
Acta Physica Polonica B 55, 3-A2 (2024)

GRADIENT ESTIMATORS
FOR NORMALIZING FLOWS

Piotr Białas

Institute of Applied Computer Science, Jagiellonian University
Łojasiewicza 11, 30-348 Kraków Poland

Piotr Korcyl, Tomasz Stebel

Institute of Theoretical Physics, Jagiellonian University
Łojasiewicza 11, 30-348 Kraków Poland

Received 28 February 2024, accepted 9 March 2024,
published online 22 March 2024

Recently, a machine learning approach to Monte-Carlo simulations
called Neural Markov Chain Monte Carlo (NMCMC) is gaining traction.
In its most popular form, it uses neural networks to construct normalizing
flows which are then trained to approximate the desired target distribution.
In this contribution, we present a new gradient estimator for the Stochastic
Gradient Descent algorithm (and the corresponding PyTorch implementa-
tion) and show that it leads to better training results for the ϕ4 model. For
this model, our estimator achieves the same precision in approximately half
of the time needed in the standard approach and ultimately provides better
estimates of the free energy. We attribute this effect to the lower variance
of the new estimator. In contrary to the standard learning algorithm, our
approach does not require estimation of the action gradient with respect
to the fields, thus has the potential of further speeding up the training for
models with more complicated actions.
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1. Introduction

Despite the apparent simplicity of the original idea behind Monte-Carlo
simulations by Stanislaw Ulam, this approach is one of the main pillars of
computational sciences. Expressed in the form of an algorithm applied to
study a simple classical statistical mechanics problem by Metropolis et al. [1],
it is ubiquitous as a tool for dealing with complicated probability distribu-
tions (see, for example, [2]). In many cases, one resorts to the construction
of an associated Markov chain of consecutive proposals which provides a
mathematically grounded way of generating samples from a given distribu-
tion even when the proper normalization of the latter is not known. The
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only limiting factor of the approach is the statistical uncertainty which di-
rectly depends on the number of statistically independent configurations.
Hence, the effectiveness of any such simulation algorithm can be linked to
its autocorrelation time which quantifies how many configurations are pro-
duced before a new, statistically independent configuration appears. For
systems close to phase transitions, the increasing autocorrelation times, a
phenomenon called critical slowing down, is usually the main factor that
limits the statistical precision of outputs.

The recent interest in machine learning techniques has offered possible
ways of dealing with this problem. For example, Ref. [3] and later Ref. [4]
proposed autoregressive neural networks as a mechanism of generating inde-
pendent configurations which can be used as proposals in the construction
of the Markov chain. The new algorithm [5] was hence called Neural Markov
Chain Monte Carlo (NMCMC). Once the neural network is sufficiently well-
trained, one indeed finds that autocorrelation times are significantly reduced
as was demonstrated in the context of the two-dimensional Ising model in
Ref. [6].

For systems with continuous degrees of freedom, the NMCMC algorithm
has to be appropriately modified and the predominant approach is to use
normalizing flows to generate configurations, while at the same time cal-
culating their probabilities. Both of these steps are necessary. Before any
neural network can be used for that purpose, it must be trained, i.e. its
weights should be tuned in such a way as to approximate the desired prob-
ability distribution. The standard approach for achieving this is using the
stochastic gradient descent (SGD) algorithm which requires the estimation
of gradients of the loss function with respect to the neural network weights.
In this contribution, we propose to adapt the gradient estimator used for au-
toregressive networks applied for discrete models (e.g. Ising model) to the
case of normalizing flows. We show that this estimator avoids calculating the
derivative of the action and is only approximately 10% slower. Furthermore,
due to its better convergence properties when applied in SGD, it outperforms
the standard algorithm in terms of resulting autocorrelation time and the
quality of calculations of the variational free energy. We attribute this ef-
fect to the lower variance of this new estimator. We demonstrate our idea
using a solvable toy model and the scalar ϕ4 field theory by comparing the
proposed gradient estimator with the other two gradient estimators used in
the literature.

This contribution is organized as follows. In order to be self-contained,
we briefly introduce the NMCMC approach in Section 2. Then, we describe
different gradient estimators in Section 3. We provide the definitions, as
well as some characteristics. In Section 4, we discuss how the estimators
introduced in Section 3 can be adapted to work with normalizing flows.
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Section 5 provides a very simple toy example, where we can thoroughly
compare all estimators. Finally, in Section 6, we compare all the estimators
on the two-dimensional ϕ4 model. We also include the snippets of Python
code that implement our estimator using PyTorch framework [7].

2. Neural Markov Chain Monte Carlo

When using the Monte-Carlo methods, we are faced with the task of
generating samples from some target distribution p(ϕ). In the majority of
interesting applications, e.g. lattice field theories, it is impossible to gener-
ate samples independently from this distribution and we have to resort to
Markov Chain Monte Carlo methods (MCMC) instead.

In this approach, given an initial configuration ϕi, a new trial configu-
ration ϕtrial is proposed from the distribution q(ϕtrial |ϕi). This trial con-
figuration is then accepted with probability pa(ϕtrial |ϕi) or the previous
configuration is repeated in the Markov chain. Usually, the configuration
ϕtrial differs from ϕi only on a small subset of degrees of freedom like e.g.
single lattice site. If the so-called detailed balance condition

p(ϕi)q(ϕtrial |ϕi)pa(ϕtrial |ϕi) = p(ϕtrial)q(ϕi |ϕtrial)pa(ϕi |ϕtrial) (1)

is satisfied and provided that all available configurations can be reached,
then asymptotically this procedure generates samples with distribution p(ϕ).
One way of satisfying condition (1) is by the Metropolis–Hastings acceptance
probability

pa(ϕtrial |ϕi) = min

{
1,

p(ϕtrial)

q(ϕtrial |ϕi)

q(ϕi |ϕtrial)

p(ϕi)

}
. (2)

The biggest drawback of this algorithm is the fact that consecutive samples
are highly correlated due to small incremental changes made at each step.

