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There exist several ways of expressing the difference EΩ − EΩ0 of the
ground-state energies of the complete Hamiltonian H = H0+Vint and of its
free part H0. Most of them can be used to generate systematic perturbative
expansions of EΩ . In advanced applications to many-body quantum theory,
the successive terms of these expansions are usually visualized in terms of
diagrams (Goldstone diagrams, Feynman diagrams) and easily evaluated.
Here, we recall these methods, discuss their foundations, and show how
their working and their graphical representation can be simply introduced
to the beginners on the harmonic oscillator example. In doing this, we
will also clarify a delicate point in computing the corrections using the
Goldstone diagrams which is somewhat misleadingly presented in textbooks
like the one of Fetter and Walecka.
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1. Introduction

In typical problems of quantum mechanics, the time-independent Hamil-
tonian H of the system under considerations splits into a “free” part H0 and
a perturbation Vint and one wants to determine the eigenvalues of H com-
puting corrections due to Vint (assumed to be proportional to some coupling
constant λ) to the exactly known (by assumption) spectrum of eigenvalues of
H0. The simplest standard tool for this is the Rayleigh–Schrödinger pertur-
bative expansion, presented in almost every textbook on quantum mechanics
[1, 2], which allows to determine the energy EL of a discrete eigenvector |L⟩
of H connected in the (formal) limit λ = 0 to an eigenvector |l⟩ (and its
eigenvalue El) of H0

EL = E
(0)
l + ⟨l|Vint|l⟩+

∑
l′

|⟨l′|Vint|l⟩|2

El − El′
+ . . . (1)

(3-A4.1)
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In many situations, especially in discussing statistical properties at zero
temperature of systems consisting of many elements (particles, nuclei, atoms,
spins, etc.) the most important is the energy of the system’s ground-state.
In the course of developing more advanced methods of quantum mechanics
adapted to study many body systems, one obtains several formulae allowing
to determine the difference EΩ −EΩ0 of the ground-states |Ω⟩ ≡ |L = 0⟩ of
H and |Ω0⟩ ≡ |l = 0⟩ of H0. It is the purpose of this paper to illustrate these
formulae on the examples which are easily accessible to beginners, namely
on the harmonic oscillator subject to different types of perturbations. Some
of them allow to easily write down also the exact solutions (i.e. the exact
spectrum of H = H0 + Vint, where H0 is the standard harmonic oscillator
Hamiltonian, can be obtained) which helps to understand the working of
these formulae and their origins.

The presented formulae are usually used to obtain systematic pertur-
bative expansions of the difference EΩ − EΩ0 in powers of the interaction
strength λ. These expansions, successive terms of which are usually visu-
alized in terms of Feynman or Goldstone diagrams, will be also illustrated
here on the simple examples of the perturbed harmonic oscillator in a way
which can be accessible to students. The comparison of two different ways
of computing corrections to EΩ−EΩ0 will allow to discover a subtlety in the
expansion leading to Goldstone diagrams which is usually not mentioned in
standard texts.

2. Advanced formulae for EΩ − EΩ0

In the early fifties of the 20th century, Gell-Mann and Low gave [3] (see
also [4]) a prescription for constructing an eigenvector corresponding to the
lowest eigenvalue EΩ of the time-independent Hamiltonian H = H0 + Vint

out of the normalized to unity eigenvector |Ω0⟩ of H0. It is given by the
formula

lim
ε→0+

U ε
I (0,−∞)|Ω0⟩

⟨Ω0|U ε
I (0,−∞)|Ω0⟩

, (2)

in which U ε
I (t2, t1) is the interaction picture evolution operator of the (ficti-

tious) system with the modified, time-dependent Hamiltonian

Hε(t) = H0 + eεtVint . (3)

The evolution operator U ε
I (t2, t1) satisfies the differential equation

iℏ
d

dt2
U ε
I (t2, t1) = eεtV I

int(t2)U
ε
I (t2, t1) , (4)

with the initial condition U ε
I (t, t) = 1̂. In this equation,

eεtV I
int(t) = eiH0t/ℏeεtVinte

−iH0t/ℏ (5)
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is the interaction operator in the interaction picture. Equation (5) can be
transformed into the integral equation

U ε
I (t2, t1) = 1̂ +

1

iℏ

t2∫
t1

dt eεtV I
int(t)U

ε
I (t, t1) , (6)

with the initial condition built-in and solved iteratively. In this way,
U ε
I (t2, t1) gets represented in the form of the series

U ε
I (t2, t1) = 1̂ +

1

iℏ

t2∫
t1

dteεtV I
int(t)

+

(
1

iℏ

)2 t2∫
t1

dt′′ eεt
′′
V I
int

(
t′′
) t′′∫
t1

dt′ eεt
′
V I
int

(
t′
)
+ . . . (7)

This can be formally written in the familiar form

U ε
I (t2, t1) = T exp

− i

ℏ

t2∫
t1

dt eεtV I
int(t)

 , (8)

in which T stands for the operation of chronological ordering.

The Gell-Mann–Low construction (2) is based on the adiabatic principle
which asserts (see e.g. [2]) that if a Hamiltonian undergoes a slow change
in time and the system is at an initial moment in one of the instantaneous
eigenstates of the Hamiltonian taken at that moment, it will, in the limit of
infinitely slow change of H, pass through the corresponding sequence of the
instantaneous eigenstates of the changing Hamiltonian. The requirement
necessary for the validity of this statement is that the instantaneous eigen-
states and eigenvalues of the changing Hamiltonian vary regularly, that is
that they can be unambigously traced (e.g. that they do not cross with one
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another or merge)1. The factor eεt in (3) ensures slow (infinitely slow in the
limit ε → 0+) switching on the interaction; since at t = 0, the instantaneous
eigenstates of (3) are precisely the eigenstates of the original Hamiltonian
of the system, the evolution from t = −∞ to t = 0 of the ground-state
eigenvector |Ω0⟩ of H0 should take it into an eigenvector H corresponding
to its ground state. However, since the states of the system are in the Hilbert
space represented by classes of vectors differing from one another by a phase,
the vector U ε

I (t,−∞)|Ω0⟩ usually has no proper ε → 0+ limit: it involves a
phase factor which diverges in this limit and it is the role of the denominator
in (2) to remove this phase and to ensure the existence of the limit. The
price is that the vector (2) is not normalized to unity.

In the formal proof that the vector (2) is the eigenvector of H crucial is
the relation2

HU ε
I (0,−∞) = U ε

I (0,−∞)H0 + iℏε λ
∂

∂λ
U ε
I (0,−∞) . (9)

In textbooks [4], it is proven “perturbatively” by working out the commutator
of H0 with every term of the expansion of the exponent in formula (8), but
recently an ingenious “nonperturbative” proof, based on manipulations done
directly on the equation (6), has been given by Molinari [7].

1 For this reason, the Gell-Mann–Low prescription fails if the interaction Vint induces
dynamical breaking of a symmetry. This can happen in nonrelativistic many body
quantum mechanics, e.g. in the theory of superconductivity and in relativistic quan-
tum field theories (e.g. in Quantum Chromodynamics with massless quarks due to
the dynamical breaking of the chiral symmetry). In such a case, the way out is to
perform an appropriate transformation of the dynamical degrees of freedom and to
start from another H0 the spectrum of which has already the symmetry breaking
encoded in it. In relativistic field theory models, e.g. in the Standard Model, symme-
try breaking is frequently “parametrical”, i.e. it is induced by taking a mass squared
parameter of the Lagrangian to be negative. In this case, the naive H0 is ill defined
(has no ground state) but the problem can be cured by adding to the Lagrangian
a term explicitly breaking the symmetry, proportional to a small parameter (which
allows to define a H0 with which the Gell-Mann–Low prescription can already be
applied) and sending this parameter to zero at the end. Direct application of the
Gell-Mann–Low construction (without bothering about the dynamical breaking of
the chiral symmetry) in the perturbative Quantum Chromodynamics is possible ow-
ing to nonzero quark masses which provide the source of explicit chiral symmetry
breaking.

