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This is a review of gravitational instantons — solutions to Rieman-
nian Einstein or Einstein–Maxwell equations in four dimensions which yield
complete metrics on non-compact four-manifolds, and which asymptotically
‘look like’ flat space. The review focuses on examples, and is based on lec-
tures given by the author at the Cracow School of Theoretical Physics held
in Zakopane in June 2024.
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1. Introduction

Gravitational instantons are solutions to the four-dimensional Einstein
equations in the Riemannian signature which give complete metrics and
asymptotically ‘look like’ flat space: If (M, g) is a gravitational instanton,
then ∫

M

|Riem|2volM <∞ ,

where |Riem|2 is the squared g-norm of the Riemann tensor of g.
The study of gravitational instantons has been initiated by Hawking

in his quest for Euclidean quantum gravity [31], and since then a lot of
effort has been put to make the term ‘look like’ into a precise mathematical
statement. While Euclidean quantum gravity does not any more aspire
to a status of a fundamental theory, the study of gravitational instantons
has influenced both theoretical physics and pure mathematics. This short
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review focuses on examples. It is based on lectures given by the author at
the Cracow School of Theoretical Physics held in Zakopane in June 2024,
and at the Banach Center — Oberwolfach Graduate Seminar Black Holes
and Conformal Infinities of Spacetime held in Bedlewo in October 2024.

2. Examples

Some gravitational instantons arise as analytic continuations of Loren-
tzian black hole solutions to Einstein, or Einstein–Maxwell equations. If
the imaginary time is turned into a periodic coordinate with the period
given by the surface-gravity of Lorentzian black holes, then the resulting
solutions are regular Riemannian metrics. Euclidean Schwarzschild and Kerr
metrics belong to this category. Other gravitational instantons have no
Lorentzian analogues, for example, because their Riemann curvature is anti-
self-dual. The Eguchi–Hanson and anti-self-dual Taub-NUT solutions are
such examples.

2.1. Euclidean Schwarzschild metric

The Schwarzschild metric is given by

g = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

The apparent singularity at r = 2m corresponds to an event horizon, and
can be removed by a coordinate transformation. The singularity at r = 0 is
essential as the squared norm of the Riemann tensor blows up as r−6. An
attempt to get rid of this singularity by removing the origin r = 0 from the
space-time leads to a geodesically incomplete metric.

The Euclidean Schwarzschild metric [31] is obtained by setting t = iτ ,
and restricting the range of r to 2m < r < ∞. Set ρ = 4m

√
1− 2m/r.

Near ρ = 0, the metric takes the form

g ∼ dρ2 +
ρ2

16m2
dτ2 + 4m2

(
dθ2 + sin2 θdϕ2

)
.

This metric is flat and regular as long as the imaginary time τ is periodic
with the period 8πm. This period is inverse proportional to the Hawking
temperature of the black hole radiation (Fig. 1). Although this was not how
the Hawking temperature was first discovered, the instanton methods gave
rise to a derivation simpler than the original calculation based on the Bo-
goliubov transformation [23, 24]. In a similar manner, the non-extreme Kerr
black hole can be turned into the Euclidean Kerr instanton with the period
of the imaginary time proportional to the inverse of the surface gravity. In
the case of the extreme Kerr solution, the surface gravity vanishes and the
extreme Kerr instanton does not exist.
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Fig. 1. Stephen Hawking’s gravestone.

2.2. Anti-self-dual Taub-NUT and ALF metric

Before introducing the next example, let us define the left-invariant one-
forms (σ1, σ2, σ3) on S3 = SU(2) by

σ1 + iσ2 = e−iψ(dθ + i sin θdϕ) , σ3 = dψ + cos θdϕ ,

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 4π. They satisfy

dσ1 + σ2 ∧ σ3 = 0 , dσ2 + σ3 ∧ σ1 = 0 , dσ3 + σ1 ∧ σ2 = 0 .

