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In these lecture notes, I review how to use large-N techniques to solve
quantum field theories in various dimensions. In particular, the case of
N -dimensional quantum mechanics, non-relativistic cold and dense neutron
matter, and scalar field theory in four dimensions are covered. A recurring
theme is that large-N solutions are fully non-perturbative, and can be used
to reliably access quantum field theory for parameter regions where weak-
coupling expansions simply fail.
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1. Preface

You may have heard that Quantum Field Theory is a well-developed,
mature discipline.

That all the easy problems have been done long ago.
That there is nothing left to discover.
That is not true.
Welcome to QFT in large-N wonderland!

2. Introduction

The aim of these lecture notes is to provide an accessible introduction
to the physical applications of large-N solution techniques for quantum field
theory. They are aimed at advanced graduate students and early-career
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postdocs in theoretical physics, but they do contain new material that occa-
sionally puzzles more senior researchers. The main guiding principle behind
the lectures is that they offer techniques to obtain direct first-principle quan-
titative answers to physics problems of interest, with minimal specialized
mathematical knowledge.

To keep the lecture notes readable, I have chosen to keep references at a
minimum, with an emphasis on recent rather than older results.

That said, the use of large-N techniques as opposed to perturbation the-
ory has a long history in field theory, with many of the key results already
obtained in the 1970s [1–3]. Unfortunately, subsequent research showed that
large-N techniques are not sufficient to solve specific non-Abelian gauge the-
ories of interest, such as QCD. As a consequence, the main theoretical tools
for the study of QCD are presently perturbative (weak-coupling) expansions
(e.g., [4–6]), lattice QCD (e.g., [7, 8]), as well as effective non-relativistic
expansions (e.g., [9]).

In contradistinction to QCD, large N does play an important role in
holographic conjectures of supersymmetric gauge theories, such as the con-
jectured dual of N = 4 Super-Yang–Mills theory in the large-N limit to
classical Einstein gravity in asymptotically AdS5 spacetimes [10].

Coming full circle, the holographic conjectures for large-N gauge theories
did lead to conjectures for large-N scalar theories, such as the conjectured
dual of the O(N) model in 3 dimensions to higher-spin gravity in asymptot-
ically AdS4 spacetimes [11]. Unlike the case of gauge theories, where a proof
of the gravity dual seems out of reach, the solvability of scalar field theories
in the large-N limit suggests that the gravity dual theory can be derived,
rather than conjectured [12–14].

Despite the attractive feature of large-N solvability, applications of
large-N techniques for scalar and fermionic theories has remained some-
what dormant since the 1970s. This provides opportunity for using large-N
techniques to solve problems of interest, such as calculation of transport coef-
ficients [15–17], finite temperature correlators [18, 19], finite-density systems
[20], as well as real-time evolution in quantum field theory [21].

Many problems which are intractable using standard perturbation theory
surprisingly become not only possible but easy using large-N expansions.
This is a consequence of using 1

N as the small expansion parameter, which
allows direct access to observables for any value of the coupling, small or
large.

The cutting edge application of this technique are four-dimensional theo-
ries, where a combination of large-N expansion and non-perturbative renor-
malization techniques [22] allows one to circumvent long-held convictions
about quantum triviality and asymptotically free theories. A surprising
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consequence is the possibility of discovering a simpler version of the Stan-
dard Model of physics, with fewer parameters than needed for the Higgs
mechanism.

Last but not least, working with large-N expansions is fun! It directly
combines relatively straightforward math with physics observables of inter-
est, and new discoveries seem to be waiting at (almost) every page of a
calculational notebook! Best of all, most of the large-N wonderland is es-
sentially unexplored, so that you can still claim your own patch (or country,
or continent, or planet) in it!

Welcome to Quantum Field Theory in Large-N Wonderland!

3. Lecture 1: Quantum mechanics

Let us start with a simple test case where we can check our methods:
quantum mechanics.

Quantum mechanics concerns itself with the spectrum of a Hamiltonian.
For concreteness, let us consider the case of a one-dimensional system with
the Hamiltonian

H =
p2

2
+ λx4 , (1)

where p, x are the momentum and position operator, respectively. The
spectrum En of the Hamiltonian is defined through the time-independent
Schrödinger equation

⟨x|H|n⟩ = Hψn(x) = Enψn(x) , (2)

where ψn(x) are the wave-function eigenstates of H.
What is the ground-state energy E0 for the Hamiltonian (1)?
It so happens that E0 for the Hamiltonian (1) is not known analytically.

I have chosen (1) deliberately, partly because of this property, otherwise
it would be too easy. However, note that no Hamiltonian with potential
V (x) ∝ xα for α ∈ (2,∞) has analytically known ground-state energies, so
the problem of finding E0 is not contrived, but rather generic.

However, (1) shares certain important properties with the Hamiltonian
of the harmonic oscillator V (x) ∝ x2, in that its spectrum for λ > 0 is real,
discrete, and positive definite. It is just hard to calculate E0.

Since our goal is to learn something about quantum field theory rather
than quantum mechanics, let us cast quantum mechanics into the field the-
ory language by using path integrals. A rigorous way to do this from first
principles is to consider the canonical partition function

Z = Tr e−βH =
∞∑
n=0

⟨n|e−βH|n⟩ =
∞∑
n=0

e−βEn , (3)
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where β = 1
T and T is the temperature of the system. By inserting complete

sets of states, one can turn the trace of the Boltzmann operator into a path
integral (see the steps leading from (1.27) to (1.37) in the excellent open-
access textbook [23])

Z =

∫
Dϕ e−SE , SE =

β∫
0

[
1

2
ϕ̇2(τ) + λϕ4(τ)

]
, (4)

where SE is the Euclidean action of the theory and the field ϕ(τ) lives on
the Euclidean circle τ ∈ [0, β] with periodic boundary conditions.

Unfortunately, trying to solve the path integral in (4) is just as hard (or
maybe even harder) than trying to directly solve the eigenvalue problem (2).
Some new idea is needed.

To develop this idea, let us do something counter-intuitive: instead of
considering the quantum mechanics problem in one dimension (which was
hard), how about quantum mechanics in higher dimensions? At first glance,
if the problem was hard in one dimension, it seems unlikely that one could
make progress by trying to solve it in two, three, etc. dimensions, but let us
see.