2 The interpretation of this relation depends on the nature of the proper Hilbert space
of the system (to which only normalizable vectors belong). For instance, if H0 and
H have no normalizable eigenstates, as happens e.g. in the scattering theory, matrix
elements of the term proportional to ε between normalizable sates all vanish and this
term must be treated as the zero operator; the relation becomes then the intertwining
relation usually written [5, 6] in the form HΩ± = Ω±H0, where Ω± = Uε

I (0,∓∞)
are the so-called M ̸oller operators.
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Acting directly on |Ω0⟩ with both sides of the relation (9), one obtains,
using the fact that H0|Ω0⟩ = EΩ0 |Ω0⟩, the equality

(H − EΩ0)U
ε
I (0,−∞)|Ω0⟩ = iℏε λ

∂

∂λ
U ε
I (0,−∞)|Ω0⟩ , (10)

which shows that if a finite limit ε → 0+ of U ε
I (0,−∞)|Ω0⟩ existed, the

resulting vector would be in this limit the eigenvector of H = H0 + Vint

with the eigenvalue EΩ0 : the interaction would not change the energy of
the ground state. This means that, except for very special cases3, the limit
ε → 0+ of U ε

I (0,−∞)|Ω0⟩ must be singular. The equality (10) can, however,
be rewritten (before taking the limit ε → 0+) in the equivalent form(

H − EΩ0 − iℏε λ
∂

∂λ
ln⟨Ω0|U ε

I (0,−∞)|Ω0⟩
)

U ε
I (0,−∞)|Ω0⟩

⟨Ω0|U ε
I (0,−∞)|Ω0⟩

= iℏε λ
∂

∂λ

U ε
I (0,−∞)|Ω0⟩

⟨Ω0|U ε
I (0,−∞)|Ω0⟩

, (11)

which shows that if the vector U ε
I (0,−∞)|Ω0⟩/⟨Ω0|U ε

I (0,−∞)|Ω0⟩ is non-
singular in the ε → 0+ limit (and, therefore, the right-hand side vanishes in
this limit), it is an eigenvector of H with the eigenvalue

EΩ = EΩ0 + iℏε λ
∂

∂λ
ln⟨Ω0|U ε

I (0,−∞)|Ω0⟩ . (12)

Thus, the energy of the ground state of H can be extracted from the singular
phase of the vector U ε

I (0,−∞)|Ω0⟩. A more symmetric form of this formula
is the so-called Sucher formula [8]

EΩ − EΩ0 =
1

2
iℏ ε λ

∂

∂λ
ln⟨Ω0|Sε

0|Ω0⟩ , (13)

in which Sε
0 = U−ε

I (∞, 0)U ε
I (0,−∞) = [U−ε

I (0,∞)]†U ε
I (0,−∞) is the opera-

tor which in (a class of simple) quantum field theories generates the S-matrix
elements [6].

3 This is so in the nonrelativistic scattering theory when no bound states are possible in
the potential Vint = V (r) on which the scattering occurs. This is also the assumption
on which the old-fashioned (largely shaped in the course of the historical development
of Quantum Electrodynamics) approach to obtain S-matrix elements in (a rather
narrow class of) relativistic theories is based [6]. In this case, it is enforced by
modifying the interaction term Vint (by adding to it counterterms) order-by-order in
the perturbative expansion and by imposing the so-called on-shell renormalization
conditions.
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A more practical formula, directly leading to a systematic expansion, the
terms of which can be visualized by diagrams (see Sections 5, 6), is obtained
by closing the relation (10) from the left with ⟨Ω0| and dividing both sides
by ⟨Ω0|U ε

I (0,−∞)|Ω0⟩: Since the part H0 of H can then act on ⟨Ω0|, one
obtains the relation

⟨Ω0|VintU
ε
I (0,−∞)|Ω0⟩

⟨Ω0|U ε
I (0,−∞)|Ω0⟩

= iℏε λ
∂

∂λ
ln⟨Ω0|U ε

I (0,−∞)|Ω0⟩ , (14)

which, when combined with (12) leads to the expression

EΩ − EΩ0 =
⟨Ω0|VintU

ε
I (0,−∞)|Ω0⟩

⟨Ω0|U ε
I (0,−∞)|Ω0⟩

, (15)

for the difference of the ground-state energies.
Both expressions, (15) and (13), provide the practical means (alterna-

tive to the Rayleigh–Schrödinger expansion (1)) to compute the shift of the
ground-state energy due to the interaction Vint. In both of them, the limit
ε → 0+ is implicitly taken after the time argument(s) of the evolution oper-
ator(s) are sent to infinity.

Yet another way of computing the energy shift EΩ −EΩ0 is obtained by
considering the “imaginary time” analog

UI(τ2, τ1) = eτ2H0 e−(τ2−τ1)H e−τ1H0 (16)

of the ordinary interaction picture evolution operator which satisfies the
differential equation analogous to (4) with the same initial condition and
can, therefore, be formally represented by the expression analogous to (8)
but with t1,2 replaced by τ1,2, (i/ℏ)dt by dτ , the chronological ordering T
by the ordering Tτ with respect to the “imaginary time” τ and eεtV I

int(t)
defined by (4) replaced by the operator V I

int(τ) = eτH0Vinte
−τH0 . Since

e−βH = e−βH0UI(β, 0), one can write the equality

Tr
(
e−βH

)
Tr(e−βH0)

= Tr(ρ̂0 UI(β, 0)) , (17)

in which ρ̂0 ≡ e−βH0/Tr(e−βH0) is the Canonical Ensemble statistical op-
erator of the free system corresponding to its equilibrium with a heat bath
at the temperature 1/kBβ and the trace Tr is taken over the Hilbert space.
The right-hand side of (17) when expanded

∞∑
n=0

(−1)n

n!

β/2∫
−β/2

dτn . . .

β/2∫
−β/2

dτ1Tr
(
ρ̂(0)Tτ

[
V I
int(τn) . . . V

I
int(τ1)

])
, (18)
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can be evaluated using the “thermal” version of the Wick theorem [4] and,
especially in the case of nonrelativistic many-body systems or relativistic
field theories, represented by “vacuum” Feynman diagrams; what is, however,
important here is that in the limit of β → ∞, the analytic continuation
β → (i/ℏ)T of the terms of this expansion give precisely the terms of the
analogous expansion of the expression

⟨Ω0|Texp

− i

ℏ

T/2∫
−T/2

dt V I
int(t)

 |Ω0⟩ ≡ ⟨Ω0|UI(T/2,−T/2)|Ω0⟩ , (19)

in the limit of T → ∞. On the other hand, it is clear that in the zero
temperature limit, β → ∞, the left-hand side of (17) goes into exp(−β(EΩ−
EΩ0)). It follows that upon analytic continuation, one obtains the formula4

lim
T→∞

exp

{
−i

T

ℏ
(EΩ − EΩ0)

}
= lim

T→∞
⟨Ω0|UI(T/2,−T/2)|Ω0⟩ , (20)

When the right-hand side of (20) is expanded and represented by the mo-
mentum space Feynman diagrams, the quantity (EΩ − EΩ0)/V , where V
is the volume of the system, is given (because taking the logarithm of
the right-hand side is equivalent to omitting disconnected diagrams) by
iℏ times the sum of the connected vacuum diagrams. Moreover, since
UI(T/2,−T/2) = limε→0+ U−ε

I (T/2, 0)U ε
I (0,−T/2), it also follows that

lim
T→∞

exp

{
−i

T

ℏ
(EΩ − EΩ0)

}
= lim

T→∞

(
lim
ε→0+

⟨Ω0|U−ε
I (T/2, 0)U ε

I (0,−T/2)|Ω0⟩
)
, (21)

that is, the shift of the ground-state energy due to the interaction Vint can be
read off from the exponent of the expectation value in the ground states of
the free system of the product of the interaction picture evolution operators
corresponding to the adiabatic switching on and off the interaction, provided
the limit ε → 0+ is taken before the limit T → ∞.

4 Superficially it seems, because this relies on the algebraic relation between e−βH and
e−βH0 UI(β, 0), that, unlike the formulae relying on the Gell-Mann–Low construction,
this one is not invalidated if the interaction Vint causes spontaneous breaking of some
symmetries. Yet in the limit of infinitely large system (spontaneous breaking of
symmetries always require it), the Hilbert space becomes nonseparable and the trace
depends on the basis in which it is performed; thus, also in this case, the tacit
assumption is that the basis of the H0 eigenvectors is chosen appropriately.
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While the last approach yields the expansion of the energy shift in terms
of the standard Feynman diagrams, the formula (15) leads to the perturba-
tive expansions of the energy shift EΩ − EΩ0 which can be encoded either
in terms of the Feynman or the so-called Goldstone diagrams. All these
methods will be illustrate in the following sections on the simplest possible
examples based on the (familiar to every student) harmonic oscillator.