In terms of these one-forms, the flat metric on R4 is given by

gR4 = dr2 +
1

4
r2

(
σ1

2 + σ2
2 + σ3

2
)
. (2.1)

The Taub-NUT instanton [31] is

gTN =
1

4

r +m

r −m
dr2 +m2 r −m

r +m
σ23 +

1

4

(
r2 −m2

) (
σ21 + σ22

)
. (2.2)

Introducing a coordinate ρ by r = m + ρ2

2m shows that, near r = m, the
metric (2.2) approaches the flat metric (2.1) and so r = m is only a coordi-
nate singularity. The Riemann curvature of the metric (2.2) is anti-self-dual
(ASD); it satisfies

Rabcd = −1

2
εab

pqRcdpq , (2.3)

where εabcd = ε[abcd] is a chosen volume form on M . The ASD condition in
particular implies the vanishing of the Ricci tensor. This follows from taking
the trace of (2.3). It also shows that the metric (2.2) has no Lorentzian
analogue, as the Riemann tensor of a metric in signature (3, 1) is ASD iff
the metric is flat. For large r, the metric gTN is the S1 bundle over S2 with
the Chern number equal to 1 — this is the Hopf fibration with the total
space S3.
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The ASD Taub-NUT example (2.2) motivates the following definition:

Definition 2.1 A complete regular four-dimensional Riemannian manifold
(M, g) which solves the Einstein equations is called ALF (asymptotically
locally flat) if it approaches S1 bundle over S2 at infinity.

The asymptotic form of an ALF metric is

lim
r→∞

g = (dτ + 2n cos θdϕ)2 + dr2 + r2
(
dθ2 + sin θ2dϕ2

)
,

where the integer n is the Chern number of the S1 bundle. If the S1 bundle
is trivial, so that n = 0, the ALF metric is called asymptotically flat (AF).
Euclidean Schwarzschild and Euclidean Kerr metrics are AF. According to
the Lorentzian black hole uniqueness theorems of Hawking, Carter, Robin-
son, and others [51], the Kerr family of solutions exhausts all AF solutions
to the Einstein equations with Λ = 0. These theorems gave rise to the
Riemannian ‘black hole uniqueness’ conjecture stating that the Euclidean
Schwarzschild and Kerr are the only AF gravitational instantons [38]. This
conjecture is now known to be false. We shall return to it in Section 4.

The ASD Taub-NUT instanton and other ALF metrics can be uplifted
to the so-called Kaluza–Klein monopoles in 4 + 1-dimension [28, 48] with
the product metric

ds2 = −dt2 + gTN .

The Kaluza–Klein reduction of ds2 along the Killing vector ∂/∂ψ gives a
monopole-type solution to the Einstein–Maxwell-dilaton theory in (3 + 1)
dimensions.

2.3. Eguchi–Hanson and the ALE metrics

The Eguchi–Hanson (EH) instanton [19, 20] is given by

gEH =

(
1− a4

r4

)−1

dr2 +
1

4
r2

(
1− a4

r4

)
σ23 +

1

4
r2

(
σ21 + σ22

)
(2.4)

with r > a. Setting ρ2 = r2
[
1− (a/r)4

]
, we find that, near r = a, the

metric is given by

g ∼ 1

4

(
dρ2 + ρ2dψ2

)
.

This metric is regular as long as the ranges of the angles are

0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π , 0 ≤ ψ ≤ 2π .

Thus, although for r → ∞, the Eguchi–Hanson metric approaches (2.1),
given the allowed range of ψ, this metric is not asymptotically Euclidean, but
corresponds to a quotient R4/Z2. The Eguchi–Hanson example motivates
the following:
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Definition 2.2 A complete regular four-dimensional Riemannian manifold
(M, g) which solves the Einstein equations is called ALE (asymptotically
locally Euclidean) if it approaches R4/Γ at infinity, where Γ is a discrete
subgroup of SO(4).

The anti-self-dual ALE metrics are the best-understood class of gravitational
instantons. This is due to the following:

Theorem 2.3 (Kronheimer [35, 36]) For any Γ (cyclic AN , dihedral DN ,
dihedral, tetrahedral, octahedral, and icosahedral), there exists an ALE grav-
itational instanton.

The Eguchi–Hanson metric corresponds to the case A2, where Γ = Z2. It is
not known [25, 42] whether there exist non-self-dual or anti-self-dual ALE
Ricci-flat metrics.

3. Multi-centered metrics

Both the Taub-NUT and the Eguchi–Hanson metrics belong to the class
of the so-called multi-centred gravitational instantons. These instantons
arise as superpositions of fundamental solutions to the Laplace equation on
R3 via the Gibbons–Hawking ansatz [22]. The verification of the Ricci-flat
condition for this ansatz as well as its geometric characterisation is best
achieved by using an equivalent formulation of the ASD Riemannian con-
dition in terms of the hyper-Kähler structure. We shall give the necessary
definitions and review the terminology in the next subsection. A more de-
tailed discussion can be found in [17].