The idea of Metropolized Independent Sampling (MIS) method [8] is to
generate samples independently from some distribution q(ϕ) i.e.

q(ϕtrial |ϕi) = q(ϕtrial) , (3)

and then proceed with the Metropolis–Hastings accept/reject step

pa(ϕtrial |ϕi) = min

{
1,

p(ϕtrial)

q(ϕtrial)

q(ϕi)

p(ϕi)

}
. (4)
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This also introduces correlations but if the distribution q(ϕ) is sufficiently
close to p(ϕ) and the acceptance rate is close to one, then those correlations
can be substantially smaller then in the case of MCMC (see Ref. [6] for
discussion).

Seemingly, in the MIS approach, one has only replaced the problem of
generating configurations from the distribution p(ϕ) with another hard prob-
lem of finding the distribution q(ϕ) that is close to the target distribution
p(ϕ) and allows for fast generation of independent configurations. However,
following the proposal of Neural Markov Chain Monte Carlo, one can use
machine learning techniques, notably neural networks, to learn the distri-
bution q(ϕ) [3, 4]. The general idea is that q(ϕ) is now parameterized by
some (very large) set of parameters θ

q(ϕ) = q(ϕ |θ) . (5)

The training consists in the tuning of the parameters θ as to minimize a
loss function that measures the difference between q(ϕ |θ) and target dis-
tribution p(ϕ). A natural choice for such a function is the Kullback–Leibler
divergence

DKL(q | p) =

∫
dϕ q(ϕ |θ) (log q(ϕ |θ)− log p(ϕ))

= E[log q(ϕ |θ)− log p(ϕ)]q(ϕ |θ) . (6)

Please note that this function is not symmetric: DKL(q | p) ̸= DKL(p | q).
This particular form (6) is chosen because we are sampling from the distri-
bution q(ϕ |θ).

Actually, in most cases, we know the target distribution p(ϕ) only up to
a normalizing constant. Let us assume that we only know P (ϕ),

P (ϕ) = Z · p(ϕ) , Z =

∫
dϕP (ϕ) , (7)

where the constant Z is usually called the partition function. Inserting P
instead of p into the Kullback–Leibler divergence definition, we obtain the
variational free energy

Fq = E [log q(ϕ |θ)− log p(ϕ)− logZ]q(ϕ |θ) = F +DKL(q | p), (8)

where F = − logZ is the free energy. As F does not depend on θ, minimizing
Fq is equivalent to minimizing DKL. In the following, we will use P and Fq

instead of p and DKL. The possibility of calculating Fq and thus estimating
the free energy F is one of the major strengths of this approach as this is
very hard to do in the classical MCMC simulations [9].
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It is a non-trivial question as to how to define the q(ϕ |θ) model in
practice. It has to

(1) define a properly normalized probability distribution, and

(2) allow for sampling from this distribution.

We will shortly describe two common approaches: normalizing flows and
autoregressive networks which can be used for systems with continuous and
discrete degrees of freedom respectively.

2.1. Continuous degrees of freedom — normalizing flows

The normalizing flow can be thought of as a tuple of functions [5, 10, 11]

RD ∋ z −→ (qpr(z),φ(z |θ)) ∈
(
R,RD

)
. (9)

The function qpr(z) is the probability density defining a prior distribution
of random variable z. The function φ(z |θ) must be a bijection, so if the
input z is drawn from qpr(z) then, the output ϕ is distributed according to

q(ϕ |θ) = qz(z |θ) ≡ qpr(z)J(z |θ)−1 , ϕ = φ(z |θ) , (10)

where
J(z |θ) = det

(
∂φ(z |θ)

∂z

)
(11)

is the determinant of the Jacobian of φ(z |θ). For this approach to be of
practical use, the flows are constructed in such a way that the Jacobian
determinant is relatively easy to compute. In terms of qpr(z), qz(z |θ), and
φ(z), the variational free energy Fq can be written as

Fq =

∫
dz qpr(z) (log qz(z |θ)− logP (φ(z |θ)))

= E [log qz(z |θ)− logP (φ(z |θ))]qpr(z) . (12)

When sampling from qpr(z), this can be approximated as

Fq ≈
1

N

N∑
i=1

(log qz(zi |θ)− logP (φ(zi |θ))) , zi ∼ qpr(z) , (13)

where the ∼ symbol denotes that each zi is drawn from the distribution
qpr(z).
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2.2. Discrete degrees of freedom — autoregressive networks

For systems with discrete degrees of freedom, we cannot use normaliz-
ing flows. In such situation we can represent the distribution q(ϕ |θ) via
conditional probabilities

q(ϕ |θ) = q(ϕ1 |θ)
N∏
i=2

q(ϕi |ϕi−1, . . . , ϕ1,θ) , (14)

where (ϕ1, . . . , ϕN ) are the N components of the configuration ϕ and have
to represent discrete degrees of freedom. In the case of a simple spin system,
ϕi = ±1, the factorised probability (14) can be described by a neural network
with N inputs ϕ1, . . . , ϕN and N outputs corresponding to conditional prob-
abilities q(ϕi = 1 |ϕi−1, . . . , ϕ1). This can be generalized to the case when
ϕi takes on more than two values [12]. To ensure that q(ϕi |ϕi−1, . . . , ϕ1,θ)
depends only on the values of the preceding spins ϕi−1, . . . , ϕ1, the so-called
autoregressive networks are used [3, 13–16].