3. Harmonic oscillator with the time-dependent perturbation
linear in a and a†

The simplest example allowing to illustrate the working of the formulae
(12) and (21) is the Hamiltonian H = H0 + Vint(t), with

H0 = ℏωa†a+∆ω ∆ω =
1

2
ℏω ,

Vint(t) = a†f(t) + af∗(t) . (22)

The annihilation and creation operators are as usually defined as

a =

√
Mω

2ℏ

(
x̂+

i

Mω
p̂

)
, a† =

√
Mω

2ℏ

(
x̂− i

Mω
p̂

)
, (23)

and satisfy the commutation rules

[a, a†] = 1̂ , [a, a] = [a†, a†] = 0 . (24)

f(t) is some c-number function which can be complex. If

f(t) = f∗(t) = −
√

ℏ
2Mω

F (t) , (25)

(22) is just the Hamiltonian H = H0 − xF (t) of the one-dimensional har-
monic oscillator subjected to the action of the time-dependent external force
F (t). With f(t) = eεtλ, the model will serve to illustrate the Gell-Mann–
Low construction of the H ground-state eigenvector and of the formulae (12)
and (21) for the ground-state energy of the time-independent Hamiltonian5

H = ℏωa†a + ∆ω + λ a† + λ∗a. The exact spectrum of H can readily be
found by writing

H = ℏωa†a+∆ω + λa† + λ∗a = ℏωA†A+∆ω − |λ|2

ℏω
, (26)

5 Any phase factor of the coupling λ can be absorbed into the definition of the operators
a and a†. Hence, λ can be taken real. Still, we will keep writing λ∗ to give the formulae
a more symmetric form.
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where A = a + λ/ℏω, A† = a† + λ∗/ℏω. Since the operators A and A†

satisfy the same commutation rules as do a and a†, one can use the standard
algebraic argument (see e.g. [9]) to show that in the Hilbert space there
must be a vector |0̃⟩ annihilated by A and that the vectors (A†)n|0̃⟩ are the
eigenvectors of A†A with the eigenvalues equal n. The entire spectrum of
H is, therefore, simply shifted downwards, with respect to the spectrum of
H0 = ℏωa†a+∆ω, by |λ|2/ℏω. In particular, EΩ = EΩ0 − |λ|2/ℏω.

In order to test the Gell-Mann–Low construction and formula (12), one
must find the interaction picture evolution operator corresponding to the
Hamiltonian (22). We will do it by first finding the Schrödinger picture
evolution operator U (t2, t1) = e−(i/ℏ)H(t2−t2) and then by using the formula

UI (t2, t1) = eiH0t2/ℏ U (t2, t1) e
−iH0t1/ℏ , (27)

relating it to the interaction picture one. Finally, we will set f(t) = λeεt.
If the Heisenberg picture is defined so that the Schrödinger (time-depen-

dent) state-vectors coincide at t = 0 with their Heisenberg picture counter-
parts, the operators OH(t) and OS in these pictures are related by

OH(t) = U †(t, 0)OSU(t, 0) . (28)

Therefore, any Heisenberg picture operator OH(t) satisfies the Heisenberg
equation6

ȮH(t) =
i

ℏ
[HH(t), OH(t)] , (29)

where HH(t) is the Hamiltonian transformed to the Heisenberg picture ac-
cording to the rule (28). The commutators arising in the equations satisfied
by the Heisenberg picture counterparts aH(t) and a†H(t) of the creation and
annihilation operators (out of which any other operator acting in the Hilbert
space of the harmonic oscillator can be constructed) can be easily evaluated:[

HH(t), aH(t)
]
= U †(t, 0) [H, a]U(t, 0)

= U †(t, 0) [−ℏω a− f(t)] U(t, 0)

= −ℏω aH(t)− f(t) . (30)

The equation of motion of aH(t), therefore, reads

ȧH(t) = −iω aH(t)−
i

ℏ
f(t) . (31)

6 It readily follows by differentiating both sides of (28) with respect to t and using
equation (38). As we assume that OS does not depend on time, we omit the term
U†(t, 0)(∂OS/∂t)U(t, 0) on the right-hand side of (29).
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The equation satisfied by a†H(t) is just the Hermitian conjugate of this one.
The solutions of the homogeneous part of this equation is obvious

aH(t) = e−iωt aH(0) ≡ e−iωt a . (32)

In order to find a solution of the full inhomogeneous equation, (31) we sub-
stitute in it d(t) exp(−iωt) for aH(t). This leads to the c-number equation

ḋ(t) = − i

ℏ
eiωt f(t) , (33)

the solution of which can be found by a straightforward integration. Thus,

aH(t) = e−iωt

a− i

ℏ

t∫
0

dt̃ eiωt̃f
(
t̃
) ≡ e−iωt (a+ h(t)) ,

a†H(t) = eiωt

a† +
i

ℏ

t∫
0

dt̃ e−iωt̃f∗ (t̃ )
 ≡ eiωt

(
a† + h∗(t)

)
. (34)

The lower limit of the integrals has been set to zero to secure the equalities
aH(0) = a, a†H(0) = a†.

The simple exact form of aH(t) and a†H(t) allows to easily find an operator
Ũ(t, 0) which satisfies relations (28)

Ũ(t, 0) = e−iH0t/ℏ eh(t)a
†−h∗(t)a . (35)

This can be checked by applying twice the well-known operator formula

eBAe−B = A+ [B, A] +
1

2!
[B, [B, A]] + . . . , (36)

first, to find that

eiH0t/ℏ a e−iH0t/ℏ = e−iωt a , eiH0t/ℏ a† e−iH0t/ℏ = eiωt a† , (37)

and next, to check that the second exponential factor on the right-hand side
of (35) generates the required shifts of a and a†.

Relations (28) determine Ũ(t, 0) only up to a phase factor. As a result,
Eq. (35) may differ by a c-number, possibly time-dependent phase factor
φ(t) from the true evolution operator U(t, 0), which is uniquely determined
by the differential equation

iℏ
d

dt2
U(t2, t1) = H(t2)U(t2, t1) , (38)
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and the initial condition U(t, t) = 1̂. To find φ(t), one can insert the operator

U(t, 0) = eiφ(t) e−iH0t/ℏeh(t)a
†−h∗(t)a , (39)

together with the Hamiltonian (22) into equation (38) and solve the resulting
equation for φ(t). Once the phase of U(t, 0) is fixed, the interaction picture
evolution operator UI(t, 0) is obtained by applying the rule (27).

With f(t) = λeεt, the obtained operator UI(t, 0) acquires the interpre-
tation of the evolution operator U ε

I (t, 0), corresponding to the adiabatic
switching on the interaction Vint = λ∗a+ λa†. Its explicit form in this case
reads

U ε
I (t, 0) = eiφ(t)eh(t)a

†−h∗(t)a , (40)

where

h(t) = − i

ℏ
λ

ε+ iω

(
e(ε+iω)t − 1

)
, (41)

and its phase (see Appendix A) is given by

φ(t) ≡ φε(t) =
λ2

2ℏ2(ω2 + ε2)

{ω
ε

(
e2εt − 1

)
− 2eεt sin(ωt)

}
. (42)

It is, as expected, singular in the limit ε → 0+.