3.1. Mathematical detour: Hyper-Kähler metrics

We shall start with a definition

Definition 3.1 An almost complex structure on a 4-manifold M is an en-
domorphism I : TM → TM such that I2 = −Id.

The almost complex structure gives rise to a decomposition

C⊗TM = T 1,0M ⊕T 0,1M , given by X = 1
2 [X − iI(X)]+ 1

2 [X + iI(X)]

of the complexified tangent bundle into eigenspaces of I with eigenvalues ±i.
One says that I is a complex structure iff these eigenspaces are integrable
in the sense of the Frobenius theorem, i.e.[

T 1,0M,T 1,0M
]
⊂ T 1,0M . (3.1)
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A theorem of Newlander and Nirenberg justifies the terminology: I is a
complex structure iff there exists a holomorphic atlas so that M is a two-
dimensional complex manifold. For example, if M = R4 and

I =


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 ,

then (3.1) holds and the complex atlas on M = C2 consists of complex
coordinates z1 = x1 + ix3, z2 = x2 + ix4, and T 1,0M = span{∂/∂z1, ∂/∂z2}.

We shall now assume that (M, g) is a Riemannian four-manifold with
almost-complex structure I. We say that the metric g is

— Hermitian if g(X,Y ) = g(IX, IY );

— Kähler if I is a complex structure, and dΩ = 0, where Ω(X,Y ) =
g(X, IY );

— hyper-Kähler if it is Kähler w.r.t. three complex structures I1, I2, I3
such that

I1I2 = I3 , I2I3 = I1 , I3I1 = I2 .

For example, if M = R4, then the metric g = |dz1|2+ |dz2|2 is hyper-Kähler
with

Ω1 =
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) , Ω2 + iΩ3 = dz1 ∧ dz2 .

The importance of hyper-Kähler metrics in the study of gravitational in-
stantons comes from the fact that locally, and with the choice of orientation
which makes the Kähler forms self-dual (SD), the Riemann tensor of (M, g)
anti-self-dual (ASD) iff (M, g) is hyper-Kähler. Therefore. the ASD grav-
itational instantons are complete hyper-Kähler metrics. Compact hyper-
Kähler metrics are far more rare. There is the four-dimensional torus with
a flat metric, and the elusive K3 surface whose existence follows from Yau’s
proof [57] of the Calabi conjecture. Finding the explicit closed form of a
metric on a K3 surface is one of the biggest open problems in the field.

3.2. Gibbons–Hawking ansatz

Let (V,A) be, respectively, a function and a one-form on R3. The metric

g = V
(
dx1

2 + dx2
2 + dx3

2
)
+ V −1(dτ +A)2 , (3.2)
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is hyper-Kähler (and therefore ASD and Ricci flat) with the Kähler forms
given by

Ωi = −(dτ +A) ∧ dxi +
1
2V ϵijkdxj ∧ dxk , i = 1, 2, 3

iff the Abelian Monopole Equation

dA = ⋆3dV (3.3)

holds (here ⋆k is the Hodge operator on Rk taken w.r.t. the flat metric and a
chosen volume form). This equation follows from the closure condition dΩi =
0 and implies that the function V is harmonic on R3. The general Gibbons–
Hawking ansatz (3.2) is characterised by the hyper-Kähler condition together
with the existence of a Killing vector K which Lie-derives all Kähler forms.
The Cartesian coordinates (x1, x2, x3) in (3.2) arise as the moment maps,
i.e. K Ωi = dxi.

The multi-centre metrics correspond to a choice

V = V0 +

N∑
m=1

1

| x− xm |
, (3.4)

where V0 is a constant, and x1, . . . ,xN are position vectors of N points in
R3. The special cases of (3.4) are

— V0 = 0, N = 1 give the flat metric;

— V0 = 0, N = 2 give the Eguchi–Hanson metric (2.4) albeit in a different
coordinate system; V0 = 0 and N > 2 correspond to the general AN
ALE instantons;

— V0 ̸= 0, N = 1 give the Taub-NUT metric (2.2). V0 ̸= 0, N > 1
correspond to the AN ALF instantons.