Using the odd symbol N to denote the number of dimensions, the equiv-
alent Hamiltonian to (1) is given by

H =
p⃗ 2

2
+
λ

N

(
x⃗ 2
) 2

, (5)

where p⃗ = (p1, p2, . . . , pN ) and x⃗ = (x1, x2, . . . , xN ) are again the momen-
tum and position operators for quantum mechanics in N dimensions. The
appearance of N in the denominator of the coupling λ may appear arbitrary
at first sight, but if one considers that x⃗ 2 = x21+x

2
2+ . . . x

2
N are N contribu-

tions of the operator x2, it becomes clear that λ
N is the right normalization so

that H scales appropriately with N . (Alternatively, or rather equivalently,
think of λ as the appropriate ’t Hooft coupling [1] for this theory.)

The path integral for quantum mechanics in N dimensions follows the
same steps as for one-dimensional quantum mechanics, except that there is
a quantum field for every dimension, so we end up with

Z =

∫
Dϕ⃗ e−SE , SE =

β∫
0

[
1

2

(
∂τ ϕ⃗

)2
+
λ

N

(
ϕ⃗ 2
)2]

, (6)

and ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN ).



Quantum Field Theory in Large-N Wonderland: Three Lectures 4-A2.5

Instead of a hard path integral over a single field ϕ as in (4), we now
have a path integral over multiple fields ϕ⃗ which are all coupled together. If
anything, this seems much harder than our original hard problem, so it does
not look like we have made any progress here.

Do not despair yet, I have a trick down my sleeve!
The trick is that I can solve an integral over a Dirac δ function∫

dσδ(σ − f) = 1 , (7)

for any real f . I can write a product of these integrals and obtain a “path-
integral δ” ∏

τ

∫
dσ(τ)δ (σ(τ)− f(τ)) =

∫
Dσδ (σ − f) = 1 . (8)

Since this is true for any function f(τ) on the Euclidean circle, I can take
f(τ) = ϕ⃗ 2(τ) and thus rewrite the partition function (6) as

Z =

∫
Dϕ⃗Dσδ

(
σ − ϕ⃗ 2

)
e−SE , SE =

β∫
0

dτ

[
1

2

(
∂τ ϕ⃗

)2
+
λ

N
σ2
]
. (9)

Having a delta function inside a path integral is un-field theorist, so I use

δ(x) =

∫
dζ eiζx (10)

to rewrite the path integral again as

Z =

∫
Dϕ⃗DσDζ e−SE , SE =

β∫
0

dτ

[
1

2

(
∂τ ϕ⃗

)2
+
λ

N
σ2 − iζ

(
σ − ϕ⃗ 2

)]
.

(11)
In this form, we have a path integral with two auxiliary fields σ, ζ, but

since the action for σ is quadratic, we can integrate out σ explicitly:

Z =

∫
Dϕ⃗Dζ e−SE , SE =

β∫
0

dτ

[
1

2

(
∂τ ϕ⃗

)2
+ iζϕ⃗ 2 +

Nζ2

4λ

]
. (12)

As a side remark, rewriting of the path integral for quartic potential
using an auxiliary field is known in the literature as a Hubbard–Stratonovic
transformation. When I started working on this, I did not know about
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Hubbard–Stratonovic, so I came up with this version which works for other
potentials of the form of V (x) ∝ xα as well, not just α = 4 [24]. Apparently,
sometimes ignorance is an advantage when working on a new subject.

The partition function (12) is quadratic in the field ϕ⃗, so we can formally
integrate out those fields as well, giving

Z =

∫
Dζ e−SE , SE =

N

2
Tr ln

[
−∂2τ + 2iζ

]
+

β∫
0

dτ
Nζ2

4λ
. (13)

So far, everything has been exact.
Splitting the auxiliary field ζ into zero-mode and fluctuations

ζ(τ) = ζ0 + ζ ′(τ) , (14)

we have

SE =
N

2
Tr ln

[
−∂2τ + 2iζ0

]
+
Nβζ20
4λ

+O
(
ζ ′ 2
)
. (15)

The path integral over the fluctuations ζ ′ cannot be calculated analytically
in closed form. However, since it is a single field, the integral over the
fluctuations cannot give a contribution of the order of eO(N) to the path
integral. Thus, in the limit of large N , the (complicated) contribution from
the fluctuations is sub-dominant.

The calculation simplifies in the large-N limit!
For N ≫ 1, we thus have

lim
N≫1

Z =

∫
dζ0 e

−SR0 , SR0 =
N

2
Tr ln

[
−∂2τ + 2iζ0

]
+
Nβζ20
4λ

. (16)

Instead of a path integral, the large-N partition function is given in
terms of a single integral, but the expression in the action still needs some
work. (Aside: I have sneaked in the label “R0” for “resummation level 0”
here, which is useful for the discussion in the following.)

Since ζ0 is τ -independent, it effectively acts as a mass term, and we can
calculate the trace of the logarithm of the operator as

Tr ln
[
−∂2τ + 2iζ0

]
=
∑
n

⟨n| ln
[
−∂2τ + 2iζ0

]
|n⟩ =

∑
n

ln
[
ω2
n + 2iζ0

]
, (17)

when using ⟨τ |n⟩ = eiωnτ with ωn = 2πnT the bosonic Matsubara frequen-
cies. The “thermal” sum can be calculated using methods from thermal
quantum field theory [23], or by straightforward comparison to the partition
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function of the harmonic oscillator. Let us do the latter: for the harmonic
oscillator, the partition function is

ZHO =

∫
Dϕ e−

1
2

∫ β
0 [ϕ̇

2+m2ϕ2] = e−
1
2
Tr ln[−∂2τ+m2] (18)

because it is a Gaussian integral. However, we know that the spectrum of
the harmonic oscillator is En = m

(
n+ 1

2

)
, so we can calculate the harmonic

oscillator partition function as

ZHO =

∞∑
n=0

e−βEn =
1

2 sinh
(
mβ
2

) . (19)

Comparing the last two equation leads to

1

2
Tr ln

[
−∂2τ +m2

]
= ln

[
2 sinh

(
mβ

2

)]
. (20)

As a consequence, we get for (16)

lim
N≫1

Z =

∫
dζ0 e

−N ln

[
2 sinh

(√
2iζ0β

2

)]
−Nβζ20

4λ
. (21)

This is the expression for the partition function of quantum mechanics in
N ≫ 1 dimensions at finite temperature. If we care about the ground-state
energy, we want to consider the low-temperature limit β → ∞. In this limit,
the result simplifies to

lim
β≫1

lim
N≫1

Z =

∫
dζ0 e

−Nβ
√

2iζ0
2

−Nβζ20
4λ . (22)

For large N , the exponential is typically very small, except for the regions
of the integral where the action is at a minimum. This is formally encoded
in the saddle-point method, so that integrals such as (22) can be evaluated
exactly in closed form at large N . We find

lim
β≫1

lim
N≫1

Z = e−βE(ζ∗) , (23)

where ζ0 = ζ∗ is the solution to the saddle-point condition

dE (ζ∗)

dζ∗
= 0 =

N

2
√
2iζ∗

+
Nζ∗

2λ
−→ iζ∗ =

(2λ)
2
3

2
. (24)
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Plugging this saddle point back into the partition function, we get