4. Testing the exact formulae for EΩ − EΩ0

The results obtained in the preceding section allow to immediately test
formula (12) for the shift of the ground-state energy due to the interaction
as well as the Gell-Mann–Low construction (2). Indeed, the logarithm of
the expectation value in the H0 ground state |Ω0⟩ of the operator

U ε
I (0,−∞) = [U ε

I (−∞, 0)]† = e−iφ(−∞) e−h(−∞)a†+h∗(−∞)a , (43)

is the sum

−iφ(−∞) + ln⟨Ω0|e−h(−∞)a†+h∗(−∞)a|Ω0⟩ = i
λ2

ℏ2(ε2 + ω2)

ω

ε
+ . . . (44)

in which only the first term is singular in the ε → 0 limit and it is clear
that performing the operations indicated in (12) one recovers the ground-
state energy shift −λ2/ℏω. Moreover, using the well-known Baker–Hausdorff
formula

eX+Y = e−
1
2
[X, Y ] eX eY = e

1
2
[X, Y ] eY eX , (45)
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(valid provided [X, [X,Y ]] = [Y, [X,Y ]] = 0), one easily finds that the
vector given by (2) is proportional to

e−h(−∞) a† |Ω0⟩ = e−(λ/ℏω) a† |0⟩ , (46)

and with the help of the standard rule [a, f(a†)] = f ′(a†), it is straightfor-
ward to check that it is annihilated by the operator A = a + λ/ℏω. This
proves that it is indeed the lowest energy eigenvector of H = ℏωa†a+∆ω +
λ(a+ a†).

The same results allow also to test formula (21). Using twice the Baker–
Hausdorff identity (45): eA+B = eAeBe−[A, B]/2 = eBeAe[A, B]/2, the matrix
element

⟨Ω0|U−ε
I (T, 0)[U ε

I (−T, 0)]†|Ω0⟩ = ei(φ−−φ+)⟨Ω0|eh−a†−h∗
−a e−h+a†+h∗

+a|Ω0⟩ ,
(47)

in which

φ− ≡ φ−ε(T ) =
|λ|2

2ℏ2(ω2 + ε2)

{
−ω

ε

(
e−2εT − 1

)
− 2e−εT sin(ωT )

}
,

φ+ ≡ φε(−T ) =
|λ|2

2ℏ2(ω2 + ε2)

{ ω

ε

(
e−2εT − 1

)
+ 2e−εT sin(ωT )

}
,

h− ≡ h−ε(T ) = − i

ℏ
λ

iω − ε

(
e(iω−ε)T − 1

)
,

h+ ≡ hε(−T ) = − i

ℏ
λ

iω + ε

(
e−(iω+ε)T − 1

)
, (48)

can be written first as ei(φ−−φ+)e−
1
2
|h−|2e−

1
2
|h+|2⟨Ω0|e−h∗

−ae−h+a† |Ω0⟩ and
then as

exp

{
i(φ− − φ+)−

1

2
|h−|2 −

1

2
|h+|2 + h∗−h+

}
, (49)

upon using the rules eαa|Ω0⟩ = |Ω0⟩, ⟨Ω0|eβa
†
= ⟨Ω0| and ⟨Ω0|Ω0⟩ = 1. If

the limit ε → 0+ is taken first, only the first factor in the exponent develops
a term linear in T :

lim
ε→0+

i(φ− − φ+) = lim
ε→0+

i|λ|2

2ℏ2(ω2 + ε2)

{
−2

ω

ε

(
e−2εT − 1

)
− 4e−εT sin(ωT )

}
= −i

2T

ℏ

(
−|λ|2

ℏω

)
− 2i

|λ|2

ℏ2ω2
sin(ωT ) . (50)

The remaining terms are all either constant or have the oscillatory character.
Therefore,

lim
ε→0+

⟨Ω0|U−ε
I (T, 0)[U ε

I (−T, 0)]†|Ω0⟩ = exp

{
−i

2T

ℏ

[
−|λ|2

ℏω
+O

(
T−1

)]}
,

(51)
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and in the limit of T → ∞, the exponent is dominated by the term −i(2T/ℏ)
(EΩ − EΩ0) in agreement with formula (21).

These explicit calculations make it again clear that the order of taking the
limits is crucial: in formula (12) (and hence, as will be seen again below, in
formula (15)) the limit t = −∞ of U ε(0, t) is taken first and the limit ε → 0+

afterwards; in formula (21) the order of taking the limits is interchanged.

5. Dyson expansions of EΩ − EΩ0

The perturbative expansion of the difference EΩ − EΩ0 generated by
formula (15) can be illustrated by computing, up to the second order in λ,
the ground-state energy EΩ of the one-dimensional harmonic oscillator of
frequency ω perturbed by the interaction Vint = (λ/4)(a† + a)4 ≡ λ(x̂/l)4,
where l = (ℏ/mω)1/2. This can also serve to introduce typical quantum
field theory methods: Dyson expansion and the Wick theorem (see e.g. [4];
a very clear presentation can be found in [10]). The result obtained in this
way can be checked against the one obtained using the standard Rayleigh–
Schrödinger perturbative expansion (1).

It is convenient to introduce the “field” operator ϕ = a+ a† and to write

V I
int(t) = eiH0t/ℏ Vint e

−iH0t/ℏ =
λ

4
ϕ4
I (t) , ϕI(t) = a e−iωt + a† eiωt . (52)

It is then straightforward to find (in this case |Ω0⟩ ≡ |0⟩ and, as usuallly,
a|0⟩ = 0, a†|0⟩ = |1⟩, etc.) the key object (the “propagator”) in terms of
which the Dyson expansion is formulated7

⟨Ω0|T
[
ϕI(t)ϕI

(
t′
)]

|Ω0⟩ ≡ θ
(
t− t′

)
⟨Ω0|ϕI(t)ϕI

(
t′
)
|Ω0⟩

+θ
(
t′ − t

)
⟨Ω0|ϕI

(
t′
)
ϕI(t)|Ω0⟩

= θ
(
t− t′

)
e−iω(t−t′) + θ

(
t′ − t

)
eiω(t−t′)

=

∞∫
−∞

dν

2π

2iω e−iν(t−t′)

ν2 − ω2 + i0
≡ iG0

(
t− t′

)
= iG0(t′ − t) .

(53)

7 Because the integrals which appear in the Dyson expansion generated by formula
(15) do not cover the entire t axis, the Fourier form of the function iG0(t − t′) is
not useful in this case. It will, however, be used in considering the Dyson expansion
generated by formula (21). It also serves to define the value of the Green’s function
G0(t− t′) at t = t′: it gives G0(0) = 1.
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In the following, formula (15) will be written as EΩ−EΩ0 =NUM/DEN.
Upon inserting into the numerator NUM and into the denominator DEN the
representation (8) of the evolution operator one arrives at the expansions8

NUM = ⟨Ω0|Vint|Ω0⟩+
1

iℏ

0∫
−∞

dt eεt ⟨Ω0|T
[
V I
int(0)V

I
int(t)

]
|Ω0⟩+ . . . ,

DEN = 1 +
1

iℏ

0∫
−∞

dt eεt ⟨Ω0|TV I
int(t)|Ω0⟩+ . . . (54)

Each matrix element can be now worked out using the Wick theorem [4, 10]
which (in this simple case) reduces to forming the sum of the expressions
consisting of products of propagators iG0(ti − tj), the appropriate (corre-
sponding to the order of the expansion) powers of the factors λ/4 and 1/iℏ,
and some combinatoric c-number factors. The products of propagators are
obtained by grouping under the symbol of the chronological ordering into
pairs the “field” operators ϕI out of which the interaction operators V I

int(t)
are composed and by replacing every pair ϕI(ti)ϕI(tj) by the propagator
iG0(ti − ti) given by (53); the summation is over all possible ways of group-
ing the available operators into distinct pairs (the pairs ϕI(ti)ϕI(tj) and
ϕI(tj)ϕI(ti) are not treated as distinct).

The sum of terms resulting from working out in this way the matrix
element 〈

Ω0

∣∣T [V I
int(tn) . . . V

I
int(t1)

]∣∣Ω0

〉
, (55)

can be represented by Feynman diagrams. These are obtained by drawing
n vertices (dots) with four lines (because of four ϕI operators in each inter-
action V I

int(t)) attached to each of them and labeled by the times t1, . . . , tn.
All these lines should be next connected pairwise in all possible ways giv-
ing rise to several diagrams. Some of these diagrams may not be connected
(may consist of several disjoint subdiagrams). The analytic expression cor-
responding to a diagram is obtained by replacing all lines by propagators
iG0 forming a product: the line connecting the vertices labeled ti and tj is
ascribed the propagator iG0(ti− tj). The combinatoric factors which should
be included simply take into account that different ways of connecting lines
attached to each vertex can lead to topologically identical diagrams. This
will become clear below.