4. The Chen–Teo instanton

The Riemannian black hole uniqueness conjecture we alluded to in Sec-
tion 2.2 is now known to be wrong. Chen and Teo [7, 8] have constructed
a five-parameter family of toric (i.e. admitting two commuting Killing vec-
tors) Riemannian Ricci flat metrics interpolating between the ALE three-
centre Gibbons–Hawking metrics with centres on one axis and Euclidean
Plebański–Demiański solutions [47]. The Chen–Teo family contains a two-
parameter sub-family of AF instantons which are not in the Euclidean Kerr
family of solutions. It has been proven by Aksteiner and Andersson [1]
that, as the Chen–Teo family consists of Hermitian and therefore one-sided
Petrov–Penrose type D solutions, the Chen–Teo instantons do not arise as
an analytic continuation of any Lorentzian black holes.



12-A3.8 M. Dunajski

4.1. Explicit formulae

Let f be a quartic polynomial with four real roots. Set

f = f(ξ) = a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 ,

F = f(x)y2 − f(y)x2 ,

H = (νx+ y)
[
(νx− y)(a1 − a3xy)− 2(1− ν)

(
a0 − a4x

2y2
)]
,

G = f(x)
[
(2ν − 1)a4y

4 + 2νa3y
3 + a0ν

2
]

−f(y)
[
ν2a4x

4 + 2νa1x+ (2ν − 1)a0
]
.

The family of metrics

g =
kH

(x− y)3

(
dx2

f(x)
− dy2

f(y)
− f(x)f(y)

kF
dϕ2

)
+

1

FH(x− y)
(Fdτ +Gdϕ)2

(4.1)
is Ricci-flat for any choice of the parameters (a0, . . . , a4, ν, k). Two out of five
parameters (a0, . . . , a4) can be fixed by scalings, so (4.1) is a five-parameter
family. The Riemann curvature is regular if the range of (x, y) is restricted
to the rectangle in Fig. 2, where r1 < r2 < r3 < r4 are the roots f .

Fig. 2. The Chen-Teo domain.

To avoid the conical singularities and ensure the asymptotic flatness, one
makes a choice

r1 =
4s2(1− s)

1− 2s+ 2s2
, r2 = −1 , r3 =

1− 2s

s(1− 2s+ 2s2)
,

r4 = ∞ , ν = −2s2 , s ∈ (1/2,
√
2/2) . (4.2)

This leads to a two-parameter family of AF instantons on M = CP2 \ S1.
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4.2. The rod structure

The Chen–Teo metrics (4.1) admit two commuting Killing vectors Ki =
∂/∂ϕi, where ϕi = (ϕ, τ). Any metric with two commuting Killing vectors
can locally be put in the form

g = Ω2
(
dr2 + dz2

)
+ Jijdϕ

idϕj , i, j = 1, 2 , (4.3)

where J = J(r, z) is a 2 by 2 symmetric matrix, and the (r, z) coordinates
are defined by

r2 = det(J) , ⋆2dz = dr .

The space of orbits of the T 2 action is the upper half-plane H={(r, z), r>0}
with the boundary ∂H, where rank(J(0, z)) < 2. Generically, this rank is
equal to 1. It vanishes at the turning points z1, z2, . . . , zN , where both Killing
vectors vanish. These turning points divide the z-axis into (N +1) rods [29]

I1 = (−∞, z1) , I2 = (z1, z2) , . . . , IN = (zN−1, zN ) , I∞ = (zN ,∞) .

In the Lorentzian case, these rods correspond to horizons or axes of rotation,
and in the Riemannian case, they are axes. The rod data associated to
(4.3) consists of a collection of (N + 1) rods, together with the lengths
(zk − zk−1), k = 2, . . . , N of the finite rods, and the constant rod vectors
V2, . . . , VN such that Vk vanishes on the rod Ik. Each of these vectors can be
expanded as Vk = V 1

kK1+V
2
kK2, and then the admissibility condition [30] is

det

(
V 1
k V 2

k

V 1
k+1 V 2

k+1

)
= ±1 .

