ (k0) < ∞ , for N4 → ∞ . (50)
ω(k0, N4) → ω(k0) , 0 < ω(k0) < ∞ for N4 → ∞ . (51)

The putative UV fixed point kUV
0 has to be located at the A–CdS tran-

sition line and we observe numerically that Γ (k0) → ∞ and ω(k0) → 0 for
k0 → kUV

0 . It is thus natural to assume that close to kUV
0 we can have the

following critical behavior:

Γ (k0) ∝ 1

|kUV
0 − k0|α

, ω(k0) ∝ |kUV
0 − k0|β ,

ω2(k0)Γ (k0) ∝ 1

|kUV
0 − k0|α−2β

. (52)
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We further assume that for a finite N4, there is a pseudo-critical point
kUV
0 (N4) < kUV

0 , where ω2(k0, N4)Γ (k0, N4) has a maximum for fixed N4,
and that this pseudo-critical point approaches kUV

0 for N4 → ∞ as

kUV
0 (N4) = kUV

0 − c

N
1/4νUV

4

(
i .e. ξ ∝ 1

|kUV
0 − kUV

0 (ξ)|νUV

)
. (53)

This implies that

Γ (kUV
0 (N4)) ∝ N

α/4νUV

4 , ω (kUV
0 (N4)) ∝ N

−β/4νUV

4 , (54)

as well as
ω2 (kUV

0 (N4))Γ (kUV
0 (N4)) ∝ N

(α−2β)/4νUV

4 . (55)

From Eq. (49) it follows that we have to have

α− 2β ≥ 2νUV (56)

and if that is the case, the following path in the bare lattice coupling constant
space will lead us to the putative UV fixed point while keeping λkgk fixed

k0(N4) = kUV
0 − c

N
1/2(α−2β)
4

. (57)

The situation is illustrated in Fig. 9.

kir0

N−14

k0kuv0

kuv0 (N4)k0(N4)
kuv0 (N4) = kuv0 − c

N1/4νuv4
k0(N4) = kuv0 − c

N1/2(α−2β)4

λkgk constant along k0(N4)

Fig. 9. The tentative CDT phase diagram (k0, N
−1
4 ) (with coupling constant ∆

ignored). Pseudo-criticality appears along the dotted line kUV
0 (N4) and the solid

line k0(N4), where λkgk is constant is shown to the left of kUV
0 (N4). The critical

line is N−1
4 = 0.
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5.2.3. The enigmatic relation between a and k

k is a scale of dimension mass that appears in the FRG. The dimen-
sionless coupling constant λkgk runs to the UV fixed point value λ∗g∗ for
k → ∞. Similarly, the inverse lattice spacing a−1 is a UV cut-off scale that
can be taken to infinity when the bare lattice coupling constants are ap-
proaching a UV lattice fixed point: the “continuum limit” can be taken in
such a way that the renormalized couplings are finite and non-trivial when
a → 0. It is thus natural also to think about k as a kind of UV cut-off 8

such that k ∝ a−1 is close to the UV fixed point. In our simple model we
can address this. Recall that in our discussion so far, k only played a role as
a parametrization of the renormalized coupling constant λkgk. Using (48),
(54), and V4(k) ∝ Λ−2

k , we find that

a ∝ 1√
Λk

N
− 1

4

(
1+ β

3νUV

)
4 , i .e. a ∝ 1

k
N

− 1
4

(
1+ β

3νUV

)
4 for k → ∞ . (58)

Thus, the lattice spacing a scales to zero for a fixed value of k (i.e. a fixed
value of λkgk) when we approach the critical surface N4 = ∞. It also follows
from (54) and (46) that:

at ∝
1√
Λk

N
− 1

4

(
1− β

νUV

)
4 i .e. at ∝

1

k
N

− 1
4

(
1− β

νUV

)
4 for k → ∞ . (59)

This slower decrease of at is a reflection of the fact that we, when approach-
ing the A–CdS transition line, have to rescale our lattice four-spheres that
become increasingly “contracted” in the time direction, in order to match
the round four-spheres of the FRG. Thus, under the assumptions

α− 2β

4νUV
>

1

2
,

β

4νUV
<

1

4
, (60)

we can reach a UV fixed point where we can also take the continuum limit a,
at → 0 for N4 → ∞.