8 Vint = V I
int(0) can be formally put under the chronological product because the inte-

gration variables t1 . . . tn in the integrals are never greater than 0.
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The difference between matrix elements obtained in the expansions of the
numerator NUM and of the denominator DEN is that in the first case, one
vertex is labeled with time 0 (there are n+ 1 interaction operators V I

int and
only n integrations). One can therefore distinguish those Feynman diagrams
contributing to NUM, all vertices of which are connected (possibly by going
through other, intermediate vertices) to the distinguished vertex labeled with
time 0. The other diagrams are called “disconnected”. In standard textbooks
like [4] it is proven that in the ratio of the Dyson expansions of NUM and
DEN, the contribution of the “disconnected” diagrams to NUM is precisely
canceled by the denominator DEN. In computing the difference EΩ − EΩ0 ,
one can therefore restrict oneself to computing only the contributions of
connected diagrams to the numerator NUM: EΩ − EΩ0 = NUMcon.

We can now illustrate this by computing the difference EΩ − EΩ0 up
to the second order (the reader may entertain himself with extending this
computation to higher orders). The first term of the numerator is just the
same as the first term, ⟨Ω0|Vint|Ω0⟩, in the standard Rayleigh–Schrödinger
formula (1) and can be evaluated using the standard method. It is, however,
more instructive to evaluate it using the Wick theorem as

⟨Ω0|TV I
int(0) |Ω0⟩ =

λ

4
⟨Ω0|Tϕ4

I (0) |Ω0⟩ =
λ

4
3 iG0(0) iG0(0) =

3λ

4
. (56)

The combinatoric factor 3 comes from three ways of connecting the four
“legs” of the interaction operator to get the diagram shown in Fig. 1 (a).
Since iG0(0) = 1, the standard result for E

(1)
Ω is immediately recovered.

The second order term leads via the Wick theorem to the three diagrams

(a)

+
t

0

+
0 t

(b)

+
0 t

Fig. 1. Diagrams contributing in the first (a) and second (b) order in λ to the nu-
merator of the Gell-Mann–Low formula for the ground-state energy applied to the
harmonic oscillator perturbed by the interaction ∝ x̂4. Dots mark the interaction
vertices; in the second-order diagrams one of the vertices is ascribed the time 0 and
the other one the time t. The connected part of the diagram is its part to which
the vertex marked 0 belongs.
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shown in Fig.1 (b). The first one gives the contribution

− i

ℏ

0∫
−∞

dt eεt
(
λ

4

)2

3
[
iG0(t− t)

]2
3
[
iG0(0)

]2
= − i

ℏ

(
3λ

4

)2 1

ε
, (57)

all the four propagators being taken at zero because they all arise from
contracting legs attached to the same vertex. This contribution is singular
as ε → 0. It belongs to the class of disconnected contributions because one
part of the diagram is not connected by any line with the part involving
the vertex generated by V I

int(0). The next diagram gives rise to only two
propagators taken at zero and to two others taken at t because its two lines
connect two different vertices (one at time 0 and another one at t). The
combinatoric factor corresponding to this diagram is(

4
2

)(
4
2

)
· 2 = 72 , (58)

because there are 4!/2!2! ways of selecting two legs of each of the vertices
which are going to be connected to the other vertex; there are also two ways
of connecting the selected legs. Thus, the contribution of this diagram is

− i

ℏ

(
λ

4

)2
0∫

−∞

dt eεt 72 [iG0(0)]2 iG0(t) iG0(t) = − i

ℏ
9λ2

2

1

ε+ 2iω
, (59)

because iG0(0) = 1,

iG0(t) iG0(t) = θ(t) e−2iωt + θ(−t) e2iωt , (60)

and because the integral covers only the negative semi-axis so that only
the second term contributes. Finally, the last diagram of Fig.1 (b) has the
combinatoric factor 4 · 3 · 2 = 24 (the number of ways of connecting the legs
of the two vertices) and gives

− i

ℏ

(
λ

4

)2
0∫

−∞

dt eεt 24 iG0(t) iG0(t) iG0(t) iG0(t) = − i

ℏ
3λ2

2

1

ε+ 4iω
. (61)

Combining these contributions, one has

NUM =
3

4
λ+ λ2

{
− i

ℏ

(
3

4

)2 1

ε
− 9

2

1

2ℏω − iℏε
− 3

2

1

4ℏω − iℏε
+ . . .

}
.

(62)
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The second term of the denominator is represented by a diagram of the same
form as that shown in Fig.1 (a) but the resulting expression is integrated.
Therefore,

DEN = 1− i

ℏ
3λ

4

1

ε
+ . . . (63)

It is then clear that after multiplying the power series in λ representing the
numerator by the power series

DEN−1 = 1 +
i

ℏ
3λ

4

1

ε
+ . . . (64)

the singular terms: the one coming from the first, disconnected diagram of
Fig.1 (b) and the one arising from DEN−1 cancel out and in the limit of
ε → 0, one obtains the finite result

EΩ − EΩ0 =
3λ

4
− 21λ2

8
+ . . . (65)

In the Rayleigh–Schrödinger approach, the λ2 contribution is given by

E
(2)
Ω =

∑
l ̸=0

|⟨l|Vint|Ω0⟩|2

EΩ0 − El

=

(
λ

4

)2
{
|⟨2|

(
a† + a

)4 |Ω0⟩|2

EΩ0 − E2
+

|⟨4|
(
a† + a

)4 |Ω0⟩|2

EΩ0 − E4

}
. (66)

The relevant matrix elements are

⟨Ω0|
(
a†+a

)4
|4⟩= ⟨Ω0|a4|4⟩ =

√
4 · 3 · 2 ,

⟨Ω0|
(
a†+a

)4
|2⟩= ⟨Ω0|

(
a†a† + 2a†a+ 1̂ + aa

)(
a†a† + 2a†a+ 1̂ + aa

)
|2⟩

=
(
⟨Ω0|+

√
2 ⟨2|

)(√
12 |4⟩+ 5|2⟩+

√
2 |Ω0⟩

)
= 6

√
2 ,(67)

and together with EΩ0 − El = −lℏω lead to the same result as the Gell-
Mann–Low formula.

It should be stressed that both NUM and DEN involve terms singular in
the limit ε → 0+ but these cancel in the ratio (the limit ε → 0+ in formula
(15) is supposed to be taken at the very end). The cancellation need not
be explicitly worked out, however, because the theorem quoted ensures the
cancellation of contribution of the non-connected diagrams to the numerator
by the denominator.
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An interesting exercise is to recover the same result using formula (20).
The Dyson expansion of its right-hand side can be again encoded in the
Feynman diagrams shown in Fig. 1 except that now, none of the vertices is
marked with zero time — all n interaction vertices in a diagram representing
a contribution arising in the n-th order of the Dyson expansion must be
marked by the time variables t1, . . . , tn and obtaining the corresponding
contribution requires integrating over all these time variables (in the T → ∞
limit) from −∞ to +∞. But again, it can be shown that taking the logarithm
of this expansion (to extract EΩ −EΩ0) is equivalent to taking into account
connected diagrams only.

The first order9 contribution to the logarithm of the left-hand side of (21)
is (the limit ε → 0+ has already been taken)

− iλ

4ℏ

T∫
−T

dt ⟨Ω0|Tϕ4
I (t)|Ω0⟩ = −3iλ

4ℏ

T∫
−T

dt iG0(0) iG0(0) . (68)

This can be evaluated directly, keeping finite T , because iG0(0) = 1. It is
however more in line with the procedure which will be applied to higher order
contributions to evaluate it in the “frequency” space setting T = ∞ from the
beginning. In general, since to each line ℓ connecting two interaction vertices
marked, say ti and tj (ti = tj , i.e. a line which starts and ends in the same
vertex, is also allowed), in a diagram there corresponds the propagator (53)
involving (in its last form) the exponential factor e−iνℓ(ti−tj) — the frequency
νℓ may be then interpreted as “flowing” from the vertex marked tj to the
one marked ti — it is easy to notice that after the integration over all times
t1, . . . , tn labeling the vertices of the considered diagram one will obtain for
each vertex one Dirac delta function

∞∫
−∞

dti exp

{
−iti

(∑
ℓ

νℓ −
∑
ℓ′

νℓ′

)}
= 2π δ

(∑
ℓ

νℓ −
∑
ℓ′

νℓ′

)
, (69)

in which ℓ denotes labels of the frequencies “flowing” into the vertex marked
ti and ℓ′ of those “flowing” out of this vertex10. However, these n delta
functions allow to eliminate only n− 1 integrations over frequencies — after
using the equalities relating different frequencies enforced by n − 1 delta
functions, the argument of the last one can always be replaced by zero (this
will be seen on examples below). This 2πδ(0) is then to be interpreted as

9 There is no zero-th order — the expansion of the logarithm begins from the first
order term.

10 The direction of the frequency flow ascribed to a given line of the diagram is arbitrary
here because iG0(ti − tj) = iG0(tj − ti).
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limT→∞(2T ) and will cancel out with the same factor multiplying EΩ−EΩ0

in the right-hand side of formula (21). There remain only the integrations
over independent frequencies ν, that is over those which are not fixed by the
equalities enforced by the n − 1 delta functions. Thus, −(i/ℏ)(EΩ − EΩ0)
is directly given by the sum of all connected “frequency” space Feynman
diagrams shown in Fig. 2.