The configuration ϕ = (ϕ1, . . . , ϕN ) can be generated using ancestral
sampling by successively generating the components ϕi one-by-one from dis-
tributions q(ϕi |ϕi−1, . . . , ϕ1,θ) starting at i = 1 and feeding the generated
components successively back to the network to obtain q(ϕi+1 |ϕi, . . . , ϕ1,θ),
and so on.

In this formulation, we can obtain an estimate of Fq by sampling ϕ
directly from q(ϕ |θ)

Fq ≈
1

N

N∑
i=1

(log q(ϕi |θ)− logP (ϕi)) , ϕi ∼ q(ϕ |θ) . (15)

3. Gradient estimators

Minimizing Fq and thus training the machine learning model is done
by the stochastic gradient descent (SGD) and requires the calculation of the
gradient of Fq with respect to θ. Actually, we can only estimate the gradient
based on the finite sample (batch) of N configurations {ϕ} = {ϕ1, . . . ,ϕN}.

In the case of normalizing flows, this is pretty straightforward. We can
directly differentiate expression (13) to obtain the first gradient estimator
g3[{ϕ}]

dFq

dθ
≈ g3[{ϕ}] ≡

1

N

N∑
i=1

d

dθ
(log q(zi |θ)−logP (φ(zi |θ))) , zi ∼ qpr(·|θ) .

(16)
This derivative can be calculated by popular packages such as e.g. PyTorch [7]
or TensorFlow [17] using automatic differentiation.



Gradient Estimators for Normalizing Flows 3-A2.7

While conceptually simple, this estimator has a considerable drawback
as it requires calculating the gradient of the distribution P (ϕ) with respect
to the configuration ϕ,

∂

∂θ
logP (φ(zi |θ)) =

∂

∂ϕ
logP (ϕ)

∣∣∣∣
ϕ=φ(zi|θ)

∂φ(zi |θ)
∂θ

. (17)

In lattice field theories the probability P is given by the action S(ϕ)

logP (ϕ(z |θ)) = −S(ϕ(z |θ)) , (18)

and calculating the gradient of Fq requires the gradient of the action S with
respect to the fields ϕ. This may not pose large complications for e.g. ϕ4

theory where the action is just a polynomial in ϕ. Other lattice field theories
however, notably the Quantum Chromodynamics with dynamical fermions,
may have much more complicated actions including some representation of
the non-local determinant of the fermionic matrix and the calculation of the
action gradient may be impractical.

Autoregressive networks require calculating the derivative of expression
(15). This is more tricky as in this case the sampling distribution q(ϕ |θ)
also depends on θ. Following Ref. [3], we can, however, start by calculating
the gradient of the exact expression (8)

dFq

dθ
=

∫
dϕ

∂q(ϕ |θ)
∂θ

(log q(ϕ |θ)− logP (ϕ))

+

∫
dϕ q(ϕ |θ) ∂

∂θ
log q(ϕ |θ) . (19)

The last term in the above expression is zero because it can be rewritten as
the derivative of a constant

E

[
∂ log q(ϕ |θ)

∂θ

]
q(ϕ |θ)

=

∫
dϕ

∂q(ϕ |θ)
∂θ

=
∂

∂θ

∫
dϕ q(ϕ |θ)︸ ︷︷ ︸

1

= 0 . (20)

First term in expression (19) can be further rewritten as
dFq

dθ
=

∫
dϕ q(ϕ |θ)∂ log q(ϕ |θ)

∂θ
(log q(ϕ |θ)− logP (ϕ))

= E

[
∂ log q(ϕ |θ)

∂θ
(log q(ϕ |θ)− logP (ϕ))

]
q(ϕ |θ)

, (21)

and approximated as

dFq

dθ
≈ g1[{ϕ}] ≡

1

N

N∑
i=1

∂ log q(ϕi |θ)
∂θ

(log q(ϕi |θ)− logP (ϕi)) , (22)

which defines another gradient estimator g1[{ϕ}] discussed in this work.
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The authors of Ref. [3] introduce yet another gradient estimator, which
we label g2[{ϕ}], with the aim of reducing the variance, by subtracting the
batch mean from the signal

g2[{ϕ}] =
1

N

N∑
i=1

∂ log q(ϕi |θ)
∂θ

(
s(ϕi |θ)− s(ϕ |θ)N

)
, (23)

where

s(ϕ |θ) ≡ log q(ϕ |θ)− logP (ϕ) and s(ϕ |θ)N =
1

N

N∑
i=1

s(ϕi |θ) . (24)

Please note that expression (23) does not depend on Z.
Contrary to g3 and g1, the g2 estimator is slightly biased

E [g2[{ϕ}]] =
N − 1

N
E [g1[{ϕ}]] . (25)

The proof of this fact is presented in Appendix A. Of course, such multiplica-
tive bias does not play any role when the estimator is used in the gradient
descent algorithm and is very small anyway when N ∼ 103. For all practical
purposes, we can treat all estimators as unbiased, so any differences must
stem from the higher moments, most importantly from the variance.

Although not much can be said about the variances of these estimators
in general, we can show that for perfectly trained model i.e. when q(ϕ |θ) =
p(ϕ)

var [g1[{ϕ}]q(ϕ |θ)=p(ϕ) =
1

N
(logZ)2 var

[
∂ log q(ϕ |θ)

∂θ

]
q(ϕ |θ)=p(ϕ)

. (26)

As Z may be very large or very small depending on formulation of P (ϕ),
the variance can be quite substantial. For g2, we obtain

var [g2[{ϕ}]q(ϕ |θ)=p(ϕ) = 0 . (27)

The proof is presented in Appendix B. This potentially very large reduc-
tion in variance was the actual rationale for introducing this estimator (see
Ref. [3] supl. materials).