E (ζ∗) =
3(2λ)

1
3N

8
≃ λ

1
3N × 0.47247 . . . (25)

Comparison between (23) and (3) shows that this is the ground-state en-
ergy for quantum mechanics in N ≫ 1 dimensions interacting via quartic
potential. It is exact in the large-N limit, and is smoothly connected to
the ground-state energy for finite, but large N , cf. Fig. 1. But even if we
boldly extrapolate this result to N = 1, we find that it only differs from the
numerically calculated ground-state energy of the one-dimensional quartic
anharmonic oscillator

E0 = λ
1
3 × 0.66799 . . . (26)

by only about 30 percent (see Table 1 in Appendix A and Ref. [25]).
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We can add a 1
N improvement to the large-N result of the ground-state

energy without too much trouble by expanding SE in the exact partition
function (13) to the second order in fluctuations around the saddle: ζ =
ζ0 + ζ ′(τ) and performing a Fourier-transform

ζ ′(τ) =

∫
dk

2π
eikτζ ′(k) . (27)

In the zero-temperature limit, we obtain

lim
β≫1

lim
N≫1

Z = e−
3(2λ)

1
3

8
Nβ

∫
Dζ ′ e−

∫
dk
2π

N|ζ′(k)|2
4λ

−2N
∫

dk
2π

|ζ′(k)|2Π(k) , (28)
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with

Π(k) =
1

2

∫
dp

2π

1(
p2 + (2λ)

1
3

)(
(p+ k)2 + (2λ)

1
3

) =
1

2

1

(2λ)
1
3

(
k2 + 4(2λ)

2
3

) .
(29)

Performing the path integral over ζ ′ leads to the large-N ground-state energy
given by

E0 =
3(2λ)

1
3

8
N +

1

2

∫
dk

2π
ln

(
1 +

2(2λ)
2
3

k2 + 4(2λ)
2
3

)

= (2λ)
1
3

(
3

8
N +

√
6− 2

2

)
+O

(
N−1

)
. (30)

Calculating the NNLO large-N correction is possible with similar techniques,
and obtaining the result (31) is left as an exercise (see below).

Extrapolating the NLO ground-state energy for N = 1 and compar-
ing it to the numerically calculated result for the N = 1 theory (26), one
finds that the NLO result is off by only about 13 percent. Agreement with
quantum mechanics in higher dimensions is better, as can be seen in Fig. 1.
Clearly, large-N expansion techniques work quantitatively well in captur-
ing the ground-state energy for quantum mechanics at fixed and not too
small N .

As a final note, let me point out the fact that the NNLO correction does
not improve on the disagreement for N = 1, but helps with larger N , and
is in agreement with the expectation that the large-N series expansion is
asymptotic, just like the perturbative series expansion.

3.1. Guide to further reading

Considering N -component field theory in dimension less than four is an
interesting application of the above techniques. Here are a few suggestions
for further reading:

— The saddle point (24) is not on the integration contour for ζ0, which
are the real numbers. In order to access it, the integration contour
needs to be deformed into the complex plane and becomes a “thimble”.
Reference [26] provides an excellent practitioner’s introduction to the
theory of Lefshetz thimbles.

— Time-dependent quantum mechanics at large N , including the calcu-
lation of the so-called Ljapunov exponents was studied in a series of
papers [27–30].
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— The scalar O(N) model in 2+ 1 dimensions was studied at finite tem-
perature in [18]. In this case, the field theory is super-renormalizable,
and the large-N expansion allows solution of this field theory for all
values of the coupling. In particular, this includes a calculation of the
exact large-N shear viscosity coefficient [17].

— Theories with fermions, as well as certain supersymmetric theories
in 2 + 1 dimensions can also be solved with the same technique, see
[31, 32].

— Three-dimensional QED with many flavors of electrons does not suffer
from the problems encountered in four dimensions and can also be
solved with similar techniques. The thermodynamics of largeNf QED3

was worked out in Ref. [33], and the curious “fractional photon” in
the strong coupling limit was pointed out in Ref. [34]. While it is
possible to calculate transport coefficients in the strong coupling and
large-Nf limit of QED3/QCD3 along the lines of Refs. [15, 16], no such
results currently exist in the literature. This is a typical example of
an unclaimed patch in the large-N wonderland.

— The O(N) model in 2+1 dimensions was conjectured to have a gravity
dual in the strong-coupling limit, cf. Ref. [11]. There are encouraging
works on reconstructing the bulk geometry from the boundary field
theory in Refs. [12, 14].

— Higher dimensional O(N) models are not thought to be perturbatively
renormalizable. However, O(N) models in odd dimensions (in particu-
lar in five dimensions) may be non-perturbatively renormalizable [22].
This has led to recent studies of O(N) models in odd dimensions, e.g.,
in Refs. [35–37].

3.2. Homework problems for Lecture 1

1.1 Calculate E0 in one-dimensional quantum mechanics with Hamilto-
nian (1) using perturbation theory λ≪ 1. Compare your result to the
numerically obtained result (26) and discuss.

1.2 Calculate E0 in N -dimensional quantum mechanics with Hamilto-
nian (5) to the order of NNLO (including terms of the order of N−1

in E0) in a large-N expansion. Show that

ENNLO
0 ≃ −0.1689N−1λ

1
3 . (31)
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1.3 Instead of quantum mechanics, consider now quantum field theory in
2 + 1 dimensions with the Euclidean action

SE =

β∫
0

dτ

∫
d2x

[
1

2
∂µϕ⃗ · ∂µϕ⃗+

λ

N

(
ϕ⃗ 2
)2]

. (32)

Using the same techniques as for quantum mechanics, find the expres-
sion for the LO large-N partition function Z at finite temperature
equivalent to (21). Defining the entropy density as s = d

dT
lnZ
βV , evalu-

ate it at infinite coupling s∞ ≡ limλ→∞ s. Show that
s∞
sfree

=
4

5
, (33)

where sfree is the thermal entropy density of N free bosons in 2 + 1
dimensions.

1.4 Consider again quantum field theory in 2 + 1 dimensions with the
Euclidean action (32). In Fourier space, the propagator for the scalar
field ϕ at zero temperature can be parametrized as G(k) = (k2)−1+ η

2

with η the critical exponent. Calculate the first non-vanishing term
of the critical exponent in a large-N expansion and show that in the
strong-coupling limit λ→ ∞

η =
8

3Nπ2
+O

(
N−2

)
. (34)

4. Lecture 2: Non-relativistic neutrons

Consider the QCD phase diagram, sketched in Fig. 2. Most regions of
this phase diagram are hard to access using first-principles QCD calculations,
and this is especially true for the region of low temperature and finite baryon
density relevant for neutron stars.