(a)

ν1 ν2

+

ν1 ν2

ν2

ν3

(b)

+

ν1

ν2
ν3

ν1 + ν2 + ν3

(c)

Fig. 2. Frequency space diagrams contributing in the first (a) and second (b) and
(c) order in λ to (−i/ℏ)(EΩ − EΩ0).

In agreement with these rules, the contribution to (−i/ℏ)(EΩ −EΩ0) of
the diagram of Fig. 2 (a) simply is

− i

ℏ
(EΩ − EΩ0)

(2a) = −3iλ

4ℏ

∫
dν1
2π

2iω

ν21 − ω2 + i0

∫
dν2
2π

2iω

ν22 − ω2 + i0

= − i

ℏ

(
3λ

4

)
. (70)

Similarly, the contribution to −(i/ℏ)(EΩ − EΩ0) of the first diagram of
Fig. 2 (b) reads

1

2!

(
1

iℏ
λ

4

)2

72

∞∫
−∞

dν1
2π

2iω

ν21 − ω2 + i0

∞∫
−∞

dν2
2π

(2iω)2

[ν22 − ω2 + i0]2

×
∞∫

−∞

dν3
2π

2iω

ν23 − ω2 + i0
. (71)

The factor 1/2! comes from expansion of the exponent and 72 is the combi-
natoric factor already explained. The integrals over ν1 and ν2 are equal to
unity (they just give iG0(0) = 1 each). The middle integral is evaluated by
the standard residue method (e.g. by closing the integration contour with
a large semi-circle in the lower half plane and evaluating the residue of the
double pole of the integrand at ν = ω − i0). In this way, one obtains

− i

ℏ
(EΩ − EΩ0)

(2b) =
1

2

(
− λ2

16ℏ2

)
72 (2iω)2

2i

(2ω)3
= − i

ℏ

(
− 9λ2

4ℏω

)
. (72)
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Finally, the contribution of the diagram of Fig. 2 (c) is

1

2!

(
1

iℏ
λ

4

)2

24 (2iω)4 I . (73)

Again 24 is the combinatoric factor already explained and I is the “three
loop” (in the language of quantum field theory) integral computed in Ap-
pendix B. It is clear that the sum of

− i

ℏ
(EΩ − EΩ0)

(2c) = i

(
− λ2

2ℏ2

)
24ω4 −i

32ω5
= − i

ℏ

(
− 3λ2

8ℏω

)
, (74)

of (72) and of (70) reproduces the result (65) obtained using formula (15).
Although in application to the perturbed oscillator the method of com-

puting the energy shift based on formula (15) may seem easier than the one
based on the prescription (21), it is the latter that proves more practical
in more advanced computations. In particular, it is formula (21) combined
with the effective theory approach which allows to quite easily reproduce
[11] the classic results (summarized in [4]) concerning the ground-state en-
ergy of a system of N interacting nonrelativistic fermions and to extend its
calculation to yet higher orders [12] and to a nonzero polarization [13].

6. Goldstone diagrams and the cancellation of singular terms

We have illustrated how the energy difference EΩ −EΩ0 is computed by
expanding the numerator and the denominator of formula (15) in the Dyson
series represented by Feynman diagrams which results from the representa-
tion (8) of the (interaction picture) evolution operator. The same formula
can be, however, worked out differently, using the iterative representation (7)
of this operator and inserting between the successive interaction operators
V I
int the complete sets of eigenvectors |l⟩ of the free Hamiltonian H0. This

leads to another organization of the expansion of formula (15) for EΩ −EΩ0

which is visualized in terms of the so-called Goldstone diagrams. There is,
however, a subtlety in using the representation (7) in formula (15) which is
usually somewhat misleadingly presented in textbooks.

We will illustrate this point by considering the Hamiltonian

H =
p̂2

2m
+

1

2
m
(
ω2 + λ2

)
x̂2 , (75)

and computing the energy of its ground state in two ways: using the Dyson
expansion already introduced in Section 5 and using the Goldstone way,
treating the term 1

2mλ2x̂2 as the perturbation Vint

Vint =
ℏλ2

4ω

(
a† + a

)2
≡ αϕ2 . (76)



Testing Methods of Computing Corrections to the Ground-state . . . 3-A4.21

The virtue of this example is that the exact energy levels of the Hamiltonian
H = H0 + Vint are known; in particular,

EΩ =
1

2
ℏ
√
ω2 + λ2 =

1

2
ℏω +

ℏλ2

4ω
− ℏλ4

16ω3
+

ℏλ6

32ω5
+ . . . . (77)

and this can be used to check the correctness of the results obtained by using
the expansions generated by formula (15).

Expanded to the third order the numerator of formula (15) reads

NUM = α+ β α2

0∫
−∞

dt eεt ⟨Ω0|T
[
ϕ2
I (0)ϕ

2
I (t)
]
|Ω0⟩

+
1

2
β2α3

0∫
−∞

dt

0∫
−∞

dt′ eε(t+t′) ⟨Ω0|T
[
ϕ2
I (0)ϕ

2
I (t)ϕ

2
I (t

′)
]
|Ω0⟩+ . . . ,(78)

where β = 1/iℏ and the result ⟨Ω0|Vint(0)|Ω0⟩ = α has already been used.
Evaluating the order βα2 contribution in the Dyson way, i.e. using the Wick
theorem, one finds two diagrams shown in Figs. 3 (a) and (b) of which only
the second one is connected (in the sense already explained in Sec. 5).

(a)

+

(b)

Fig. 3. Second order diagrams contributing to the numerator of the formula (15)
for the ground-state energy evaluated in the Dyson way, as applied to the harmonic
oscillator perturbed with the interaction ∝ x̂2.

The complete order β α2 contribution is (iG0 is the propagator (53))

NUM(2) = β α2

0∫
−∞

dt eεt
(
[iG0(0)]2 + 2 iG0(t) iG0(t)

)

= β α2

0∫
−∞

dt eεt
(
1 + 2

[
θ(t) e−2iωt + θ(−t) e2iωt

])
= β α2

(
1

ε
+

2

ε+ 2iω

)
, (79)
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where the term singular in the limit ε → 0 comes from the disconnected
diagram. The same result is obtained evaluating this contribution “in the
Goldstone way”

NUM(2) = β

0∫
−∞

dt eεt
∑
l

⟨Ω0|Vint|l⟩⟨l|Vint|Ω0⟩ eiωn0t

= β α2

0∫
−∞

dt eεt
(
1 +

(√
2
)2

e2iωt
)

, (80)

where the first term in the bracket comes from |l⟩ = |Ω0⟩ ≡ |0⟩ and is classi-
fied as a disconnected contribution (or as a contribution of the disconnected
Goldstone diagram — see Fig. 4) and the second one from |l⟩ = |2⟩.

|0⟩

|0⟩

(a)

+

|0⟩

|0⟩

|0⟩

(b)

+

|0⟩

|2⟩

|0⟩

(c)

Fig. 4. Goldstone diagrams illustrating the first- and second-order terms of the
expansion of the numerator of formula (15) based on the representation (7) realized
in the basis formed by the H0 eigenstates. Dots represent interactions and the
horizontal dashed line represents the initial, intermediate and final states. Solid
lines can be viewed as particles (bosons) created or annihilated by the interaction.
Diagrams with intermediate states representing the ground state |Ω0⟩ = |0⟩ are
classified as disconnected.

