
Acta Physica Polonica B 55, 2-A1 (2024)

INFERRING COMMUNITY STRUCTURE
THROUGH MAXIMUM DEGREE-BASED RANDOM

WALK WITH RESTART

Hui Xie

School of Information and Communication Engineering
Guangzhou Maritime University

Guangzhou 510725, China

Yongjie Yan†

School of Information Engineering, Fujian Business University
Fuzhou 350012, China

yongjieyan@aliyun.com

Received 22 September 2023, accepted 20 February 2024,
published online 27 February 2024

Community structure, a critical topological property of complex net-
works, has recently received extensive and in-depth attention from re-
searchers. Recognizing the non-uniform degree distribution of nodes within
network subgraphs, this paper presents a novel algorithm called MD-RWR
(Maximum Degree-based Random Walk with Restart) for community de-
tection in complex networks. The proposed algorithm not only excels at
identifying overlapping communities but also enhances the objectivity and
accuracy of the results. To evaluate its performance, the algorithm is tested
on five real-world networks. The experimental results demonstrate its ef-
fectiveness in detecting communities, particularly when dealing with over-
lapping ones. Furthermore, the algorithm surpasses Walktrap, Infomap,
LPA, and LPA-S algorithms in terms of modularity and NMI scores, while
exhibiting faster execution time compared to these algorithms.

DOI:10.5506/APhysPolB.55.2-A1

1. Introduction

Many real-world systems in nature, society, or technology are complex
networks, which exhibit inherent community structures, where nodes within
a group display stronger connections compared to interactions between dif-
ferent groups. A classic example of a complex network is a social network,
such as Facebook or Twitter (now also known as X). In these networks, in-
dividuals (nodes) are connected by various types of relationships (edges),
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such as friendships, followings, or interactions. Here is a brief explanation
of some basic notions: (1) Nodes: In a social network, nodes represent indi-
vidual users. Each user is a node in the network. (2) Edges: The connec-
tions between nodes represent interactions or relationships. For example, on
Facebook, a friendship between two users would be represented by an edge
connecting their respective nodes. (3) Community structure: In the context
of social networks, community structure refers to the presence of tightly-knit
groups of individuals within the network. These groups may represent clus-
ters of friends with strong connections or shared interests. The formation
of community structures arises from the interplay among graphs and their
internal dynamics, such as resetting on networks with centrality-based cri-
teria [1]. Consequently, the exploration of community detection in networks
has emerged as a prominent research domain in recent decades [2–4].

In recent years, numerous community detection methods have been pro-
posed, leveraging random walk and node similarity principles. These ap-
proaches employ Markov models to assess node similarity by executing ran-
dom transitions and assigning nodes with high similarity to the same com-
munity [5, 6]. However, in real networks, the compatibility between quality
indicators for different types of community structures significantly varies
within the same community. This challenges the adaptability of commu-
nity detection algorithms relying on quality indicators [7]. Conversely, algo-
rithms based on random walk techniques are less influenced by community
type, thus exhibiting superior adaptability. Nevertheless, node similarity
evaluation through random walk-based community detection algorithms is
highly sensitive to the number of iterations in the walking process, frequently
necessitating prior knowledge for decision-making [8].

Supervised methods for community detection primarily exploit network
structure. For example, Liben-Nowell and Kleinberg [9] conducted experi-
ments on a co-authorship network and identified the Adamic/Adar method
as the most effective. Kashima et al. [10] proposed a semi-supervised method
utilizing link propagation for prediction. Additionally, employing the con-
figuration model as a null model to evaluate network partition quality has
proven to be a reliable approach [11].

The Label Propagation Algorithm (LPA), originally introduced by
Raghavan et al. [12], assigns a node with the most frequent community
label within its neighborhood. LPA exhibits nearly linear time complex-
ity and is widely employed for community detection in large-scale complex
networks. However, due to various random factors during the label propa-
gation process (e.g., node update order and label selection), the outcomes
of community detection display significant instability. In other words, ex-
ecuting the LPA algorithm multiple times on the same network can yield
considerably different results. To address this issue, Li et al. [13] proposed
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the LPA-S algorithm, which updates a node’s label based on the label of its
most similar neighboring node, thereby reducing randomness and enhancing
algorithm stability to some extent.