While the rod structure does not uniquely determine the metric of the
instanton, it specifies the topology of the underlying four-manifold [43]. The
number of turning points is equal to the Euler signature. In the Chen–Teo
case, there exist three turning points, so that χ(M) = 3 for the Chen–
Teo instanton. Closing up the semi-infinite rods gives the triangular rod
structure of CP2 with three turning points as the triangle vertices, and
three rods as sides. Joining the rods adds S1 × R3 to M , and so M =
CP1 \ S1 × R3 ∼= CP1 \ S1. The signature of the Chen–Teo family is 1.

4.3. The Yang equation and ASDYM

The Ricci-flat condition on (4.3) reduces to the Yang equation

r−1∂r
(
rJ−1∂rJ

)
+ ∂z

(
J−1∂zJ

)
= 0 . (4.4)

Once a solution to this equation has been found, the conformal factor Ω can
be found by a single integration.
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The Yang equation (4.4) also arises as a reduction of anti-self-dual Yang–
Mills equations [53, 55]. To see it, let us consider the complexified Minkowski
space MC = C4, with coordinates (W,Z, W̃ , Z̃) such that the metric and the
volume form are

ds2 = 2
(
dZdZ̃ − dWdW̃

)
, vol = dW ∧ dW̃ ∧ dZ ∧ dZ̃ .

Let Φ ∈ Λ1(MC)⊗ sl(2) and F = dΦ+Φ∧Φ. The anti-self-dual Yang–Mills
(ASDYM) equations are F = − ⋆4 F (now ⋆4 is taken w.r.t. the flat metric
on C4), or

FWZ = 0 , F
W̃ Z̃

= 0 , F
WW̃

− F
ZZ̃

= . (4.5)

The first two equations imply the existence of a gauge choice such that

Φ = J−1∂
W̃
J dW̃ + J−1∂

Z̃
J dZ̃ , J = J

(
W,Z, W̃ , Z̃

)
∈ SL(2,C) .

(4.6)
The final equation in (4.5) holds iff

∂Z
(
J−1∂

Z̃
J
)
− ∂W

(
J−1∂

W̃
J
)
= 0 . (4.7)

Setting

Z = t+ z , Z̃ = t− z , W = r eiθ , W̃ = r e−iθ ,

and performing a symmetry reduction J = J(r, z) reduces (4.7) to (4.4).

4.4. Twistor construction

The twistor correspondence for ASDYM is based on an observation that
ASDYM condition is equivalent to the flatness of a connection Φ on α-planes
in MC

µ =W + λZ̃ , ν = Z + λW̃ . (4.8)

The twistor space PT ≡ CP3 \ CP1 is the space of all such planes. It can
be covered by two open sets, with affine coordinates (µ, ν, λ) in an open set,
where λ ̸= ∞. Points in MC correspond to rational curves (twistor lines)
in PT , and points in PT correspond to α-planes in MC. The conformal
structure on MC is encoded in the algebraic geometry of curves in PT :
p1, p2 are null separated iff L1, L2 intersect.

The connection between twistor theory and ASDYM is provided by the
following:

Theorem 4.1 (Ward [52]) There exists a 1–1 correspondence between
gauge equivalence classes of ASDYM connections Φ, and holomorphic vector
bundles E → PT trivial on twistor lines.
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To read off the solution (4.7) from this theorem cover PT with two open sets:
U , where λ ̸= ∞ and Ũ , where λ ̸= 0. The bundle E is then characterised by
its patching matrix: P = P (µ, ν, λ). The triviality on twistor lines implies
that there exists a splitting P = PUPŨ

−1, where PU and P
Ũ

are holomorphic
and invertible matrices on U and Ũ , respectively. The incidence relation
(4.8) implies that P is constant along the vector fields {∂

Z̃
− λ∂W , ∂W̃ −

λ∂Z}. Applying this to the splitting relation and using the Liouville theorem
implies the existence of Φ ∈ Λ1(MC)⊗ sl(2) such that

Φ = H̃−1∂ZH̃ dZ + H̃−1∂W H̃ dW +H−1∂
Z̃
H dZ̃ +H−1∂

W̃
H dW̃ ,

where H = PU (λ = 0), H̃ = P
Ũ
(λ = ∞). This is gauge equivalent to (4.6)

with
J = HH̃−1 . (4.9)

4.5. Twistor bundle for toric Ricci flat metrics

Let us go back to the toric Ricci-flat metrics. For any of the Killing
vectors K, we can find its twist potential: a function ψ such that

dψ = ∗(K ∧ dK) .