Evaluating NUM(3) — the order β2α3 contribution to the numerator —
in the Dyson way one finds the diagrams shown in Fig. 5 which give

⟨Ω0|T
[
ϕ2
I (0)ϕ

2
I (t)ϕ

2
I

(
t′
)]

|Ω0⟩ =
[
iG0(0)

]3
+ 2 iG0(0)

[
iG0

(
t− t′

)]2
+2 iG0(0)

[
iG0(t)

]2
+ 2 iG0(0)

[
iG0

(
t′
)]2

+8 iG0(t) iG0
(
t′
)
iG0

(
t− t′

)
. (81)

The numbers in front of the successive terms are the combinatoric factors.
The two terms in the middle line give equal contributions in view of the
symmetry of the integration over dt dt′. Using the explicit form (53) of
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iG0(t) this contribution is

1 + 2
[
θ
(
t− t′

)
e−2iω(t−t′) + θ

(
t′ − t

)
e2iω(t−t′)

]
+ 4
[
θ(t) e−2iωt + θ(−t) e2iωt

]
+ 8
[
θ(t) e−iωt + θ(−t) eiωt

] [
θ
(
t′
)
e−iωt′ + θ

(
−t′
)
eiωt

′
]

×
[
θ
(
t− t′

)
e−iω(t−t′) + θ

(
t′ − t

)
eiω(t−t′)

]
. (82)

0

t

t′

(a)

+

t t′

0

(b)

+

0 t

t′

(c)

+

0 t′

t

(d)

+ 0

t′

t

(e)

Fig. 5. Third order diagrams contributing to the numerator of the formula (15)
expanded in the Dyson way, as applied to the harmonic oscillator perturbed with
the interaction ∝ x̂2. Diagrams (b), (c) and (d) have combinatoric factors 2.
Diagrams (c) and (d) give equal contributions. The combinatoric factor of the last
diagram is 8.

The two terms of the first square bracket in the first line give equal contri-
butions (again, because of the symmetry of the integration over dt dt′); of
the second square bracket in the first line only the second term contributes
(because the integral over dt in (15) covers only the negative semi-axis) and
finally, in both brackets in the second line only the second terms contribute
and the two terms of the last square bracket give equal contributions. Ele-
mentary integrations then yield

NUM
(3)
Dyson =

1

2
β2α3

{
1

ε2
+

4

2ε(ε+2iω)
+

4

ε(ε+2iω)
+

16

(2ε+ 2iω)(ε+2iω)

}
.

(83)
Only the third term comes from the connected Feynman diagram, so if it is
taken for granted that the singular (in the limit ε → 0) contributions of the
disconnected diagrams 5 (a)–(d) are exactly canceled by the contributions
of the denominator DEN, one can write(
NUM(2)

con +NUM(3)
con

)
ε=0

= β α2 2

2iω
+

1

2
β2α3 16

(2iω)2
= − ℏλ4

16ω3
+

ℏλ6

32ω5
,

(84)
which is the correct result.
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Evaluating the order β2α3 contribution to the numerator in the Gold-
stone way instead, one gets (ωl′l = (El′ − El)/ℏ)

NUM(3) = β2

0∫
−∞

dt eεt
t∫

−∞

dt′eεt
′⟨Ω0|V I

int(0)V
I
int(t)V

I
int

(
t′
)
|Ω0⟩

= β2

0∫
−∞

dt eεt
t∫

−∞

dt′eεt
′∑

l′

∑
l

⟨Ω0|Vint|l′⟩⟨l′|Vint|l⟩⟨l|Vint|Ω0⟩ eiωl′lt eiωl0t
′
.(85)

The integrations are elementary and give (ωl′l + ωl0 = ωl′0)

NUM(3) = β2
∑
l′

∑
l

⟨Ω0|Vint|l′⟩⟨l′|Vint|l⟩⟨l|Vint|Ω0⟩
(2ε+ iωl′0)(ε+ iωl0)

. (86)

Because Vint = α(a†a† + 2a†a + 1̂ + aa), the double summation reduces to
four terms only: (l′, l) = (0, 0), (0, 2), (2, 0) and (2, 2) of which only the last
one would be classified as “connected”. The relevant matrix elements are

⟨Ω0|Vint|Ω0⟩ = α , ⟨Ω0|Vint|2⟩ = ⟨2|Vint|Ω0⟩ =
√
2α , ⟨2|Vint|2⟩ = 5α .

(87)
This leads to (the corresponding Goldstone diagrams are shown in Fig. 6)

NUM
(3)
Goldstone =

β2α3

{
1

2ε2
+

2

2ε(ε+2iω)
+

2

ε(2ε+2iω)
+

10

(2ε+2iω)(ε+2iω)

}
. (88)

|0⟩

|0⟩

|0⟩

|0⟩

(a)

+

|0⟩

|2⟩

|0⟩

|0⟩

(b)

+

|0⟩

|0⟩

|2⟩

|0⟩

(c)

+

|0⟩

|2⟩

|2⟩

|0⟩

(d)

Fig. 6. Goldstone diagrams illustrating the third order terms of the expansion based
on the representation (7) realized in the basis of H0 eigenstates of the numerator
of formula (15). Only the diagram (d) is classified as connected.
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Comparison with NUM
(3)
Dyson given in (83) reveals that there is a subtle

difference: in the denominator of the third term, there is now 2ε in the
expression in the bracket and the coefficient of the last term is now 10 instead
of 8. Nevertheless, as can be straightforwardly checked, the two results,
NUM

(3)
Dyson and NUM

(3)
Goldstone, are perfectly equal as they should be (this is

the same expression evaluated in two different but equally consistent ways).
If, however, in the Goldstone approach, the contributions of the ground
state |Ω0⟩ as the intermediate states l′ and/or l, i.e. of the disconnected
Goldstone diagrams, are rejected, the resulting contribution to the ground-
state energy of H will come out wrong! Notice that both “connected” third
order contributions to the numerator of formula (15), the one obtained in the
Dyson way and the one obtained à la Goldstone, have perfectly well defined
finite limits ε → 0. That the first one is the right answer is here obvious
because we have the exact expression (77) for the ground-state energy. In
the absence of the exact result to establish which one of the two “connected”
contributions is correct, one would be forced to work out the denominator
of formula (15) and carefully obtain the expansion of the ratio NUM/DEN.
Let us see this on the considered example: evaluation of the denominator
up to the second order in both ways gives the same result

DEN = 1 + βα
1

ε
+

1

2
β2α2

(
1

ε2
+

4

2ε(ε+ 2iω)

)
+ . . . (89)

Therefore,

DEN−1 = 1− βα
1

ε
+

1

2
β2α2

(
1

ε2
− 4

2ε(ε+ 2iω)

)
+ . . . (90)

and, multiplying the two series, one obtains

NUM

DEN
= α+ βα2

(
1

ε
+

2

ε+ 2iω

)
+NUM(3)

−βα2 1

ε
− β2α3

(
1

ε2
+

2

ε(ε+ 2iω)

)
+

1

2
β2α3

(
1

ε2
− 2

ε(ε+ 2iω)

)
, (91)

where the first line is just the numerator (NUM(3) is the order β2α3 con-
tribution to it) and all the remaining terms of the expansion of the ratio
have been put in the second line. It is clear that the singular terms of order
βα2 cancel out directly. It is also seen that the order β2α3 terms of the
second line directly remove the singular terms of NUM(3)

Dyson (83), so that
indeed, what remains is the last term contributed by the connected Dyson
diagram 5 (e). In contrast, the singular terms of NUM(3)

Goldstone (88) do not



3-A4.26 P.H. Chankowski

match exactly the order β2α3 terms of the second line of (91): the sum of
all singular terms is in this case

− 2

ε(ε+ 2iω)
+

2

ε(2ε+ 2iω)
= − 2

(ε+ 2iω)(2ε+ 2iω)
, (92)

and is finite in the ε → 0 limit. This finite contribution corrects the coeffi-
cient of the “connected” third order contribution to the ground-state energy
computed in the Goldstone way.

