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The memory effect in electrodynamics, as discovered in 1981 by Sta-
ruszkiewicz, and also analysed later, consists of an adiabatic shift of the
position of a test particle. The proposed ‘velocity kick’ memory effect, sup-
posedly discovered recently, is in contradiction to these findings. We show
that the ‘velocity kick’ memory is an artefact resulting from an unjustified
interchange of limits. This example is a warning against drawing uncritical
conclusions for spacetime fields, from their asymptotic behavior.
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1. Introduction

The long range structure of electrodynamics, both classical as quantum,
experiences in recent years wide interest of researchers. However, this in-
terest largely ignores, or in some cases is even in contradiction with, earlier
knowledge in this field. Some aspects of this problem have been described
in [1], but here we want to concentrate on the memory effect. In electro-
dynamics, this effect has been first derived in 1981 by Staruszkiewicz [2],
with the use of the semiclassical approximation. Later the effect has been
confirmed in several contexts, see [3, 4] and [1].

The memory effect described in the above-mentioned works is the result
of the interaction of a charged particle with a low-energy, free electromag-
netic field. The crucial point in this setting is that the field may be cho-
sen (for instance, appropriately scaled) so as to have arbitrarily low energy
content, while keeping the long-range spacelike tail (of decay order r−2) un-
changed. One should expect that such a field cannot change the momentum
of the particle, and indeed this has been confirmed. However, it turns out
that the interaction is not completely trivial: the trajectory of the particle
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is adiabatically shifted between far past and far future by a nonzero vector
uniquely determined by the long-range characteristic of the field. Equiva-
lently, for the wave function of a quantum particle, its phase is shifted by a
momentum-dependent quantity.

However, in 2013 appeared an article [5], in which the authors claim
to have discovered a ‘velocity kick’, which a test particle will experience in
the ‘radiation zone’ of an electromagnetic field, both free and with sources.
From the measurement of this ‘kick’, one is supposed to be able to uniquely
determine the long-range characteristics of the field. These new findings
are in evident contradiction to the earlier results. At the same time, they
found their place in numerous articles gaining wide popularity on the wave of
interest mentioned at the beginning (see, e.g., [6, 7], but in Google Scholar
Ref. [5] has presently more than 150 other citations). Therefore, it is of
primary importance to clarify this matter. We do this here: it is shown that
the ‘kick’ interpretation is based on an unallowed mathematical operation,
implicitly assumed in this recent analysis.

In order to make this letter self-contained, we gather in Section 2 some
facts on solutions of Maxwell’s equations and their asymptotic behavior.
These properties are discussed in full in [1]. Section 3 recalls the shift mem-
ory, and then pins down the error in the ‘kick effect’.

2. Electromagnetic fields and their asymptotics

The Lorenz potential Aµ(x) of a field taking part in scattering, and its
electromagnetic field Fµν(x), are characterized by having null asymptotes
of the following form. There exist vector functions Vµ(s, l), V ′

µ(s, l), s ∈ R,
l ∈ C+, the future light cone, with well-defined limit values Vµ(±∞, l),
V ′
µ(±∞, l), related by the condition

Vµ(−∞, l) = V ′
µ(+∞, l) , (1)

such that for l ∈ C+, one has

lim
R→∞

RAµ(x+Rl) = Vµ(x · l, l) ,

lim
R→∞

RAµ(x−Rl) = V ′
µ(x · l, l) ,

lim
R→∞

RFµν(x+Rl) = lµV̇ν(x · l, l)− lν V̇µ(x · l, l) , (2)

lim
R→∞

RFµν(x−Rl) = lµV̇
′
ν(x · l, l)− lν V̇

′
µ(x · l, l) ,

where V̇µ(s, l) = ∂sVµ(s, l). Equality (1) is the much recently celebrated
‘matching property’, which, however, was obtained much earlier in [3, (Eq. 2.26)].
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Functions Vµ(s, l) and V ′
µ(s, l) are homogeneous of degree −1 in their argu-

ments (jointly), and satisfy the relations

l · V (s, l) = l · V ′(s, l) = q ,

where q is the charge of the source of the field. Further more specific restric-
tions on these functions are discussed in [1], but they have no influence on
our discussion here.