Another solution to the Yang equation (4.4) then arises from a Bäcklund
transformation

J ′ =
1

V

(
1 −ψ

−ψ ψ2 − V 2

)
, V ≡ g(K,K) .

Let us pick a rod on which K is not identically zero. The following has
been established in [21, 41, 56]: The patching matrix for the bundle E from
Theorem 4.1 is an analytic continuation of P (z) ≡ J ′(0, z)

P (γ), where γ = z +
1

2
r

(
λ− 1

λ

)
.

The splitting procedure leads, via (4.9), to J ′(r, z) from which J(r, z) can
be recovered.

This patching matrix can be found for the Chen–Teo family [18]. It is
given by

P (z) =

(
C1/C Q/C
Q/C C2/C

)
, (4.10)

where C1, C2, C are monic cubics, Q quadratic, with coefficients depending
on the Chen–Teo parameters. Examining the outer rod and the asymptotics
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near z = ∞ gives

P ∼=
(
1 0
0 −1

)
+

1

z

(
2m 2n
2n 2m

)
+O

(
1

z2

)
,

where m, n are mass and nut parameters. For Chen–Teo instanton with
(4.2), we find

m =
√
k

(
1 + 2s2

)2
2
√
1− 4s4

, n = 0

in agreement with [37]. In general, the patching matrix P of the form
of (4.10) where C,C1, C2 are monic polynomials of degree N and Q is a
polynomial of degree N − 1 subject to det(P ) = −1 leads to Ricci-flat ALF
metrics with N+1 rods and N turning points. The ALE metrics with N+1
rods can also be constructed, but from a different ansatz [15, 50].

5. Other developments

5.1. ALF, ALE, ALG, ALH, and more

The ALE and ALF classes of gravitational instantons have been defined
in (2.2) and (2.3) in terms of the asymptotic quotients of R4 and asymptotic
S2 fibrations, respectively. There is an alternative and unifying definition
in terms of the volume growth of a ball of large radius R. It is of orders
R4 and R3 for, respectively, ALE and ALF. This classification gives rise
to more families of instantons: ALG and ALG* with the volume growth
R2, ALH with the volume growth R, and ALH* with the volume growth
R4/3 [5, 6, 32]. Unlike the ALE and ALF, these new families do not contain
any examples which are known analytically in closed form. It is however the
case that all classes are asymptotically described by the Gibbons–Hawking
form (3.2) with the harmonic function given by

V ∼ N

|x|
for ALE ,

V ∼ 1 +
N

|x|
for ALF ,

V ∼ 1 +
N

2π
ln
(
x1

2 + x2
2
)

for ALG and ALG* ,

V ∼ 1 +Nx3 for ALH and ALH* .

Therefore, the metrics are locally asymptotic to Rk × T 4−k with k = 4 for
ALE, k = 3 for ALF, k = 2 for ALG, and k = 1 for ALH. Let us focus on the
ALH* case, and perform an affine transformation of x3, such that V = x3 in
the Gibbons–Hawking ansatz (3.2). The coordinate x3 is on the base R of
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the fibration M → R. The fibres are Nil 3-manifolds fibering over T 2 with
periodic coordinates (x1, x2) with the fibre coordinate τ . The one-form A
in the ansatz (3.2) is such that dA = dx1 ∧ dx2 is the volume form on T 2.
Setting x3 = r2/3 and rescalling (x1, x2, τ) by constants yields

g = dr2 + r2/3
(
dx21 + dx22

)
+ r−2/3 (dτ +A)2 .

The volume form is vol = r1/3dr ∧ dx1 ∧ dx2 ∧ dτ , so the volume growth is
indeed

∫
M vol ∼ R4/3 if the range of r is bounded by R.

5.2. Einstein–Maxwell instantons

The gravitational instantons exist in the Einstein–Maxwell theory. Un-
like the pure Einstein case, there exist many asymptotically flat solutions
in the multi-centred class. These solutions arise as analytic continuations of
the Israel–Wilson and Majumdar–Papapetrou black holes (see [12, 54, 58]),
and are given by

g = V Ṽ
(
dx21 + dx22 + dx23

)
+

1

V Ṽ
(dτ +A)2 , (5.1)

where V and Ṽ are harmonic functions on R3, and the one-form A satisfies

⋆3

(
Ṽ dV − V dṼ

)
= dA . (5.2)

The Maxwell field is given by

F = ∂i

(
V −1 − Ṽ −1

)
(dτ +A) ∧ dxi + ϵijk∂k

(
V −1 + Ṽ −1

)
V Ṽ dxi ∧ dxj .