In previous studies, random walk models have been utilized to deter-
mine the relevance of nodes in social networks [14, 15]. Understanding the
dynamics of communities is crucial as it provides valuable insights into the
relationships between nodes in complex networks. However, the identifica-
tion of underlying communities in a network remains a challenging task [16].
To address this challenge, some approaches have adopted relational learn-
ing methods [17, 18]. For instance, Backstrom and Leskovec [19] employed
supervised random walk on networks to learn weights on links between com-
munity members.

Random walk, based on a Markov model, is a widely used research ap-
proach for community detection. The fundamental idea is to release numer-
ous random walkers with an initial distribution and track their distribution
function as they diffuse through the network. Extensive research has led
to the proposal of several community detection algorithms based on ran-
dom walk. One such algorithm is the Walktrap algorithm introduced by
Pons et al. [20], which clusters nodes hierarchically based on the notion that
nodes within a community exhibit stronger connections compared to those
outside the community. Consequently, a randomly chosen walker is more
likely to remain within a community for a longer duration, resulting in a
clear hierarchical structure [21]. Although the Walktrap algorithm may not
achieve high accuracy, its underlying ideas have significantly influenced sub-
sequent algorithms. Zhang et al. [22] proposed a three-stage hierarchical
community detection algorithm, PMAC, based on Partial Matrix Approx-
imation Convergence. This algorithm identifies the initial core nodes in
the network using a node importance measurement method. The number
of random walk steps is then determined based on the convergence of the
partial transition matrix of core nodes. Communities are merged around
these core nodes, resulting in the final partitioning. Lai et al. [23] trans-
formed directed networks into undirected networks by assigning weights
to edges based on edge direction information, successfully applying algo-
rithms designed for undirected networks to discover communities in the
original directed network. The SCMAG algorithm proposed by Huang et al.
[24] constructs communities based on node attributes, demonstrating the
close connection between node attributes and community structure. The
Infomap algorithm is an information theory-based approach that combines
random walk ideas to detect community structures [25]. By searching for
the shortest encoding of random walk paths, it identifies community struc-
tures. Jiao et al. [26] comprehensively considered global and local topology
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structures and proposed a method of calculating node similarity based on
this concept, which exhibits stronger adaptability to different types of com-
munities compared to previous algorithms.

These studies propose community detection algorithms that integrate
random walk with classical methods and perform well on specific network
models. However, most of these algorithms utilize undifferentiated transition
probabilities during the node transition step, which fails to fully capture the
asymmetry of node degrees in real networks. Additionally, the accuracy of
community partitioning is greatly influenced by the number of transition it-
erations, and more prior knowledge is necessary for decision-making. Given
the excellent properties of the node degree metric in simulating stochastic
processes through restarted random walks, it can be enhanced and appro-
priately utilized to evaluate the performance of community detection.

The rest of this paper is organized as follows. Section 2 presents the
preliminaries and problem definition. The proposed MD-RWR (Maximum
Degree-based Random Walk with Restart) algorithm is described in Sec-
tion 3. Experimental results are presented in Section 4, followed by the
conclusion in Section 5.

2. Preliminaries

In this paper, we propose a clustering method for large undirected graphs
based on random walk. The proposed method is founded on the concept
that, before a random walk reaches the stationary distribution, the ran-
dom walker spends more time traversing within clusters than transitioning
between clusters. All symbols used throughout this paper are gathered in
Table 1.

Table 1. List of symbols.

Symbol Explanation
G an undirected graph
V the nodes of G
E the edges of G
n node number, n = |V |
m edge number, m = |E|
A adjacency matrix
Aij 1 if node i and node j are directly connected, 0 otherwise
N(i) neighborhood of i, namely N(i) = {j|Aij = 1}
d(i) degree of node i, d(i) =

∑
j Aij
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2.1. RWR on graphs

The basic principle entails traversing the entire network graph, com-
mencing from a specific node or a series of nodes. For each node, the walker
will transition to its neighboring nodes with a probability of 1 − α. Si-
multaneously, there exists a probability of α for the walker to randomly
transition to a neighboring node within the network graph. Here, α denotes
the probability of random jumping. Every completed walk yields a prob-
ability distribution, indicating the likelihood of accessing each node in the
graph. The acquired probability distribution serves as input for subsequent
walks, and this iterative process continues until convergence is achieved. In
this section, we introduce a novel method for ranking nodes in the network
based on their relevance scores, which exhibits similarities to the well-known
PageRank [27].