I only know of one exception to this statement: effective field theory
(EFT).

EFTs are bona-fide field theories that are constructed out of the known
symmetries, relevant degrees of freedoms, and a derivative expansion. Some
well-known EFTs are chiral effective theory [38] and relativistic fluid dynam-
ics [39].

EFTs have distinct advantages: they correspond to controlled, improv-
able first-principles calculations, and are often possible in regions where
other approaches fail.

The main disadvantage to EFTs is that they invariably contain a finite
number of free parameters that need to be fixed by other means, e.g., from
experiment.
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Fig. 2. Sketch of what we know about the QCD phase diagram, adapted from
Ref. [41]. Axis are the equilibrium temperature T , baryon chemical potential µB ,
and the parameter ξ corresponding to deviations from equilibrium. Deconfinement
cross-over and liquid-gas first order phase transitions are marked. Areas relevant to
neutron stars and relativistic heavy-ion collisions — such as gold-ion collisions at
center-of-mass energies of

√
s = 200 GeV per nucleon pair at the Relativistic Heavy

Ion Collider (RHIC) as well as their projection on the equilibrium T , µB plane (grey
dashed lines) — are indicated. See the original reference for details.

In the following, I will consider a particular EFT for QCD at low tem-
perature and finite baryon density relevant for neutron stars: pionless EFT,
denoted as /π EFT [40].

To build /π EFT, consider the energy scales relevant for low-temperature
QCD: the nucleon masses M ∼ 940 MeV, the pion masses mπ ∼ 135 MeV,
and the deuteron binding energy B ∼ 2.2 MeV. If we aim at a theory that
only captures the deuteron, we need to include the nucleons, but can neglect
excitations with energies much less than the pion mass. Hence, we are
driven to consider a theory of non-relativistic nucleons with kinetic energy
Ekin ≪ mπ, so pions are not needed in this description, hence the name.

/π EFT for interacting nucleons has been fleshed out in a series of papers
[42–44], but for this lecture, I want to focus on an even simpler version
of /π EFT: pure neutron /π EFT. While inappropriate for describing nuclei
such as the deuteron, this theory would be relevant for a very neutron rich
environment. Can you think of one?

To build the EFT, we note that neutrons are fermions, and since we con-
sider non-relativistic neutrons, we describe them as two-component spinors

ψ =

(
ψ↑
ψ↓

)
. Only neutrons, no anti-neutrons are included, because the

energy scales for pair-production are much above the relevant scale of the
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theory. Free non-relativistic neutrons obey the Schrödinger equation, which
can be turned into a Lagrangian density

L = ψ†

(
i∂t +

∇⃗2

2M

)
ψ . (35)

Field theorists accustomed to relativistic fields will find that this form
also arises from taking the non-relativistic limit of the free Dirac fermion
Lagrange density Ψ̄ i/∂Ψ .

The above Lagrangian describes free (non-interacting) non-relativistic
neutrons. This is boring. In order to have something of interest, we need to
include interactions. In an EFT, one writes down all possible interactions
allowed by symmetry, such as two-neutron, three-neutron, four-neutron, etc.
interactions. All of these come with unknown coefficients that need to be
fixed by other means, e.g., experiment. However, the lowest-order interac-
tion is that of a two-neutron singlet “contact term” (no derivatives), such
that [40]

LI = −C0

4
(ψσyψ)

† (ψσyψ) , (36)

where σy =

(
0 −i
i 0

)
is the second Pauli matrix. As promised, C0 is a

coefficient that needs to be fixed by other means. In the present case, this
can be done by calculating the scattering amplitude and comparing to the
corresponding scattering amplitude resulting from solving the Schrödinger
equation (see Appendix B for the explicit matching in the case of bosons).
One finds

C0 =
4πa0
M

, (37)

where a0 is the s-wave scattering length for neutrons. Fortunately, the
s-wave scattering length for neutrons is well known experimentally [45] as

a0 ≃ −18.5 fm , (38)

which together with the known nucleon mass M fixes the parameters of the
theory. We are now ready to calculate!

Let us jump right in and write down the grand-canonical partition func-
tion for pure-neutron /π EFT with spin-singlet interaction

Z =

∫
Dψ e−SE+(µB−M)N , (39)

where

SE =

β∫
0

dτ

∫
d3x

[
ψ†

(
∂τ −

∇⃗2

2m

)
ψ +

C0

4
(ψσyψ)

† (ψσyψ)

]
(40)
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is the Euclidean action corresponding to analytically continuing the La-
grangian density L above to Euclidean time τ ∈ [0, β], µB is the baryon
chemical potential, and

N =

β∫
0

dτ

∫
d3xψ†ψ (41)

is the neutron number. Since the baryon chemical potential only appears
in the combination µB − M , it is useful to denote this “excess” chemical
potential as

µ ≡ µB −M . (42)

With the theory defined by the grand-canonical partition function (39),
obtaining observables such as the pressure p ≡ lnZ

βV , the baryon density
n ≡ ∂

∂µp, and the excess energy density (equal to energy density minus
nucleon rest mass) ϵ = µn − p is “just” a matter of solving the many-body
partition function.

However, even for this admittedly simple EFT, exact solutions for Z are
hard due to the 4-Fermi interaction term in (39)

(ψσyψ)
† (ψσyψ) = 4 (ψ↓ψ↑)

† (ψ↓ψ↑) . (43)

However, we learned in Lecture 1 how to deal with such quartic interac-
tions in a large-N framework! Let us make use of this knowledge!

Instead of a single neutron species, consider N neutron species ψ →
ψf = (ψ1, ψ2, . . . , ψN ). You may think of these either as fictitious extra
particles, or for N = 2, as a very crude way of including the proton into
the description. In either case, we will use 1

N ≪ 1 as a small expansion
parameter unrelated to any other parameter in the theory, which allows us
to perform non-perturbative calculations of the theory.