If Ṽ = 1 then (5.2) reduces to the monopole equation (3.3) and the metrics
(5.1) are Ricci flat, and coincide with the Gibbons–Hawking ansatz (3.2). If

V = V0 +

N∑
m=1

am
|x− xm|

, Ṽ = Ṽ0 +

N∑
m=1

ãm
|x− x̃m|

with V0, Ṽ0, am, ãm,xm, x̃m constant and N, Ñ integers. In particular, if
V0 = Ṽ0 ̸= 0, N = Ñ , and

∑
am =

∑
ãm, then the metrics (5.1) are AF.

The Riemannian Majumdar–Papapetrou metrics have V = Ṽ and purely
magnetic Maxwell field F = −2 ⋆3 dV . See [12] for other choices which lead
to AE, ALE, and ALF solutions.
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There also exist Einstein–Maxwell instantons with no Lorentzian coun-
terpart and anti-self-dual Weyl curvature [39, 40]. An example is the Burns
metric

gBurns = dr2 +
1

4
r2

(
σ1

2 + σ2
2 + σ3

2
)
+
m

4

(
σ1

2 + σ2
2
)
. (5.3)

It is the unique scalar-flat Kähler metric on the total space of the line bundle
O(−1) → CP1. It is also an AE Einstein–Maxwell gravitational instanton,
with the self-dual part of the Maxwell field strength given by the Kähler
form, and its anti-self-dual part given by the Ricci form. It is one of few
gravitational instantons where the isometric embedding class is known: It
has been shown in [16] that (5.3) can be isometrically embedded in R7, but
not in R6.

5.3. Twistor theory and non-linear graviton

The twistor non-linear graviton approach of Penrose [46] parametrises
holomorphic anti-self-dual Ricci flat metrics in terms of complex three-folds
with 4-parameter family of rational curves and some additional structures.
The Riemannian version of this correspondence has been given by Atiyah,
Hitchin, and Singer [2], where the twistor space is the six-dimensional mani-
fold arising as an S2-bundle over a Riemannian manifold (M, g). Each fiber
of the S2-fibration parametrises the almost-complex structures in M . The
twistor space is itself an almost-complex manifold, and its almost-complex
structure is integrable iff (with respect to a chosen orientation on M) the
Weyl tensor of g is ASD.

Theorem 5.1 ([46], [2]) Hyper-Kähler four-manifolds (ASD Ricci flat met-
rics) are in one-to-one correspondence with three-dimensional complex man-
ifolds (twistor spaces) admitting 4-parameter families of rational curves with
some additional structure.

This formulation is well suited to the study of gravitational instantons. In
particular, the ALE class can be fully characterised twistorially [33–36].
In this case, there exists a holomorphic fibration PT → O(k) for some
integer k. If k = 2, then the associated instanton admits a tri-holomorphic
Killing vector and belongs to the AN Gibbons–Hawking class (3.2), [49]. If
k > 2, then in general (M, g) does not admit a Killing vector, but it admits
a tri-holomorphic Killing spinor which leads to a hidden symmetry of the
associated heavenly equations [13, 14].

5.4. Euclidean quantum gravity

Euclidean quantum gravity which gave rise to the initial interest in grav-
itational instantons in the late 1970 does not any more aspire to the status
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of a fundamental theory of quantum gravity. According to Gibbons’s inter-
esting account [27], it never did. And yet, it is the only theory of quantum
gravity with experimental predictions, including the black hole thermody-
namics. In this theory, the gravitational instantons dominate the Euclidean
path integral. So if a quantum gravity theory exists, and if it reduces to
Einstein’s general relativity in the classical limit, then Euclidean quantum
gravity is here to stay, and will occupy a place similar to that the WKB
approximation has in the quasi-classical limit relating the quantum mechan-
ics to Newtonian physics. This short and subjective review has focused on
recent, and not so recent, mathematical development. It remains to be seen
what role will the gravitational instantons play in physics in the years to
come.
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