It is instructive to compare the calculation of the contribution to NUM(3)

done à la Goldstone with the third order correction to the ground-state
energy

E
(3)
Ω =

∑
l′ ̸=Ω0

∑
l ̸=Ω0

⟨Ω0|Vint|l′⟩⟨l′|Vint|l⟩⟨l|Vint|Ω0⟩
(EΩ0 − El′)(EΩ0 − El)

−⟨Ω0|Vint|Ω0⟩
∑
l ̸=Ω0

|⟨Ω0|Vint|l⟩|2

(EΩ0 − El)2
, (93)

given by the ordinary Rayleigh–Schrödinger series11. It is clear that tak-
ing into account only the contributions of connected Goldstone diagrams in
evaluating NUM(3) is equivalent to omitting the second, “non-connected”,
term in this formula, which is necessary to reproduce correctly the third
order correction to the ground-state energy. In higher orders, the Rayleigh–
Schrödindger formula has even more such “non-connected” terms which are
potentially missed if only connected Goldstone diagrams are taken into ac-
count in computing the numerator taking for granted the statements to this
effect which can be found in renowned textbooks [4, 9]12.

7. Summary

We have recalled several advanced methods of expressing the difference
EΩ−EΩ0 of the energies of ground-states |Ω⟩ and |Ω0⟩ of the complete H =
H0 +Vint and free H0 Hamiltonians. We have illustrated their working on a
simple completely solvable example which requires only standard methods
of quantum mechanics and is, therefore, accessible to students. We have
also discussed systematic perturbative expansions of the difference EΩ −

11 The third order term of this expansion is rarely displayed in textbooks.
12 It seems that the proof that the denominator DEN exactly cancels the contribution of

the disconnected diagrams, correct in the Dyson approach, has been in [4] extended
to the Goldstone expansion witout any justification. Feynman [9] in reproducing the
result of [14] sums only a class of Goldstone diagrams so the omission of “discon-
nected” contributions is of no consequence.
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EΩ0 in terms of Feynman and Goldstone diagrams and illustrated them on
simple examples which can also serve to introduce diagrammatic techniques
to beginners. The comparison of the results obtained with the help of the
Dyson and Goldstone expansions allowed to point out the subtlety in the
latter approach which is not taken into account in standard presentations of
this method.

Appendix A

Phase of the evolution operator U(t, 0)

Inserting into both sides of the equation (38) the operator

U(t, 0) = eiφ(t) e−iH0t/ℏ eh(t) a
†−h∗(t) a , (A.1)

together with H(t) = ℏωa†a+∆ω+f(t)a†+f∗(t)a, one obtains the equation

−ℏφ̇(t)U ε(t, 0) + iℏU(t, 0) e−B(t) d

dt
eB(t) =

(
f(t) a† + f∗(t) a

)
U(t, 0) ,

(A.2)
in which B(t) ≡ h(t) a† − h∗(t) a. The terms with H0 U(t, 0) on both sides
have canceled. One has now to work out the derivative

d

dt
eB = Ḃ +

1

2
Ḃ B +

1

2
B Ḃ +

1

6
Ḃ B B +

1

6
B Ḃ B +

1

6
BB Ḃ + . . . , (A.3)

by moving in each term Ḃ to the right. Since [Ḃ, B] = h∗ḣ − ḣ∗h is a
c-number, this is easy and after writing down a few terms, one sees that the
result is

d

dt
eB = eB

[
Ḃ +

1

2

(
h∗ḣ− ḣ∗h

)]
. (A.4)

The equation determining φ can be therefore written in the form

−ℏφ̇(t) +
i

2
ℏ
(
h∗ḣ− ḣ∗h

)
+ iℏU(t, 0)

(
ḣ a† − ḣ∗a

)
[U(t, 0)]†

= eεt
(
f(f) a† + f∗(t) a

)
. (A.5)

Using formula (36), one works then out the last term on the left-hand side

e−iH0t/ℏ eh a†−h∗a
(
ḣ a† − ḣ∗a

)
e−h a†+h∗a eiH0t/ℏ = ḣ e−iωt a† − ḣ∗ eiωt a− h∗ḣ+ ḣ∗h . (A.6)
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Inserting this in the preceding formula after taking into account that

ḣ = − i

ℏ
f(t) eiωt , (A.7)

one finds that the terms with the operators a† and a cancel out as they
should and one obtains the c-number equation

φ̇ = − i

2

(
h∗ ḣ− ḣ∗ h

)
, (A.8)

which determines the phase φ(t).
Specifying now to f(t) = λ eεt, i.e. setting

h = − i

ℏ
λ

ε+ iω

(
e(ε+iω)t − 1

)
, (A.9)

one gets

φ̇ =
|λ|2

2ℏ2(ω2 + ε2)

{
2ω e2εt + i (ε+ iω) e(ε+iω)t − i (ε− iω) e(ε−iω)t

}
.

(A.10)
Integrating (the integration constant is fixed by the requirement φ(0) = 0
which stems from the initial condition U(0, 0) = 1̂) one finds

φ(t) ≡ φε(t) =
|λ|2

2ℏ2(ω2 + ε2)

{ω
ε

(
e2εt − 1

)
+ i e(ε+iω)t − i e(ε−iω)t

}
.

(A.11)

Appendix B

Computation of the integral I

Here, we compute the integral I. The computation is rudimentary (it
uses the residue method) but somewhat tedious. It is convenient to do it in
steps

I =

∞∫
−∞

dν1
2π

1[
ν21 − ω2 + i0

] J(ν1) ,
J(ν1) =

∞∫
−∞

dν2
2π

1

[ν22 − ω2 + i0]
K(ν1, ν2) ,

K(ν1, ν2) =

∞∫
−∞

dν3
2π

1

[ν23 − ω2 + i0][(ν1 + ν2 + ν3)2 − ω2 + i0]
. (B.1)
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The integrand of the last integral has four simple poles: two below the real
axis, at ν3 = ω− i0 and at ν3 = ω−ν1−ν2− i0, and two above the real axis
at ν3 = −ω + i0 and at ν3 = −ω + ν1 + ν2 + i0. Closing the contour in the
lower half plane, i.e. picking the poles below the real axis, one finds that

K(ν1, ν2) =
−i

2ω(ν1 + ν2)

[
1

2ω + ν1 + ν2 − 2i0
− 1

2ω − ν1 − ν2 − 2i0

]
=

−i

ω

1

(ν1 + ν2)2 − (2ω − 2i0)2
. (B.2)

The next integral

J(ν1) =
−i

ω

∞∫
−∞

dν2
2π

1

[ν22 − ω2 + i0][(ν1 + ν2)2 − (2ω − 2i0)2]
, (B.3)

has also two simple poles below the real axis, at ν2 = ω − i0 and at ν2 =
2ω − ν1 − 2i0, and two above it, ν2 = −ω + i0 and at ν2 = −2ω + ν1 − 2i0.
Picking those below (or those above) one finds that

J(ν1) =

(
−i

ω

)(
−i

2ω

)
×
[

1

(ν1 + ω − i0)2 − (2ω − 2i0)2
+

1

2

1

(ν1 − 2ω + 2i0)2 − ω2 + i0

]
. (B.4)

Therefore, I splits into two parts I = I1 + I2. The integrand of I1,

I1 = − 1

2ω2

∞∫
−∞

dν1
2π

1

[ν1 − ω + i0]2[ν1 + ω − i0][ν1 + 3ω − 3i0]
, (B.5)

has three poles. Either way, i.e. either picking the single double pole below
the real axis at ν1 = ω− i0, or picking the two simple poles at ν1 = −ω+ i0
and at ν1 = −3ω + 3i0, one finds that I1 = −3i/64ω5. The integrand of I2,

I2 = − 1

4ω2

∞∫
−∞

dν1
2π

1

[ν1 − ω + i0]2[ν1 + ω − i0][ν1 − 3ω + 3i0]
, (B.6)

has also three poles but now there is only one simple pole above the real
axis at ν1 = −ω + i0 and two, one simple at ν1 = 3ω − 3i0 and one double
at ν1 = ω − i0. It is therefore easier to pick the pole above the axis. The
result is I2 = i/64ω5. In all, therefore, I = −i/32ω5.
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