In complete analogy to the case of quantum mechanics studied in Lec-
ture 1, we generalize the interaction term to the N -component case as

C0 (ψ↓ψ↑)
† (ψ↓ψ↑) →

C0

N
(ψ↓,f ψ↑,f )

† (ψ↓,g ψ↑,g) , (44)

where the “flavor” indices f , g run from 1 to N and Einstein sum convention
is used to suppress the summation symbols.
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Next, introduce the complex auxiliary field ζ through inserting the iden-
tity

1 =

∫
Dζ eN

∫
x

ζ∗ζ
C0 (45)

(note that this makes sense because C0 ∝ a0 is negative for neutrons, cf.
(38)). Now, shifting

ζ → ζ − iC0

N
ψ↓,f ψ↑,f (46)

then leads to the auxiliary-field formulation for the N -component pure-
neutron /π EFT

Z =

∫
DψDζ e−

∫
x

[
ψ†
f

(
∂τ− ∇⃗2

2M
−µ

)
ψf+iζ

∗ψ↓,f ψ↑,f−iζψ†
↑,f ψ

†
↓,f−

Nζζ∗
C0

]
. (47)

In this form, all the fermions enter as bilinears into the path integral action.
They can be compactly brought into the form

Ψ †
fG

−1Ψf , (48)

with the two-component composite (Nambu–Gorkov) spinor

Ψ =

(
ψ↑

ψ†
↓

)
, (49)

and the inverse propagator in a matrix form

G−1 =

(
∂τ − ∇⃗2

2M − µ −iζ
iζ∗ ∂τ +

∇⃗2

2M + µ

)
. (50)

Since the fermions enter the action quadratically, they can be integrated out

Z =

∫
Dζ eN ln detG−1+ N

C0

∫
x ζ

∗ζ
. (51)

So far, everything has been exact. However, in the large-N limit, the
remaining path integral simplifies considerably due to the same reason out-
lined in quantum mechanics after Eq. (14): the leading large-N saddle cor-
responds to constant ζ, or equivalently the zero mode ζ0. In the literature,
it is customary to denote iζ∗0 ≡ ∆, and (with hindsight) assume ∆ to be
real. Then the large-N partition function becomes

lim
N≫1

Z =

∫
d∆ eNβV p(T,∆) , (52)
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with

p(T,∆) =
∆2

C0
+ T

∑
n

∫
d3k

(2π)3
ln
[
ω̃2
n + (ϵk − µ)2 +∆2

]
, (53)

where ω̃n = πT (2n+1) stands for the fermionic Matsubara frequencies and
ϵk =

k2

2M is the non-relativistic kinetic energy.
In the zero-temperature limit, the thermal sum in (53) becomes an inte-

gral which is straightforward to solve

p(0, ∆) =
∆2

C0
+

∫
d3k

(2π)3

√
(ϵk − µ)2 +∆2 . (54)

The remaining integral over momenta k can likewise be calculated in closed
form when using dimensional regularization. (It is of course also possible
to use old-fashioned cut-off regularization, but why use an old combustion
engine when you can drive an electric car instead?) Expanding the square
root and using the identities from Ref. [46], one finds [20]

p(0, ∆) =
∆2

C0
+

2µ

5

(2Mµ)
3
2

3π2
g

(
µ√

µ2 +∆2

)
, (55)

where the function g(y) = y−
5
2 [(4y2 − 3)E(1+y2 ) + 3+y−4y2

2 K(1+y2 )] is ex-
pressed using E, K, the complete elliptic integrals of the first and second
kind, respectively.

To leading order in the large-N and low-temperature limit, the grand-
canonical path integral is then given as

lim
β≫1

lim
N≫1

Z = eNβV p(0,∆) , (56)

with ∆ being the solution of the saddle-point condition

0 =
dp(0, ∆)

d∆
. (57)

We have a solution!
Now let us see if the solution is any good. We need the neutron density,

which we can calculate as

n =
dp(0, ∆)

dµ
=

(2Mµ)
3
2

3π2
g(y) , (58)

where y = µ√
µ2+∆2

and we have used the saddle-point condition (57) to

simplify the expression. Using n and the zero-temperature pressure p(0, ∆),
we can construct the energy density ϵ and, in particular, the energy per
particle
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E

N
=
ϵ

n
= µ

(
3

5
+

3π∆2

8µ2g(y)
√
2Mµa20

)
. (59)

For a given value of µ, we can numerically calculate the value of ∆ from
solving the saddle-point condition (57). With µ,∆, we can then calculate n
and E

N . How do our leading order large-N results compare to other methods?
The relevant comparison is shown in Fig. 3, where the LO large-N result

for the energy per particle for pure neutron matter is compared to the results
from three other groups. One finds that the LO large-N result for E

N is
about 30 percent higher than the considerably more complex calculations
from Refs. [47–51].
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Fig. 3. Energy per particle for pure neutron matter as a function of density. Shown
are results for the free Fermi gas E

N = 3µ
5 , the LO large-N result (59), and Monte

Carlo results from three different groups: Gezerlis et al. [47, 48], Lynn et al. [49, 50],
and Lu et al. [51].

The 30 percent difference is surprisingly similar to what we found when
comparing the LO large-N result to the N = 1 ground-state energy for the
quartic oscillator in quantum mechanics in the first lecture. In that lecture,
we found that going to NLO in the large-N expansion was straightforward,
and just involved a Gaussian integral, yet reduced the difference with the
N = 1 value by a factor of two.

Not surprisingly, calculating the NLO large-N correction to the grand-
canonical partition function can be done with similar ease here [52]. What
is surprising, though, it is that the equivalent NLO large-N result for Fig. 3
is not available in the literature!

Another unclaimed patch in the large-N wonderland. Maybe you can
help?
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4.1. Guide to further reading

— The coupling C0 in (37) explicitly depends on the value of the s-wave
scattering length a0, which for certain atomic systems can be experi-
mentally tuned by varying the external magnetic field B. Depending
on the value of B, a0 increases from zero to almost infinity at the so-
called Feshbach resonance, wraps around and starts at almost negative
infinity, and approaches zero again for larger values of B [53]. Despite
this extreme behavior of the coupling near the Feshbach resonance, ex-
perimental observables in these atomic experiments remain perfectly
well-behaved.

— Transport coefficients can be calculated for the pure neutron matter
theory in the large-N limit for any coupling/density. Currently, only
the LO large-N result for the so-called thermodynamic transport co-
efficients are known [20, 54], but calculating shear viscosity along the
lines of Refs. [15, 16] is doable.

— Calculating the zero-temperature limit of the grand canonical partition
function to NLO in the large-N limit exhibits a concrete example of
non-commutative limits that was uncovered in Ref. [55].