There are two assumptions about undirected graphs:

1. Every node in the graph is connected to itself.

2. The graph is connected, meaning that any node in the graph can be
reached from any other node.

The presence of a robust community structure within a network graph
implies a dense inter-connectivity among nodes within the community, while
exhibiting limited connections with external nodes. Consequently, when
the random walker reaches the boundary of a community, the probability
of returning to the internal structure of the community surpasses that of
venturing outside the community. This observation substantiates two key
facts: firstly, the relatively high likelihood of traversing between nodes within
the community structure, and secondly, the comparatively low probability of
traversing between nodes belonging to distinct communities. Leveraging this
principle, we can iteratively conduct independent random walks in complex
networks to unveil communities.

The fundamental approach for detecting communities in intricate social
networks via repeated random walks entails performing the random walk
process multiple times. Each random walk consists of a specified number
of steps, and the recorded path at each step represents a set of nodes, po-
tentially indicative of a community based on preliminary analyses. Conse-
quently, by repeating the random walk process t times, t potential communi-
ties can be identified. It is important to acknowledge that the quality of these
potential communities is influenced by the initial nodes and step length, and
there exists a considerable likelihood of overlapping communities. Therefore,
further refinement of these potential communities is necessary.
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Two methodologies can be employed to terminate the random walk pro-
cess. The first approach involves determining the fixed number of steps
taken during the walk, while the second technique entails establishing a
cumulative jump probability threshold. Within a random walk path, the
cumulative jump probability is computed as the product of the jump proba-
bility from the initial node to each subsequent step leading to the endpoint of
the path. Considering the substantial computational complexity of complex
networks and the relatively relaxed accuracy requirements during the poten-
tial community identification stage, this paper adopts the strategy of setting
a predetermined number of steps to conclude the random walk process.

2.2. Distance between nodes and distance between clusters

The probability of starting at node i and transitioning to node j in a
random walk of length t is denoted as P t

i,j . An appropriate value of t may
be chosen, such that it is sufficiently large to capture graph structure infor-
mation while not being excessively large, thereby allowing P t

i,j to converge
to the stationary distribution. This approach enables the establishment of
a concept of distance between any two nodes in the graph based on P t

i,j . As
a result, several desirable properties of this approach emerge:

1. When two nodes, denoted as i and j, belong to the same cluster, the
probability P t

i,j should be relatively high.

2. The value of P t
i,j is influenced by the degree of d(j), as the walker is

more likely to transition to nodes with higher degrees.

3. If a random walk starts from either node i or node j within the same
cluster, it should end in a node k with a similar probability. In other
words, for every node k, the probabilities P t

i,k and P t
j,k should be sim-

ilar.

Consider two clusters, denoted as C1 and C2, which are subsets of the
node set C1, C2 ⊂ V within the graph G. To establish the distance rC1,C2

between these clusters, we define

rC1,C2 =

√√√√√ n∑
k=1

(
P t
C1,k
− P t

C2,k

)2

d(k)
. (1)

The probability P t
C,k, which denotes the likelihood of initiating a random

walk of t steps within cluster C and terminating at node k is

P t
C,k =

1

|C|
∑
i∈C

P t
i,k . (2)
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3. Implementation of the MD-RWR algorithm

Walktrap is a clustering algorithm that excels at identifying communities
within graphs that contain dense inter-connectivity among specific groups
of nodes compared to the rest of the network. Walktrap can recognize such
communities even when they are not explicitly labeled or separated in the
graph, but like other clustering algorithms, it is vulnerable to noise and
outliers, and requires prior specification of the desired number of clusters.
Additionally, the time complexity of the Walktrap algorithm is O(n3), which
limits its use for large networks.