As for the estimator g3, we cannot make any claims about the value of
its variance even for q(ϕ |θ) = p(ϕ) but we will show that it does not need
to vanish in this case.
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4. Eliminating action derivative

We notice that contrary to g3, the estimators g1 and g2 do not require
calculating the derivatives of P (ϕ). This is due to the fact that we can first
generate a configuration ϕ from the distribution q(ϕ |θ) and then obtain its
probability directly (see figure 1 (a) for schematic picture). In the case of
normalizing flows in the standard approach (estimator g3 described above),
we do not have direct access to the function q(ϕ |θ) since the probability
of the configuration is determined simultaneously with the generation by
passing z through the network (see figure 1 (b)). However, by leveraging
the reversibility of normalizing flows, we can adapt the g2 estimator to that
case (see figure 1 (c)). The g2 estimator requires the q(ϕ |θ) function, and
while it is not explicit in the normalizing flows formulation (9), it can be
inferred from Eq. (10). Using the fact that the Jacobian determinant of the
transformation φ−1(ϕ |θ),

J̄(ϕ |θ) ≡ det

(
∂φ−1(ϕ |θ)

∂ϕ

)
, (28)

is the inverse of Jacobian determinant of φ(z |θ),

J̄(ϕ |θ) = J(z |θ)−1 , (29)

we can write q(ϕ |θ) as

q(ϕ |θ) = qpr(z
′)J̄(ϕ |θ) , z′ = φ−1(ϕ |θ) . (30)

ϕ ∼ q(ϕ|θ)

q(ϕ|θ)

(a)
z ∼ qpr(z)

ϕ = φ(z|θ), J(z|θ)

q(ϕ|θ) = qpr(z)J(z|θ)−1

(b)
z′ = φ−1(ϕ|θ), J̄(ϕ|θ)

ϕ = φ(z|θ)

z ∼ qpr(z)

q(ϕ|θ) = qpr(z
′)J̄(ϕ|θ)

(c)

Fig. 1. Schematic picture of three algorithms for gradient estimation discussed in
the paper: (a) autoregressive networks, (b) normalizing flows, (c) our proposition
of adaptation of (a) into normalizing flows. Double-line arrows represent the flow:
upward-pointing arrows represent forward propagation, and downward-pointing
arrows represent backward propagation. Dashed arrows denote propagation which
does not require the gradient.
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Given that, the calculation of g2 would proceed as follows:

1. First, use the function φ(z |θ) to generate configurations ϕi without
any gradient calculations

ϕi = φ(zi |θ) , zi ∼ qpr(z) . (31)

2. Then switch on the gradient calculations and calculate z′ by running
the flow backward

z′
i = φ−1(ϕi |θ) (32)

and use Eq. (30) to calculate the probability q(ϕ |θ). It is very im-
portant that we use the z′

i from step two and not zi from step one, as
the gradients have to be propagated through qpr.

3. Finally, the gradient estimate is calculated as in (23)

g2[{ϕ}] =
1

N

N∑
i=1

∂ log q(ϕi |θ)
∂θ

×
(
log q(ϕi |θ)− logP (ϕi)− log q(ϕ |θ)− logP (ϕ)

)
. (33)

This will require running the flow two times: forward to obtain ϕi, then
backward to calculate z′, but the gradients have to be calculated only on
the last pass. We illustrate this with the pseudocode in Algorithm 1 and
schematically in figure 1 (c).

▷ generate ϕ

Switch off gradient calculations
z ∼ qpr(z)
ϕ← φ(z |θ) ▷ Forward pass
▷ Calculate signal
s← log q(ϕ |θ)− logP (ϕ)
▷ Calculate g2

Switch on gradient calculations
z′ ← φ−1(ϕ |θ) ▷ Backward pass

q ← qpr(z
′ |θ) det

(
∂φ−1(ϕ |θ)

∂ϕ

)
loss← log q × (s− s̄)

Algorithm 1: Calculation of g2 estimator for normalizing flows. The result-
ing loss can be used for automatic differentiation.
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5. Toy model

We will illustrate the concepts introduced in previous sections with a
very simple, one-dimensional normalizing flow that generates an exponential
distribution

(qpr(z), φ(z | θ)) =
(
1,−1

θ
log(1− z)

)
, z ∈ [0, 1) . (34)

This will allow us to explicitly calculate the form of each estimator gi, as
well as its variance. Using (10), we obtain

qz(z | θ) = 1 · J(z |θ) = θ(1− z) . (35)

Combining this with the inverse flow

z = φ−1(ϕ | θ) ≡ 1− e−ϕθ , (36)

we get the exponential distribution

q(ϕ | θ) ≡ qz
(
φ−1(ϕ | θ) | θ

)
= θ e−θϕ . (37)

The Jacobian determinant for the inverse flow is

J̄(ϕ | θ) = θ e−ϕθ , (38)

thus using (30), we get the same result for q(ϕ |θ).
Given the target distribution

p(ϕ) = λ e−λϕ and P (ϕ) = Z · p(ϕ) , (39)

the free energy can be easily calculated as

Fq = θ

∫
dϕ e−θϕ (log θ − log λ− logZ − ϕ (θ − λ))