4.2. Homework problems for Lecture 2

2.1 In the literature, the strong coupling limit a0 → −∞ near a Feshbach
resonance is called the “Unitary Fermi Gas” limit, whereas the weak
coupling limit a0 → 0 is called the “Free Fermi Gas” limit. Calculate
the large-N “superfluid gap” ∆ from solving (57) in both of these limits
and show that

lim
a0→−∞

∆ ≃ 1.1622× µ , lim
a0→0

∆ ≃ e
− π√

8Mµa20

−2+3 ln 2

× µ . (60)

2.2 In the Unitary Fermi Gas limit, the energy density can be expressed as

lim
a0→−∞

ϵ =
3

5
n

5
3

(
3π2
) 2

3

2M
× ξ , (61)

with ξ a pure number (the “Bertsch parameter”). Calculate ξ in the
large-N approximation and show that

lim
N≫1

ξ ≃ 0.59 . (62)
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5. Lecture 3: Negative coupling and triviality

In Lecture 1, we considered large-N techniques for N -dimensional quan-
tum mechanics, and found that the large-N calculations gave improvable
and reasonably accurate results for finite N , including down to N = 1.

In Lecture 2, we considered large-N techniques for a four-dimensional
(non-relativistic) quantum field theory of interacting neutrons, and we found
that also here large-N gave reasonable results even for N = 1.

There are plenty of other examples I could cite about successes of large-N
calculations applied to observables at finite (and sometimes quite small) N .

It seems the method is sound and the math is trustworthy.
So how about we trust the math, even if its implications are non-intuitive?
Let us see where this “trust the math” axiom leads in the case of four-

dimensional scalar field theory.
To be concrete, let us considerN -component scalars ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN )

interacting via a quartic coupling with the Euclidean action

SE =

∫
d4x

[
1

2
∂µϕ⃗ · ∂µϕ⃗+

λ

N

(
ϕ⃗ 2
)2]

. (63)

This theory is referred to as the O(N) model in the literature.
If you want to have a concrete physical system in mind, consider the Stan-

dard Model Higgs field is a two-component complex scalar Φ=
(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
,

which is equivalent to considering the O(N) model for N = 4. Since N = 4
is not that small, we might even expect our large-N techniques to be quan-
titatively better in describing the Higgs sector than, for instance, the pure
neutron case in Lecture 2.

The Euclidean action then defines the partition function for the theory
in terms of a path integral Z =

∫
Dϕ⃗ e−SE . Using exactly the same steps

as in Lecture 1, we can introduce an auxiliary field ζ to make the action
quadratic in the field ϕ⃗, so the path integral over ϕ⃗ can be done in closed
form

Z =

∫
Dϕ⃗Dζ e−

∫
x

1
2
ϕ⃗[−∂µ∂µ+2iζ]ϕ⃗− N

4λ

∫
d4xζ2

=

∫
Dζ e−

N
2
Tr ln[−∂µ∂µ+2iζ]− N

4λ

∫
d4xζ2 . (64)

Also, again just as in the case of quantum mechanics, when splitting
the auxiliary field into a global zero mode ζ0 and fluctuations ζ ′, the path
integral over fluctuations does not contribute to the LO large-N partition
function, hence
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lim
N≫1

Z =

∫
dζ0 e

−N
2
Tr ln[−∂µ∂µ+2iζ0]− N

4λ

∫
d4xζ20 , (65)

where the quantum field theory partition function is now given in terms of
a single integral (and not a path integral!).

Since ζ0 does not depend on position, it is a constant as far as the
operator [−∂µ∂µ + 2iζ0] is concerned. Hence, we can treat 2iζ0 = m2 as a
constant mass term and directly evaluate the trace of the operator, e.g., via
dimensional regularization [23, Eq. (2.72)]

1

2 vol
Tr ln

[
−∂µ∂µ +m2

]
=

1

2

∫
d4−2εk

(2π)4−2ε
ln
[
k2 +m2

]
= − m4

64π2

(
1

ε
+ ln

µ̄2 e
3
2

m2

)
, (66)

where vol =
∫
d4x denotes the spacetime volume and µ̄ is the MS renormal-

ization scale. (For those unafraid of needlessly breaking Lorentz invariance,
one can also do this calculation in cut-off regularization, see homework prob-
lem 3.1 below.)

The large-N partition function then is given by

lim
N≫1

Z =

∫
dζ0 e

−vol×Nζ20
4

[
1
λ
+ 1

4π2ε
+ 1

4π2 ln µ̄2 e
3
2

2iζ0

]
. (67)

After regularization, the expression for the partition function still has an un-
canceled UV divergence for ε→ 0. This divergence can be canceled by intro-
ducing a suitable coupling-constant counterterm to the bare coupling λ in a
renormalization procedure. For the case at hand, we can non-perturbatively
renormalize the theory by introducing the renormalized (running) coupling
λR as

1

λ
+

1

4π2ε
≡ 1

λR(µ̄)
. (68)

Note that this renormalization procedure is non-perturbative because λ
contains an infinite number of terms with powers of λR. Also note that this
renormalization procedure does not recover the LO perturbative renormal-
ization when expanded in powers of the coupling, because the LO large-N
theory does not contain the full LO perturbative contribution (actually only
one third of it, whereas the remaining 2/3 originate at NLO in the large-N
limit, cf. R1/R2 level resummation in Ref. [56]).

Given the renormalization (68), one obtains the running coupling as

λR(µ̄) =
4π2

ln
Λ2
MS
µ̄2

, (69)
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where ΛMS is an emergent scale of the theory. It is defined by the value of
the scale µ̄ at which λR diverges, e.g.,

λR
(
ΛMS

)
= ∞ . (70)

The scale ΛMS is commonly referred to as the “Landau pole” of the theory,
even though it is clear from (69) that λR does not have a pole, but rather a
logarithmic singularity at µ̄ = ΛMS.

A plot of the running coupling is shown in Fig. 4. In particular, note
that in the UV limit, the running coupling approaches zero from below

lim
µ̄→∞

λR(µ̄) = 0− . (71)

I cannot help point out the similarity of Fig. 4 to the behavior of the coupling
C0 in (37) in cold atom experiments as a function of the applied magnetic
field, see e.g., Ref. [53].
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Fig. 4. Exact large-N running coupling λR(Q) from Eq. (69). Figure from Ref. [57].
See the text for details.

It is straightforward to calculate the β function for this theory as

β ≡ dλR(µ̄)

d ln µ̄2
=

4π2

ln2
Λ2
MS
µ̄2

=
λ2R(µ̄)

4π2
≥ 0 ∀ λR ∈ R . (72)

Obviously, the β function is positive, consistent with an ever-increasing run-
ning coupling, cf. Fig. 4.
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Before trying to make sense of these results, let me stress that the running
coupling (69), its negative value in the UV (71), the Landau pole (70), and
the β function (72) are exact results in the large-N limit. In particular, their
validity is not limited to a weak coupling domain, because we did not use a
weak coupling expansion in obtaining them.

Let us review the prevailing interpretation for these findings first before
heeding my advice of “trust the math, even if it is non-intuitive”.