In contrast, our proposed MD-RWR algorithm is a graph clustering tech-
nique that employs RWR iteratively on the given graph and merges the
resulting walks into clusters based on walking on the local maximum degree
node. The core concept of MD-RWR is that nearby nodes are likely to be
visited by similar random walks. The algorithm begins by constructing a
transition matrix for the graph, representing the probability of transitioning
from one node to another. Next, it performs random walks on the graph
by taking random steps based on the restart probabilities. After generating
several walks, the algorithm utilizes a clustering approach to group nodes
that are frequently visited together by the same walks.

The fundamental principle of MD-RWR is to estimate the similarity be-
tween nodes based on the number of random walks traversing through them.
Nodes that are frequently visited together are more likely to belong to the
same cluster than those visited together less frequently. To enhance the
efficiency of the algorithm, we incorporate the local maximum degree node
method by conducting RWR only on the neighboring nodes of the walker,
reducing the algorithm’s time complexity.

We can define RWR on a graph using the transition matrix P

P
(t+1)
i,j = α

A
(t)
i,j

d(i)
+ (1− α)q , (3)

where the degree of node i, denoted as d(i) = ΣjAi,j , represents the sum
of weights associated with its connections. The restart probability is de-
noted as α, and q is a row vector (0, . . . , 1, . . . , 0). q is typically used to
represent the probability of restarting (or relocating) the current node to
a specific node in a complex network. During the random walk, there is a
certain probability (denoted by α) of returning to the initial node, and this
probability is implemented through q. It should be emphasized that the ini-
tial transition matrix P0 is defined as q. The RWR is a stochastic process in
which, at time t, the random walker is located at node i and moves to node j
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with probability Pi,j . Since Pi,j is identical for all neighboring states j of
state i, the walker moves to a neighbor (or remains in the current state)
with equal probability.

3.1. Steps of the algorithm

Step 1. Choosing two clusters to merge.
The distance metric described above can be utilized in a hierarchical

clustering algorithm. We begin by defining the initial partition of the graph
into n clusters, with each node representing an individual cluster: P1 = v |
v ∈ V . The algorithm iteratively merges clusters until only one remains, by
following these steps for each stage k:

1. Identify the two neighboring clusters C1 and C2 that result in the
smallest variation ∆σ(C1, C2), which will be elaborated in the follow-
ing section.

2. Combine C1 and C2 to form a new cluster, C3.

3. Update the variations ∆σ(C3, C) between C3 and the clusters C that
are adjacent to C3.

4. Create a new partition Pk+1 = (P \ C1, C2) ∪ C3.

By considering the probability vectors P t
C1,• and P t

C2,•, we can calculate
∆σ(C1, C2) with a time complexity of O(n), as it has been demonstrated
that a relationship exists between ∆σ(C1, C2) and rC1,C2 given by

∆σ(C1, C2) =
1

n

|C1||C2|
|C1|+ |C2|

r2C1,C2
. (4)

Step 2. Merging the clusters.
This step can be easily performed, as the newly formed cluster C3 com-

prises the nodes from both C1 and C2

C3 = C1 ∪ C2 . (5)

The updated probability vector P t
C3,• can be computed by utilizing P t

C1,•
and P t

C2,•

P t
C3,• =

C1P
t
C1,• + |C2|P t

C2,•
|C1|+ |C2|

. (6)

Following that, we can derive the distances between nodes i and j, as
well as between communities C1 and C2.
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Step 3. Updating the distances.
Subsequently, it is necessary to compute the updated variation ∆σ(C3, C)

for each cluster C adjacent to C3. Two distinct cases need to be considered:

1. If C is adjacent to both C1 and C2, the values of ∆σ(C1, C) and
∆σ(C2, C) are readily available. In this case, it is feasible to calcu-
late ∆σ(C3, C) in constant time complexity O(1) using the following
formula:

∆σ(C3, C) =

(|C1|+ |C|)∆σ(C1, C) + (|C2|+ |C|)∆σ(C2, C) + |C|∆σ(C1, C2)

|C1|+ |C2|+ |C|
.