= log θ − log λ− logZ − 1

θ
(θ − λ) , (40)

as well as its gradient
dFq

dθ
=

1

θ2
(θ − λ) . (41)

For the gradient estimator g1, we obtain

g1[{ϕ}] =
1

N

N∑
i=1

(
1

θ
− ϕi

)
(log θ − log λ− logZ − ϕi(θ − λ))

=
1

θ
(log θ − log λ− logZ) + (θ − λ)

1

N

N∑
i=1

ϕ2
i

−
[
1

θ
(θ − λ) + (log θ − log λ− logZ)

]
1

N

N∑
i=1

ϕi . (42)
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Since

E

[
1

N

∑
i

ϕi

]
=

1

θ
and E

[
1

N

∑
i

ϕ2
i

]
=

2

θ2
, (43)

we obtain the correct expression (41) for E [g1] which means that the es-
timator is unbiased as expected. The calculation of the variance is more
involved and the final result is

var [g1] =
13

N

(θ − λ)2

θ4
− 6

N

(θ − λ)(log θ − log λ− logZ)

θ3

+
1

N

(log θ − log λ− logZ)2

θ2
. (44)

Thus, for θ = λ,

var [g1]θ=λ =
1

N

(logZ)2

λ2
, (45)

which is non-zero in the case of Z ̸= 1 and can be arbitrarily large.
For the estimator g2, we have

g2[{ϕ}] = (θ − λ)
1

N

∑
i

(
ϕi −

1

θ

)(
ϕi − ϕ̄N

)
, ϕ̄N =

1

N

N∑
j=1

ϕj . (46)

Using the relations

E
[
ϕ̄N

]
= E [ϕ] =

1

θ
(47)

and

1

N

N∑
i=1

E

[(
ϕ− 1

θ

)
ϕ̄N

]
=

1

N
E

[(
ϕ− 1

θ

)
ϕ

]
+

N − 1

N
E

[(
ϕ− 1

θ

)]
E [ϕ] ,

(48)
we obtain that the expectation value of estimator g2 is

E [g2] =
N − 1

N
(θ − λ)

1

θ2
, (49)

as predicted by Eq. (25). The calculations of the variance are tedious and
we present them to first order in N−1,

var [g2] =
7

N

(θ − λ)2

θ4
+ (θ − λ)2O

(
1

N2

)
. (50)
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Finally for estimator g3, we obtain

g3[{ϕ}] =
1

N

∑
i

d

dθ

(
log θ − log λ+ log(1− zi)

(
1− λ

θ

))
=

1

θ
+

λ

θ2
1

N

∑
i

log(1− zi) . (51)

Since the random variable − log(1− z) is distributed according to the expo-
nential distribution with mean equal to one

E[log(1− zi)] = −1 and var [log(1− zi)] = 1 , (52)

we again obtain the correct result (41) for E [g3]. Similarly, variance can be
calculated as

var [g3] =
1

N

λ2

θ4
. (53)

Please note that this expression does not vanish when θ = λ.

5.1. Numerical results

In order to see how these three different estimators behave when em-
ployed in the SGD algorithm, we have optimized the q(ϕ | θ)model to match
the distribution p(θ) using the PyTorch framework [7]. The target distribu-
tion parameter λ was set to 1/3 and Z to λ−1. The starting θ value was
set to 1. We have performed 500 steps, where by one step we understand
a single update of the parameter θ. At each step, we have sampled a batch
of N = 100 elements from the distribution q(ϕ | θ) which we have used to
calculate the gradient estimate using one of the gi estimators. The actual
step i.e. adjustment of θ was performed using the Adam optimizer with a
learning rate set to 0.01. The results are presented in the left panel of fig-
ure 2. As we can see, all estimators give similar performance and θ converges
to the true value. However, after approximate convergence, we note that the
use of the estimators g1 and g3 results in a rather large “wandering” of the
θ around its target value, which is due to the non-vanishing variance of the
gradient in this case (see the right panel of figure 2).

To estimate the variance, we have generated 1000 additional batches at
each step. On each batch, we calculated the gradient estimator and used
those 1000 samples to estimate the variance. The results are presented in the
right panel of figure 2, where we show the standard deviation (square root
of variance) of gradient estimators calculated during simulations. They are
consistent with our analytical calculations and, as predicted, the variance of
estimator g2 does vanish as θ → λ. In contrast, the variance of the remain-
ing estimators is substantially bigger than zero. While this is a contrived
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example, it serves as an indicator that while unbiased, different estimators
can have dramatically different statistical properties. Of course, increasing
the batch size would result in decreased variance for all estimators.
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Fig. 2. Optimizing the q(· | θ) distribution. Left: Evolution of the parameter θ, the
blue horizontal line indicates the true value of θ = 1/3. Right: Standard deviation
(square root of variance) of the gradient estimator versus θ, dotted lines represent
analytic results. Vertical black line corresponds to θ = 1/3 and horizontal lines
correspond to values of standard deviation at θ = λ for the g1 and g3 estimators.