By far the majority opinion of theoretical physicists is that a negative
coupling, a positive β function, and/or a Landau pole are all fatal flaws
of a continuum interacting quantum field theory. Reviewing these one-by-
one, it is possible to understand how the verdict “fatal” arises in each case.
However, in the interest of keeping the lecture to its allotted time frame,
I relegate this to the guide to further reading at the end.

For now, let us ignore “fatal flaw” majority opinion, trust the math, and
see where it leads us.

So instead of giving up, we can ask the question: is there actually some-
thing wrong with the theory?

In order to answer this question, we better calculate observables, so let
us do that.

The first observable we can look at is the mass of the field ϕ⃗, which
for N = 4 would be nothing else but the Higgs boson mass. The large-N
Euclidean Green’s function for ϕ⃗ is given by [−∂µ∂µ+2iζ0]

−1, so at large N ,
the vector mass is determined through

m2 = 2iζ0 , (73)

where ζ0 is the location of the saddle point. After renormalization, the
large-N partition function (67) is given by

lim
N≫1

Z =

∫
dζ0 e

−vol×Nζ20
4

 1
4π2 ln

Λ2
MS

e
3
2

2iζ0


, (74)

from which the saddle-point condition becomes1

ζ0
8π2

ln
Λ2
MS

e1

2iζ0
= 0 . (75)

This saddle-point condition implies two solutions for the vector mass squared

m2 = 0 , m2 = eΛ2
MS

. (76)
1 As an aside, note that any physical observable O must be renormalization-scale-

independent, dO
dµ̄

= 0. It is gratifying to find that both the large-N partition function
(74) and the saddle-point condition for the vector mass are explicitly renormalization-
scale-independent.
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The first of these corresponds to a vanishing vector mass expectation value,
which corresponds to the prevailing assumption for the perturbative vacuum
for the theory defined by (63). In the perturbative setup of the electroweak
sector of the Standard Model, one introduces a “negative mass squared” term
−m2ϕ⃗ 2 (a tachyon) into the action in order to get spontaneous symmetry
breaking, and one obtains a non-vanishing vector mass only after this con-
struction. (Side remark: it does not strike me as particularly natural to set
up a theory as a perturbation around a tachyonic vacuum, but that is the
current prevailing physics setup for the electroweak sector.)

By contrast, the second solution (76) corresponds to a non-perturbative
vacuum where the vector mass is non-vanishing even though O(N) symmetry
remains unbroken. This is clearly different from the Standard Model, already
because the mass does not get put in “by hand” through the addition of a
tachyon to the theory. In this situation, the Higgs mass becomes a prediction
of the theory, not a parameter.

But which of the two solutions (76) is the right one?
There is an easy way to decide this question, and hinges on calculating

a second observable, the free energy F of the theory. Namely, each of the
two solutions will lead to a different value of the large-N partition function,
and hence the large-N free energy. The correct solution to (76) then is the
one that has the lower free energy.

Let us calculate: in the two cases, we get for the large-N free energy

Fm2=0 = 0 , Fm2=eΛ2
MS

= −vol×
N e2Λ4

MS

128π2
. (77)

Clearly, the non-perturbative solution has the lower free energy, and hence
the perturbative vacuum must be unstable. It seems as if this actually agrees
with the consensus opinion for the Standard Model electroweak sector as of
September 2023.

We thus find for the two observables (vector mass and free energy den-
sity) in the O(N) model

m =
√
eΛMS ,

F

vol
=
N e2Λ4

MS

128π2
. (78)

Both of these are finite, non-vanishing, and renormalization-scale-independ-
ent, despite the decidedly weird properties of the theory (71), (70), (72).
Even better, they are parameter-free predictions for the Higgs mass and
Higgs free energy in the case of N = 4!

How is that for a theory that does not exist/is trivial/is fatally flawed?
Maybe trusting the math is not such a crazy suggestion after all.
Or could it be that the “fatal flaw” reveals itself only when we look at

scattering?
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So let us calculate scattering cross sections at large N . To this end,
consider the connected, amputated four-point function

M = −⟨ϕa(x1)ϕb(x2)ϕc(x3)ϕd(x4)⟩connected,amputated (79)

at large N . From (64), this becomes for the s-channel amplitude in momen-
tum space

M(k) = D(k) , (80)

where D(x−y) = ⟨ζ(x)ζ(y)⟩ is the auxiliary field propagator. The auxiliary
field propagator can be calculated by again integrating out the vector field ϕ⃗,
and then expanding the action to second order in the fluctuation field ζ ′. In
complete analogy to Eq. (29), one finds

D(k) =
1

N
8λ +NΠ(k)

, Π(k) =
1

2

∫
d4−2εp

(2π)4−2ε

1

p2 +m2

1

(p+ k)2 +m2
,

(81)
where m is the large-N vector mass for the dominant saddle (78).

Equation (81) contains the complete contribution to the order of 1
N , but

is fully non-perturbative in the coupling. To see this, note that (81) can
formally be expanded out in a power series in λ, obtaining

D(k) =
8λ

N

∞∑
n=0

(−8λΠ(k))n = + + + . . . , .

(82)
where “bubbles” correspond to Π(k), and each “vertex” corresponds to a
factor of λ. The key lesson here is that when replacing λ by (69), then each
term in (82) contains a divergence at the Landau pole µ̄ = ΛMS, and in fact
divergencies get worse at each order in perturbation theory. Naively, one
could conclude that the theory is sick, and in fact many people have come
to this conclusion.

However, this is a breakdown of the perturbative expansion, and not the
theory itself. This can easily be seen by noting that D(k) can be evaluated
in closed form. The momentum integral for Π(k) is done in dimensional
regularization finding the UV divergence for Π(k) for ε→ 0. Now, this UV
divergence for Π(k) exactly cancels the UV divergence from the coupling
constant λ when using the renormalization condition (68). One finds [58]

D−1(k) =
N

32π2

[
ln
Λ2
MS

e2

m2
− 2

√
1 +

4m2

k2
atanh

√
k2

k2 + 4m2

]
. (83)
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The result is finite and well-behaved for all energies, even though its per-
turbative expansion (82) was ripe with divergencies. The upshot is that the
scattering amplitude in the O(N) model is inherently non-perturbative, but
divergence-free, in the large-N limit.

To obtain the s-channel scattering amplitude, we need to analytically
continuing D(k) to Minkowski space as k2 → −E2+k2− sgn(E)i0+. A plot
of the s-channel cross section is shown in Fig. 5. Note again the explicit in-
dependence of σ from the renormalization scale µ̄, as expected for a physical
observable.
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Fig. 5. s-channel cross section for scattering in the 4d O(N) model to LO in largeN ,
reproduced from Ref. [58].