(7)

2. In instances where C is adjacent to only one of C1 and C2, it becomes
necessary to calculate ∆σ(C3, C) using Eq. (8), which can be expressed
as

∆σ(C3, C) =
1

n

|C3||C|
|C3|+ |C|

r2C3,C . (8)

It is important to note that C must be adjacent to at least one of C1

and C2 since C is now adjacent to C3, thus ensuring that these two cases
encompass all possible scenarios.

Algorithm 1 presents a comprehensive depiction of the MD-RWR algo-
rithm for community detection, providing a detailed description.

Based on the comprehensive analysis conducted above, it has been deter-
mined that after n-1n-1n-1 iterations, the system exhibits a significant in-
crease in efficiency, thereby suggesting that the algorithm converges rapidly
towards its optimal state. In Step 1 of the MD-RWR, the time complex-
ity is O(n) for selecting the mixing length t, O(n) for calculating Pt, and
O(n log n) for calculating distances from every node to communities. In
Step 2, time complexity is O(|C1| + |C2| + d), where O(|C1|) and O(|C2|)
represent the sizes of clusters C1 and C2, respectively, where d is the di-
mensionality of the probability vector. In Step 3, the time complexity for
calculating the number of nodes in each community is O(n log n), while the
complexity for calculating the distances between communities is O(n log n).
Additionally, the time complexity for calculating Eq. (8) is also O(n log n).
Thus, the total time complexity of the MD-RWR algorithm is O(n log n).
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Algorithm 1 MD-RWR algorithm.
Require: Graph: G(V,E), Start Node: u, Restart : α.
Ensure: Clustering result vector C.
1: for i = 1, 2, ..., n do
2: initialize Ci with i;//Every node i is a community.
3: end for
4: for i = 1, 2, ..., n− 1 do
5: for C1 = 1, 2, ...,m do
6: for C2 = 1, 2, ...,m do
7: Calculate distance between community C1 and C2 using

Eq. (1);//C1, C2 cannot be the same number.
8: Calculate the value of ∆σ using Eq. (4);
9: H(C1)(C2)← ∆σ;

10: end for
11: end for
12: Find the minimum value in H and Min ← H(C1)(C2);
13: for j in C1 and C2 do
14: Calculate the value of RWR using Eq. (3);
15: Calculate the updated probability vector using Eq. (6);
16: C3 = C1 + C2;
17: end for
18: Update vector C;
19: Update the distances between C3 and other communities using Eq. (7)

or (8);
20: end for

4. Simulations and analysis

4.1. Evaluation metrics

4.1.1. Modularity function

The modularity Qc defined by Newman [33] reads

Qc =
1

2L

∑
c∈C

∑
uv

αucαvc

(
Auv −

kukv
2L

)
, (9)

where the term A denotes the adjacent matrix, while L =
∑

uv Auv repre-
sents the aggregate weight of edges within the network. Furthermore, the
sum of edge weights adjacent to node u is denoted as ku =

∑
v Auv. The

belonging coefficient αuc, originally introduced by Nicosia et al. [34] in 2009,
quantifies the degree of affiliation between node u and community c. Its
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calculation is outlined
αuc =

nuc∑
c∈C

nuc
, (10)

where nuc represents the count of edges that are adjacent to node u within
community c.

4.1.2. Normalized mutual information

The assessment of network quality entails the utilization of the Normal-
ized Mutual Information (NMI), an extensively employed metric for eval-
uating the effectiveness of graph clustering algorithms [35]. The NMI is
employed as a quantitative measure to compare and contrast clustering out-
comes

NMI(X,Y ) =
2
∑CA

i=1

∑CB
j=1

nij

n log
(
nijn
ninj

)
(
−
∑CA

k=1
nk
n log

(
nk
n

))
+

(
−
∑CB

k=1
nk
n log

(
nk
n

)) . (11)

The symbol CA is used to denote the standard community partition,
while CB represents the community partition obtained through a specific
algorithm. An NMI index value of 1 signifies that the algorithm’s commu-
nity partition perfectly aligns with the standard one. Conversely, if the
algorithm’s community results are completely contradictory to the standard
partition (e.g., all nodes assigned to a single community), the NMI index
will be 0.