6. Lattice ϕ4 theory

The second example is the two dimensional scalar ϕ4 field theory with
Euclidean action

S
[
ϕ |m2, λ

]
=

∫
dx2

 ∑
µ=0,1

(∂µϕ(x))
2 +m2ϕ2(x) + λϕ4(x)

 (54)

which, following [18], we discretize as

S
(
ϕ |m2, λ

)
=

L−1∑
i,j=0

ϕi,j (2ϕi,j − ϕi−1,j − ϕi+1,j + 2ϕi,j − ϕi,j−1 − ϕi,j+1)

+

L−1∑
i,j=0

(
m2ϕi,j + λϕ4

i,j

)
, (55)

where the lattice has the size of L × L. The probability distribution p is
given by the Boltzmann distribution
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p(ϕ) = Z
(
m2, λ

)−1
e−S(ϕ|m2,λ) , Z

(
m2, λ

)
=

∫
dϕ e−S(ϕ|m2,λ) (56)

thus, P (ϕ) = exp(−S(ϕ)).
We have used PyTorch normalizing flows implementation provided in the

excellent tutorial [18]. It uses the affine coupling layers to implement the
flow [10]. Field ϕ is split using a checkerboard pattern into two parts ϕ1 and
ϕ2. Part ϕ2 is frozen and does not change during the transformation but is
used as an input to the functions t and s which are then used to transform
part ϕ1

ϕ′
1 ← ϕ1 e

s(ϕ2) + t(ϕ2) ,

ϕ′
2 ← ϕ2 . (57)

The outputs of functions t and s have the same size as ϕ1 and all arith-
metic operations are performed pointwise. The Jacobian determinant of
this transformation is easily calculable

log J(z |θ) =
∑
i

si(ϕ2) , (58)

where the sum runs over all components of s.
Please note that this is a bijection with the inverse transformation given by

ϕ1 ←
(
ϕ′
1 − t

(
ϕ′
2

))
e−s(ϕ′

2) ,

ϕ2 ← ϕ′
2 , (59)

and
log J̄(ϕ |θ) = −

∑
i

si
(
ϕ′
2

)
. (60)

In the next layer parts ϕ1 and ϕ2 are interchanged. The functions t
and s in each layer are implemented using a convolutional neural network
with two output channels. The architecture of this network is presented in
Table 1. We use 16 coupling layers. The prior distribution qpr is taken as
the standard normal distribution N (0, 1) independently on each component
of z.
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Table 1. Convolutional neural network architecture used in coupling layers.

Layer chin chout Kernel
1 1 16 (3,3)

Leaky ReLU
2 16 16 (3,3)

Leaky ReLU
3 16 16 (3,3)

Leaky ReLU
4 16 2 (3,3)

tanh

The Python code for the single update step is presented in listing 1. The
function train_step is parameterized by the loss_fn function which imple-
ments the loss used to calculate estimators gi. The code for loss estimators
is presented in listings 2 and 3. The reverse_apply_flow and apply_flow
functions are presented in listing 4.

def train_step(sub_mean , batch_size ,
*, model , action , loss_fn , optimizer ):

optimizer.zero_grad ()
loss , logq , logp = loss_fn(sub_mean , model=model ,

action=action)
loss.backward ()
optimizer.step()

Listing 1. A single update step.

def g_1_2_loss(sub_mean , batch_size , *, model , action ):
layers , prior = model["layers"], model["prior"]

with torch.no_grad ():
z = prior.sample_n(batch_size)
log_p_z = prior.log_prob(z)
phi , logq = nf.apply_flow(layers , z, log_p_z)
logp = -action(phi)
signal = logq - logp

z, log_q_phi = nf.reverse_apply_flow(layers ,
phi , torch.zeros(batch_size ,
device=phi.device ))

log_q_phi += prior.log_prob(z)
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if sub_mean:
loss = torch.mean(log_q_phi

* (signal - signal.mean ()))
else:

loss = torch.mean(log_q_phi * signal)

return loss , logq , logp

Listing 2. Loss for the estimators g1 and g2. The only difference is the subtraction
of the mean from the signal in the case of estimator g2. layers implements the
affine coupling layers normalizing flow, prior implements the qpr(z) distribution

def g_3_loss(sub_mean , batch_size , *, model , action ):
layers , prior = model["layers"], model["prior"]
x, logq = nf.apply_flow_to_prior(

prior , layers ,
batch_size=batch_size)

logp = -action(x)
loss = torch.mean(logq -logp)
return loss , logq , logp

Listing 3. Loss for the estimator g3. The sub_mean parameter is provided for
compatibility with the g2 and g3 loss implementation.

def apply_flow(coupling_layers , z, logq):
for layer in coupling_layers:

z, logJ = layer.forward(z)
logq = logq - logJ

return z, logq

def apply_flow_to_prior(prior , coupling_layers ,
*, batch_size ):

z = prior.sample_n(batch_size)
logq = prior.log_prob(z)
return apply_flow(coupling_layers , z, logq)

def reverse_apply_flow(coupling_layers , phi , logq):
for layer in reversed(coupling_layers ):

phi , logJ = layer.reverse(phi)
logq += logJ

return phi , logq

Listing 4. Applying the flow in forward and in reverse directions.
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6.1. Numerical results

In this section, we present results for the following values of action (54)
parameters: m2 = −4, λ = 8. For those values, the system is in the dis-
ordered phase where the absolute magnetization ⟨ | ∑i ϕi | ⟩ is small and no
mode-seeking phenomenon appears [19]. Results obtained for other values
of physical parameters m2 and λ are presented in Appendix C.

For each estimator, we have made four different training runs of 4000
epochs each, where each epoch consisted of 100 simulation steps, and in
each step, we have sampled a batch of 1024 ϕ configurations. The training
parameters as well as timings are presented in Table 2. As expected, the
g2 estimator is slower as it has to make one more pass through the net-
work. However, it is only ∼ 10% slower, indicating that it is the gradient
calculation that takes up most of the time.

Table 2. Parameters and timings of the runs. We have omitted the g1 estimator
due to its poor performance. lr denotes the learning rate used.