The (equal) variables of Eq. (1) govern the asymptotic spacelike behav-
ior of the fields: for each spacetime position vector x, and each spacelike
vector y, one has

lim
R→∞

RAµ(x+Ry) =
1

2π

∫
Vµ(−∞, l) δ(y · l)d2l , (3)

lim
R→∞

R2Fµν(x+Ry) =
1

2π

∫
[lµVν(−∞, l)− lνVµ(−∞, l)] δ′(y · l)d2l , (4)

where δ and δ′ are the Dirac delta and its derivative, respectively, and d2l is
the invariant measure on the set of null directions. If one scales null vectors l
to l0 = 1, then d2l = dΩ(l), the solid angle measure.

We now restrict attention to the future null infinity, and split the field in
the way appropriate for this asymptotic region, into the advanced and the
free outgoing parts, Aµ(x) = Aadv

µ (x) + Aout
µ (x), and similarly for the field.

Let Jµ(x) be the source current for Aadv
µ (x) (with the Maxwell equations in

Gauss’ units). We denote

V J
µ (s, l) =

∫
δ(s− x · l)Jµ(x)dx ,

where δ is the Dirac delta. Then Vµ(+∞, l) = V J
µ (+∞, l), and this quantity

is related to the potential of the Coulomb field of the outgoing free charged
particles. If we denote further

V out
µ (s, l) = Vµ(s, l)− Vµ(+∞, l) , (5)

then the future null asymptotes of the advanced, and of the free outgoing
fields, are given by

lim
R→∞

RAadv
µ (x+Rl) = Vµ(+∞, l) ,

lim
R→∞

RF adv
µν (x+Rl) = 0 ,

lim
R→∞

RAout
µ (x+Rl) = V out

µ (x · l, l) ,

lim
R→∞

RF out
µν (x+Rl) = lµV̇

out
ν (x · l, l)− lν V̇

out
µ (x · l, l) .
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The free outgoing field may be now recovered in the whole spacetime from
its null asymptote (this is a special case of the Kirchhoff formula for null
initial data)

Aout
µ (x) = − 1

2π

∫
V̇ out
µ (x · l, l) d2l ,

F out
µν (x) = − 1

2π

∫ [
lµV̈

out
ν (x · l, l)− lν V̈

out
µ (x · l, l)

]
d2l , (6)

where V̈µ(s, l) = ∂2
sVµ(s, l). The above integral representation is related to

the more standard Fourier representation

Aout
µ (x) =

1

π

∫
e−ix·kaµ(k) sgn

(
k0
)
δ
(
k2
)
d4k

by

ωaµ(ωl) = − ˜̇V out
µ (ω, l) = − 1

2π

∫
eiωsV̇ out

µ (s, l)ds . (7)

3. Electromagnetic memory effects

In 1974, Zel’dovitch and Polnarev have shown [8] that a pair of test bod-
ies exposed to a gravitational wave burst experiences a finite and permanent
relative position shift between remote past and future. This effect was dis-
cussed again and named the ‘memory’ of the gravitational wave-burst in
1985 [9].

Strangely enough, only after the work of 1974 in gravitation, was an
analogous memory effect discussed in electrodynamics, where the problem
may be formulated in very clear terms referring to a laboratory experiment.
Staruszkiewicz [2] was the first author to pose in 1981 a question: does a
(free) electromagnetic field in zero-frequency limit produce observable ef-
fects? What is meant by zero frequency is the following. Let Aµ(x) be a
Lorenz potential of a field from the class identified in the last section, and
define its rescaled version A

(λ)
µ (x) = λ−1Aµ(λ

−1x). Consider the scaled field
in the large λ limit. It is easy to see that the energy carried by this field
vanishes in that limit, so it is unable to change the velocity of any massive

charged particle. In terms of the Fourier transform,
˜̇
V

(λ)
µ (ω, l) = ˜̇Vµ(λω, l),

so the frequency content shrinks to values around ω = 0, but the spacelike
tail due to Vµ(−∞, l) = −2π˜̇Vµ(0, l) (see (3) and (7)) does not change in
the limit. Using the semiclassical approximation for the phase of the wave
function of a test particle placed in such a field, Staruszkiewicz found that
the incoming plane wave exp(−ip · x) of a charged particle, with e and p its
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charge and four-momentum, respectively, acquires in far future a phase shift
of the magnitude

δ(p) = − e

2π

∫
p · V (−∞, l)

p · l
d2l . (8)

If a wave packet is formed, this shift produces observable effects. It is easy
to see their nature. If f(p) is the momentum profile of the initial packet,
then the final packet has the profile eiδ(p)f(p). The addition to the phase
has no effect on the distribution of momentum, but under the action of the
position operator −i∂/∂pµ causes a shift ∂δ(p)/∂pµ.