While (58) and (59) tell us that a ∝ 1/k, this is unfortunately just
a dimensional relation. The real content of (58) is that for fixed k, i.e. for
fixed λkgk, the lattice UV cut-off a goes to zero when the correlation length ξ
(related to N4) goes to infinity. In this sense, it corresponds to relation (7)
for the ϕ4 lattice theory, k playing the role of mR.

8 In the FRG community, k is often talked about as a UV cut-off, but it is also often
emphasized that this should not be taken too literal, since formally, no UV cut-off is
introduced explicitly when formulating the FRG.
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6. Numerical results

This section will be rather short since the purpose of this paper has not
been to discuss technical details of how to obtain the numerical results. For
information about that we refer to [34] and references therein.

In Fig. 10, we show the measurements of ω(k0, ∆), Γ (k0, ∆), and
ω2(k0, ∆)Γ (k0, ∆) for a fixed N4. One observes the increase of Γ and ω2Γ
and the decrease of ω when moving towards the A–CdS transition line. Also,
the insensitivity to ∆ is seen.
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Fig. 10. Contour plots of ω (top left), Γ (top right), and ω2Γ (bottom) as functions
of the CDT coupling constants k0, ∆. Points where actual measurements were done
are denoted as black dots in the plots.



12-A2.24 J. Ambjørn et al.

Figure 11 shows the measurements of the same observables at the pseudo-
critical points kUV

0 (N4). Close to kUV
0 (N4), the change of the observables as

a function of k0 is fast, a fact that is not so visible in Fig. 10.
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Fig. 11. Dependence of ω (top left), Γ (top right), and Γω2 (bottom) on k0 for fixed
∆ = 0 measured for the number of (4,1)-simplices being 40 000, 80 000, 160 000,
200 000, 480 000, 720 000 (denoted by different colors). Positions of k0 closest to the
pseudo-critical points κUV

0 (N4) are denoted by dashed lines.

These measurements provide us with both kUV
0 (N4), Γ (kUV

0 (N4)),
ω(kUV

0 (N4)), and ω2(kUV
0 (N4))Γ (kUV

0 (N4)), and we can then determine the
critical exponents defined in Eqs. (53)–(55). The determination of the ex-
ponents α/4νUV, β/4νUV, and (α − 2β)/4νUV is shown in Fig. 12 and the
results are

β

4νUV

= 0.23± 0.02 ,
α

4νUV

= 1.00± 0.02 ,
α− 2β

4νUV

= 0.54± 0.04 .

(61)
What is striking about these results is that they are very close to the limit
(60). Thus, we can say that the data allows for the existence of a UV fixed
point, but it cannot be used as strong evidence for such a fixed point.
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fit: β/4νuv=0.23±0.02
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Fig. 12. Critical scaling of ω (top left), Γ (top right), and Γω2 (bottom) measured
closest to the pseudo-critical points κUV

0 (N4) (see Fig. 11) for fixed ∆ = 0. Fits of
Eqs. (54)–(55) are depicted by solid lines. The figures show scaling as a function
of the N4 volume contained in the S4 “blob” (not all four-simplices are contained
in the S4 part. Some can be in the so-called stalk, see Fig. 7).

7. Discussion

We have tried to relate the simplest FRG flow to the CDT effective action
for the scale factor of the universe. By using the analogy to the ϕ4 lattice
theory we argued that the N4 → ∞ limit of CDT, when in the CdS phase,
could be viewed as the critical surface associated with the Gaussian fixed
point or an IR fixed point of the FRG theory. Again inspired by the ϕ4 lattice
theory we then searched for a CDT UV fixed point by studying the flow of
the lattice coupling constants when the corresponding continuum coupling
constants were kept fixed. Rather frustratingly the numerical accuracy is
not yet good enough to decide if such a UV fixed point exists in CDT.
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