L = 16 m2 = −4 λ = 8

optimizer Adam lr = 0.001

Num. epochs Steps per epoch Batch size
4000 100 1024
GPU V100 32 GB

estimator time t/step
g2 19:00:00 0.17 s
g3 17:10:00 0.15 s

In Figs. 3 and 4, we present the evolution of two metrics: effective sample
size (ESS) and variational free energy Fq (Eq. (8)). The ESS is defined as

ESS =
E [w(ϕ)]2q(ϕ |θ)
E [w(ϕ)2]q(ϕ |θ)

≈

(∑N
i=1w(ϕi)

)2

N
∑N

i=1w(ϕi)2
, (61)

where
w(ϕ) =

p(ϕ)

q(ϕ |θ) and ϕi ∼ q(ϕi |θ) , (62)

and it is an estimate of the fraction of samples that can be considered in-
dependent [8]. Obviously, q(ϕ |θ) = p(ϕ) entails w(ϕi) = 1 and ESS = 1.
The values presented are the averages over one epoch. The first thing one
can notice is that the estimator g1 is converging very slowly and we have
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decided to stop training after 1000 epochs and do not consider this estima-
tor in further studies. The estimators g2 and g3 achieve comparable results
with the estimator g2 systematically converging faster.
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Fig. 3. Left: ESS as the function of epoch. One epoch consisted of 100 steps. In
each step, the train_step function was called once. Right: ESS as a function of
wall time in seconds.
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Fig. 4. Left: Fq as the function of epoch. One epoch consisted of 100 steps. In
each step, the train_step function was called once. Right: Fq as a function of
wall time in seconds. The estimator g1 is not shown as it results in Fq greater than
−36.0.
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To better compare the two estimators for each run, we have looked at the
last 10 epochs (1000 steps) to find the lowest achieved value of Fq. We have
saved the corresponding model. Each model was then used to generate a
sample of 105 ϕ configurations. We used those samples to calculate the vari-
ational free energy Fq (Eq. (8)). We have calculated the standard deviation
of the signal s(ϕ |θ) − s(ϕ |θ)N over each sample. This can be used as an
indicator of the quality of training as it is zero when q(ϕ |θ) = p(ϕ). While
it is not clear how to quantify this, we can assume that a lower standard
deviation indicates better-trained flow [3].

Next, we used the Metropolis–Hastings rejection step (4) to obtain the
Monte-Carlo samples from the distribution (56). We have calculated the
acceptance and the integrated autocorrelation time τ (see [20, pages 137,
143–145]). The results for each run are presented in Table 3. For the esti-
mator g2, we have used models obtained after training for 2000 epochs or
4000 epochs. Looking at the table, we see that g2 systematically outperforms
g3 for every metric even for much shorter training times.

Table 3. var denotes the variance of the signal s(ϕ |θ) − s(ϕ |θ)N and acc. the
acceptance, τ is the integrated autocorrelation time.

Estimator(epochs) time [hh:mm]
g2(2000) 9:30 g2(4000) 19:00 g3(4000) 17:10

Fq
√
var acc. τ Fq

√
var acc. τ Fq

√
var acc. τ

−36.98 0.76 0.69 1.28 −37.03 0.70 0.73 1.09 −36.96 0.77 0.66 1.43
−37.00 0.74 0.70 1.21 −37.02 0.71 0.72 1.09 −36.97 0.76 0.67 1.41
−37.01 0.72 0.71 1.18 −37.04 0.68 0.74 1.03 −37.00 0.74 0.69 1.38
−36.98 0.76 0.67 1.29 −37.04 0.68 0.75 1.00 −36.99 0.74 0.69 1.27

All three estimators are (practically) unbiased, so the differences in per-
formance must stem from the difference in higher moments. To verify this,
we estimated the variance of each estimator. Given a model, we have gener-
ated Nb = 1000 batches {ϕ}i of 1024 samples each (that was the batch size
used in training). For each batch, we calculated the gradient estimate and
the variance of every term which we then averaged

var [g] ≈ 1

Nθ

Nθ∑
j=1

1

Nb

Nb∑
i=1

(gj [{ϕ}i]− gj)
2 , (63)

where g is any of three gradients estimators and gj [{ϕ}] is its jth component
calculated for batch {ϕ}, gj is the average of this component over all batches.



Gradient Estimators for Normalizing Flows 3-A2.21

The results are presented in figure 5. We plot the square root of variance
(63) as the function of the training time of the model. As we can see, the
values for estimator g1 are almost two orders of magnitude larger than for
the other two. That explains why it is performing so poorly. The picture
on the right shows the same data but on different vertical scales so we can
see the difference between the g2 and g3 estimators. The estimator g2 has
clearly a lower variance which explains its better performance for this model.
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Fig. 5. Square root of the variance of gradient estimators as the function of training
time. The right panel shows the same data but on different vertical scales. Open
and closed symbols show independent runs.

7. Summary

In this work, we have described two estimators of the gradient of the
loss function used in the literature in two different contexts: one is usually
discussed together with systems with discrete degrees of freedom (we denoted
it g2 in the text), while the other together with systems with continuous
degrees of freedom (called g3). The machine learning architectures used
for these two classes of systems are also different: one uses autoregressive
neural networks in the first case, while normalizing flows in the second case.
We pointed out that the two gradient estimators differ conceptually, namely
the estimator typically used in the context of normalizing flows requires an
explicit computation of derivatives of the action with respect to the fields,
while the other does not. We, therefore, described how to adapt the gradient
estimator g2 to the case of normalizing flows, rendering the computation
of action derivatives unnecessary. This has the potential to speed up the
training for models with more complicated actions. We supplemented our
discussion with numerical experiments: in a one-dimensional toy model,
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where all relevant quantities have been calculated analytically as well as in
the two-dimensional scalar ϕ4 field theory model. The proposed estimator g2
takes only 10% more time to calculate, this is more than offset by its better
convergence properties. We have shown that given the same training time,
it can outperform the standard estimator by a large margin and provide
similar results in half of the time. Our results suggest that this is due to the
lower variance of the g2 estimator compared to g3.