This effect has been later confirmed in other contexts. The same trajec-
tory shift has been derived for a classical test particle in [3], later reproduced
with another method in [1]. The memory effect for the Dirac field, both clas-
sical as quantum, placed in low-energy electromagnetic field was analyzed
in [4]. For the quantum Dirac field, one finds the scattering operator in the
form

S = exp

[
i

∫
δ(p)ρ(p)dµ(p)

]
,

where δ(p) is the phase (8), ρ(p) is the momentum-density of the charge
operator, and dµ(p) is the invariant measure on the mass hyperboloid.

All instances of the memory effect described above have two character-
istic properties:

(i) energy involved in causing them is zero (in the limit), and
(ii) they are exclusively due to the long-range characteristic of the electro-

magnetic free field V (−∞, l), on which spacelike tails depend, Eqs. (3)
and (4).

In 2013 a new article on the electromagnetic memory effect [5] appeared,
whose conclusions gained wide popularity. The authors claim to have related
asymptotic characteristics of the electromagnetic fields, both free as well as
produced by sources, to a ‘velocity kick’, which supposedly a test particle will
experience if it is placed in the ‘radiation zone’. To obtain the magnitude of
this ‘kick’, it is postulated that the electromagnetic field should be integrated
over time (more precisely, the authors refer to ‘the electric field’, but the
extension does not change anything in our discussion). For this purpose, the
spacetime position vectors x are parametrized by the retarded coordinates,
that is x = ut + Rk, where t is the unit time axis vector, k is a future
null vector such that t · k = 1, R ≥ 0, and then u is the retarded time. It
is postulated that for a given k, the observation is made at a point with
large R, where the field is weak. For large R, the authors further argue —
and this is the crucial point — one can take the leading order of the field,
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which in our language is given by the limit (3). Thus, apart from the factor
R−1, the integral of the field over time u is given in the leading order by∫

R

lim
R→∞

RFµν(ut+Rk) du =

∫
R

[
kµV̇ν(u, k)− kν V̇µ(u, k)

]
du

= kνV
out
µ (−∞, k)− kµV

out
ν (−∞, k) , (9)

where we used (3), and then (5). The r.h.s. depends on the long-range
variable of the outgoing field, that is the difference Vµ(−∞, k)−Vµ(+∞, k),
which appears in recent discussions of memory. However, this calculation
does not do justice to the actual experiment proposition. However large R
is, it is for a concrete measurement experiment fixed. And then, as it turns
out, the above leading order calculation gives a totally false result. Consider
the free outgoing field first. For any R, the field F out

µν (ut + Rk) is given
by (6), and a simple calculation gives∫

R

F out
µν (ut+Rk)du = 0 , (10)

as V̇µ(±∞, k) = 0. The ‘kick’ effect does not exist for this, and any free
field, not only in the radiation zone, but anywhere. On the other hand,
the advanced field does not contribute to formula (9) at all, but using the
advanced Green function, one finds∫

R

RF adv
µν (ut+Rk)du =

∫
R

|y −Rk|
[∂µJν(y)− ∂νJµ(y)] dy . (11)

This is nonzero in general, and may even have a finite, nonzero limit for
R → ∞. However, this limit, even if it exists, has in general nothing to do
with the memory variables. For example, an easy calculation shows that for
the advanced field FC

µν(x) (i.e. the Coulomb field, in this case) of a particle
with charge q, moving freely along the trajectory zµ(τ) = zµ0 + τvµ, one has∫

R

RFC
0i(ut+Rk)du = 2q

v0r
i
⊥

|v||r⊥|2
,

where r⊥ is the orthogonal to v part of the vector r = k−R−1z0. This not
only grossly disagrees with (9), but it also falsifies the ‘slow motion case’
analysis of [5], in which the authors keep, as we have done here, fixed R.
The reason for this discrepancy is that the authors apply the dipole approx-
imation [10], which does not work here. It works well for sources restricted
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to bounded regions in space and finite times, details may be found in the
textbook. For infinite time integration, even a slow free asymptotic motion
of charges involves infinite displacements. Let us also note, that the result
of the slow motion analysis in [5] involves only the in and out velocities of
charges, so it disagrees with (9) as well.