4.2. Test on real-world networks

The experimental results for the networks including Zachary’s Karate
Club [28] with 34 nodes and 78 edges, the Dolphin network [29] with 62
nodes and 159 edges, and the Football network [30] with 115 nodes and 613
edges, are illustrated in Fig. 1.

(a) (b) (c)

Fig. 1. Community detection result of three networks. (a) Zachary’s Karate Club
network; (b) Dolphin network; (c) Football network.
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The community detection results obtained through the employment of
the MD-RWR algorithm in the networks of Zachary’s Karate Club, the Dol-
phin network, and the Football network are visualized in Fig. 1 (a), Fig. 1 (b),
and Fig. 1 (c), correspondingly. The modularity values for the three networks
are 0.361, 0.382, and 0.418, respectively. Similarly, the NMI values for the
three networks are 0.732, 0.685, and 0.832, respectively.

Based on the results reported in Table 2, it is apparent that Walktrap, In-
fomap, LPA, LPA-S, and MD-RWR demonstrate consistently high modularity
values, indicating their robust performance on the five real-world networks.
Nevertheless, in the case of the Enron email network, the modularity values
obtained from LPA-S exceed those obtained from MD-RWR. This implies
that the MD-RWR algorithm outperforms the other four algorithms, consis-
tently exhibiting higher modularity across the majority of networks.

Table 2. Comparing with other algorithms.

Modularity Qc

Network Nodes Edges Walktrap Infomap LPA LPA-S MD-RWR
[20] [25] [12] [13]

Karate network [28] 34 78 0.308 0.381 0.398 0.413 0.431
Dolphin network [29] 62 159 0.351 0.403 0.412 0.387 0.428
American college 115 613 0.381 0.395 0.425 0.415 0.453
football [30]
Enron email [31] 1133 5451 0.402 0.486 0.516 0.536 0.492
PolBlogs [32] 1490 19090 0.482 0.521 0.572 0.586 0.593

The results of five different community detection algorithms (MD-RWR,
Walktrap, Infomap, LPA, and LPA-S) as a function of random walk length are
shown in Fig. 2, as a line plot where the x-axis represents the random walk
length (ranging from 10 to 50) and the y-axis represents modularity.

Here are some conclusions that can be drawn from Fig. 2:

(1) Convergence of algorithms: As the random walk length increases, some
algorithms show convergence in their results. This is indicated by the
lines becoming flatter or less steep as the random walk length increases.
For example, the MD-RWR algorithm’s results increase sharply at first
but then flatten out, indicating convergence. LPA-S also seems to
converge, but at a higher level.
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Fig. 2. The convergence of modularity as a function of the random walk length.

(2) Performance differences: Different algorithms perform better or worse
depending on the random walk length. For example, MD-RWR per-
forms better than the other algorithms at longer random walk lengths
(around 40 and above), with the highest results overall. LPA-S also
performs well, especially at longer random walk lengths. Walktrap and
Infomap perform similarly, with Walktrap generally outperforming In-
fomap. LPA seems to lag behind the other algorithms, with consistently
lower results.

(3) Optimal random walk length: There may be an optimal random walk
length for each algorithm, depending on the evaluation metric used.
For MD-RWR, the optimal random walk length may be around 40 or
higher. LPA-S also performs well at these longer lengths. Walktrap
and Infomap might have an optimal length around 30 to 40, while LPA
might not benefit much from increasing the random walk length.

(4) Algorithm stability: Some algorithms, such as MD-RWR and LPA-S,
seem more stable (i.e., less sensitive to changes in random walk length)
than others. LPA, on the other hand, seems to be more sensitive to
changes in random walk length, with more pronounced fluctuations in
its results.
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5. Conclusion

This paper presents a novel community detection algorithm called MD-
RWR, which utilizes the notion of local maximum degree nodes to effec-
tively partition communities in various complex networks. The MD-RWR
algorithm assigns transition probabilities to individual nodes and evaluates
their importance within communities based on the local maximum degree.
In the clustering process, nodes autonomously determine their transition di-
rection using relevant information such as transition probabilities, eliminat-
ing the need to predefine the number of communities. Given the widespread
existence of overlapping communities in large-scale networks, exploring tech-
niques for assessing node significance in the context of overlapping commu-
nities presents a promising avenue for future research.
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