It should be noted that the training of the flow can be regarded as esti-
mating the free energy by a variational approach. Such a task is notoriously
hard, error-prone, and time-consuming in classical MCMC, this fact can war-
rant the use of normalizing flows for Fq calculation even when using them in
NMCMC may be unpractical [9]. We have shown that using our approach
we have obtained lower, and thus better, values of Fq.

Note added: After completion of this contribution our group compared
performance of the g2 and g3 estimators using the 2D Schwinger model with
the Wilson fermions [21]. Contrary to the ϕ4 lattice theory, evaluation of
action in the Schwinger model is computationally intensive as it contains the
determinant of the Dirac operator. For such a model, the g2 estimator, which
does not require differentiating of the action, has a significant advantage over
g3 as far as numerical cost and memory usage are concerned.

An analysis related to the one presented in this manuscript was per-
formed by the authors of Ref. [22], where several gradient estimators were
considered including g2 and g3. Reference [22] proposed another estimator,
called path gradient. Detailed comparison of g2 and the path gradient de-
serves a separate study, in particular in the context of lattice field theories
with fermions.
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the Polish PLGRID consortium. T.S. kindly acknowledges support of the
National Science Center (NCN), Poland grant No. 2021/43/D/ST2/03375
and support of the Faculty of Physics, Astronomy and Applied Computer
Science, Jagiellonian University grant No. 2021-N17/MNS/000062. This re-
search was partially funded by the Priority Research Area Digiworld under
the program Excellence Initiative — Research University at the Jagiellonian
University in Kraków.
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Appendix A

Bias of estimator g2

First, recall that (Eq. (24))

s(ϕ |θ) ≡ log q(ϕ |θ)− logP (ϕ) and s(ϕ)N =
1

N

N∑
i=1

s(ϕi) . (A.1)

From (23), we have

E [g2[{ϕ}]] = E [g1[{ϕ}]]−
1

N

N∑
i=1

E
[
δ(ϕ |θ)s(ϕ |θ)N

]
, (A.2)

where we have introduced a shortened notation

δ(ϕ |θ) = ∂ log q(ϕ |θ)
∂θ

. (A.3)

The second term in expression (A.2) is equal to

E

 1

N2

∑
i,j

δ(ϕi |θ)s(ϕj |θ)

 =
1

N
E [δ(ϕ |θ)s(ϕ |θ)]

+
N − 1

N
E [δ(ϕ |θ)]E [s(ϕ |θ)]

=
1

N
E [g1[{ϕ}]] , (A.4)

where we have used formula (20) which entails E [δ(ϕ)] = 0. Putting this
back into (A.2), we obtain the stated result (25).

Appendix B

Variance of the estimators

Since ϕs are independent from (22), we obtain

var [g1] =
1

N

(
E
[
δ(ϕ |θ)2s(ϕ |θ)2

]
− E [δ(ϕ |θ)s(ϕ |θ)]2

)
, (B.1)

when q(ϕ |θ) = p(ϕ), then s(ϕ |θ) = − logZ and we obtain expression (26).
For the estimator g2 by the same reasoning, we obtain

var [g2] =
1

N

(
E

[
δ(ϕ |θ)2

(
s(ϕ |θ)− s(ϕ |θ)N

)2
]

−E
[
δ(ϕ |θ)

(
s(ϕ |θ)− s(ϕ |θ)N

)]2)
, (B.2)

when q(ϕ |θ) = p(ϕ), then s(ϕ |θ)− s(ϕ |θ)N = 0 and variance vanishes.
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Appendix C

Results for other values of ϕ4 theory parameters

In the main part of the manuscript, we considered one set of parameters
of scalar field action, m2 = −4, λ = 8. In this appendix, we shall investigate
other choices of parameters, we shall fix m2 = −4 and vary λ.

In figure 6, we compare ESS as a function of training epochs for two
gradient estimators g2 and g3. We choose three values of λ: 3 (top pair of
curves), 4.5 (bottom pair of curves), and 8 (middle pair of curves). These
values were chosen so that the system is in the ordered phase, near the
phase transition1 and the disordered state, respectively. We first note that
far from phase transition, the network can be efficiently trained no matter
which estimator is used. We systematically observe better performance of
g2 there. In the critical region, λ = 4.5, the network is much harder to train
and both estimators perform comparably. For λ = 3, where two modes of
the distribution are well separated, the mode-seeking phenomenon is ob-
served, namely networks break the symmetry and sample only one mode,
see separated study of this phenomenon [19].
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Fig. 6. ESS as the function of epoch (one epoch consisted of 100 steps) during
training. The top pair of curves was obtained for λ = 3, the middle pair for λ = 8,
and the bottom pair for λ = 4.5.

1 Since we consider here small sizes of lattice, L = 16, we are not exposed to strong
critical behavior of the system.



Gradient Estimators for Normalizing Flows 3-A2.25

The above results were obtained by calculating ESS at the batch size
= 1024 and then averaging such ESS over 100 batches to eliminate large
fluctuations of this observable. We have noticed that if the network is not
well-trained (here, close to the phase transition), the resulting values of ESS
strongly depend on the batch size. We attribute this behavior to a large
variance of the weights of (62). This phenomenon deserves separate studies
which are currently in progress and will be presented elsewhere.
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