What is the mechanism of the discrepancy between (9) on the one hand,
and (10) and (11) on the other? It is the unallowed pulling of the limit sign
under the integral in (9). One can show that RF out

µν (ut + Rk) cannot be
bounded, uniformly in R, by an integrable function of u, so the usual tool of
the dominated convergence theorem does not apply here. The mechanism is
similar as for an integral

∫
R[f(u) − f(u + R)]du, where f may be, for sim-

plicity, any continuous function of compact support. The integral vanishes,
but the integral of the point-wise limit of the integrand is

∫
R f(u)du. The

precise mechanism for the advanced field is slightly different, but the conclu-
sion on the discrepancy is the same. We conclude that the observation of the
velocity kick misses the original motivation. We also note that this example
illustrates a general warning against drawing unjustified conclusions for the
‘bulk’ properties of fields, from their asymptotic behavior.

However, this does not prohibit independent determination of Vµ(±∞, l).
As we have seen, Vµ(−∞, l) is encoded in the spacelike asymptotic behavior
of fields (3), (4), while Vµ(+∞, l) in the asymptotic trajectories of the outgo-
ing charges. The important aspect of the adiabatic memory shift discovered
earlier is, that for a weak free field it allows to observe its spacelike tail in
scattering experiments, without going to spatial infinity (if the amplitude is
measured, and not merely the cross section).

To better understand the clash between the adiabatic shift memory and
the identity (10), we reproduce the shift of the trajectory of a charged par-
ticle in a weak free field, say F out

µν , [1]. For a particle passing through a
spacetime point x0, with the four-velocity v, which is not affected in the low
energy of the field limit, the shift is given by

∆µ = − e

m

∫
R

F out
µν (x0 + vτ)τdτ vν

=
e

2πm

∫
lµV

out
ν (−∞, l)− lνV

out
µ (−∞, l)

(v · l)2
d2l vν ,

where the first equality follows from an analysis of the equation of motion,
and for the second equality, we used (6). The result agrees with the deriva-
tive of δ(p).

Finally, we comment on the idea of effectively restricting the integration
domain in the retarded time to a compact interval, an issue acknowledged
in part of the literature on the ‘kick memory’, see, e.g., [6]. First of all,
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integrating Fµν(ut + Rk) for any finite R over a compact interval [u1, u2],
one obtains an accidental quantity, not related to asymptotic degrees of
freedom. Moreover, for any integration interval, this quantity vanishes in
the limit R → ∞, so there is no ‘kick’. In spite of that, let us multiply
this quantity by R, and take the limit. The limit commutes with compact
integration, thus one finds

lim
R→∞

u2∫
u1

RFµν(ut+Rk)du =

u2∫
u1

lim
R→∞

RFµν(ut+Rk)du

= kν [Vµ(u1, k)− Vµ(u2, k)]− kµ[Vν(u1, k)− Vν(u2, k)] .

However, with ∆V (k) = V (−∞, k)− V (+∞, k) fixed, the function V (u, k)
may be arbitrarily slowly varying, and the r.h.s. is then arbitrarily small.
The point of an experimental memory effect is to produce ∆V (k), whatever
the rate of change. Thus, not knowing the field a priori, one has to take
in the above identity the limits u1 → −∞ and u2 → +∞, which brings us
back to relation (9), critically considered earlier.

Let us stress once more that the proper setting for the analysis of elec-
tromagnetic effects is that of laboratory experiments, so for any R extended
integration in time leads out of ‘radiation zone’. In this respect, the situa-
tion is different than in gravitation, where cosmic scales are involved, and
in many instances one can argue that all history of humankind is contained
in the ‘radiation zone’ of some radiation events.
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