No pathologies are observed for scattering in the LO large-N limit. The
only curious finding is the presence of a stable bound state with a mass of
m2 ≃ 1.84m.

Where are all the scary pathologies hiding?
I do not know . . .

5.1. Guide to further reading

— Obtaining a non-vanishing Higgs mass without introducing a negative
mass squared term into the theory was considered a long time ago by
Coleman and Weinberg in a famous paper on radiative corrections [59].
The prediction for the Higgs mass in the so-called Coleman–Weinberg
mechanism came out wrong, but that may be partly a consequence
of doing the calculation perturbatively and throwing away terms “not
under perturbative control”.
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— For many people, the Landau pole is a showstopper because perturba-
tion theory breaks down, which, on the other hand, is not an issue if
using techniques not limited to weak coupling (such as large N). Other
people co-mingle the Landau pole with Landau’s ghost, a tachyonic ex-
citation that appears in perturbative QED. However, as discussed in
Ref. [60], the large-N O(N) model in four dimensions does not have a
Landau ghost (even though it has a Landau pole), in contradistinction
to perturbative QED.

— The original studies of the O(N) model in four dimensions date back
to the 1970s [2, 3, 61], with Refs. [2, 3] pointing out that the tachyon
(Landau’s ghost) found in Ref. [61] simply was a consequence of ex-
panding around the wrong vacuum, namely the m = 0 solution in
(76).

— There are mathematical proofs of triviality of scalar field theories in
four dimensions, in particular by Aizenman and Duminil-Copin in
Ref. [62]. Note that these proofs are limited to N ≤ 2 and positive
bare coupling, so they do not apply to the O(N) model in the large-N
limit. Using analytic continuation of the path integral contour, it is
possible (but numerically challenging) to study negative coupling field
theory on the lattice [57].

— The proof by Coleman and Gross [63] that only non-Abelian gauge
theories in four dimensions can have asymptotic freedom rests on the
same assumption as quantum triviality, namely that the bare coupling
is positive.

— Scalar field theory with negative coupling was considered a long time
ago by Symanzik [64]. For quantum mechanics, there is a whole liter-
ature surrounding negative coupling Hamiltonians which was opened
up by Bender and Böttcher in Ref. [65]. In quantum mechanics, strong
numerical evidence for the equivalence of the so-called PT-symmetric
spectra and contour-deformed partition functions can be obtained [66].

5.2. Homework problems for Lecture 3

3.1 Rederive the running coupling (69) in cut-off regularization rather than
dimensional regularization. You will need to also add a vacuum energy
and a mass-counterterm.
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3.2 Consider the 4d O(N) model with the Euclidean action (63) at fi-
nite temperature. Calculate the finite-temperature corrections to the
saddle-point condition (75) and show that real-valued solutions for
2iζ0 = m2 of this equation cease to exist for

T > Tc ≃ 0.616ΛMS . (84)

3.3 Pretend that ΛMS in the O(N) model is the same as ΛMS in QCD.
Use the particle data book to obtain values for ΛMS for QCD (for
anything beyond one-loop, you will have to work backwards — use
the perturbative running coupling formula and αs(MZ) to find ΛMS).
Since the running αs will need to touch the Z-mass MZ , the number of
“light” quarks should be Nf = 5. Then, use the result (84) to estimate
the deconfinement transition temperature of QCD. Compare to lattice
QCD results for Tc in QCD.

6. Conclusions

In these lectures, I have outlined the power of large-N expansions for cal-
culating physics observables in three different systems: quantum mechanics,
non-relativistic fermions, and relativistic scalar fields in four dimensions.
These expansions rely on methods that have been developed a long time
ago, but which remain underutilized in modern quantum field theory, espe-
cially in the context of in-medium problems such as finite temperature and
finite density.

Large-N methods are simply too powerful a tool to be relegated to the
past: I sincerely hope that my lectures will be able to instill in other physi-
cists the kind of excitement I felt when obtaining the neutron matter equa-
tion of state shown in Fig. 3 or the Higgs mass prediction in Eq. (78), or the
critical temperature for QCD in homework problem 3.3.

Obviously, these lectures have barely scratched the surface of what can
be done with large-N techniques, with the “guides to further reading” in
each chapter serving as little more than scattered sign posts in the vastness
of the large-N wonderland.

Therefore, stop reading, pick up your pencil, and start exploring the
large-N wonderland on your own!
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Appendix A

Numerically calculating the spectrum of quartic oscillator
in multi-dimensional quantum mechanics

In this appendix, I review a simple numerical scheme to solve for the
eigenvalue spectrum (really mostly the ground-state energy E0) of the Hamil-
tonian operator for quantum mechanics in N dimensions

H =
p⃗ 2

2
+
λ

N

(
x⃗ 2
)2
. (A.1)

I assume a discrete eigenspectrum for the Hamiltonian H|n⟩ = En|n⟩. Us-
ing spherical coordinates, the angular part of the Laplace operator may be
separated off, whereas the radial part of the Schrödinger equation becomes

−ψ′′(r)−N − 1

r
ψ′(r)+

l(l +N − 2)

r2
ψ(r)+

2λ

N
r4ψ(r)−2Eψ(r) = 0 , (A.2)

with l the angular quantum number using the eigenvalues of the Laplacian
on a N − 1-dimensional sphere [37, Eq. (3.3)]. The boundary condition at
r = 0 for the wave function is

lim
r→0

rψ(r) = 0 , (A.3)

because otherwise ∇⃗2(1r ) = −4πδ(x⃗) is not a solution to the Schrödinger
equation. Rescaling of coordinates and energy values as r = (2λ)−

1
6 r̂, E =

(2λ)
1
3 Ê, and rescaling ψ as ψ(r̂) = u(r̂)√

r̂N−1
, the Schrödinger equation becomes

−u′′(r̂) + 4l(l +N − 2) + (N − 1)(N − 3)

4r̂2
u(r̂) +

r̂4

N
u(r̂)− 2Êu(r) = 0 .

(A.4)
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For large r̂, the r̂4 term in the potential dominates, so we choose a

bounded wave-function by setting u(r̂) = e
− r̂3

3
√
N v(r̂), with v(r̂) fulfilling

−v′′(r̂)+ 2r̂2√
N
v′(r̂)+

[
4l(l+N − 2) + (N−1)(N−3)

4r̂2
+

2r̂√
N

− 2Ê

]
v(r̂) = 0 .

(A.5)
The spectral gap is given by setting the angular quantum number to

zero, l = 0. It is then convenient to compactify the interval r̂ ∈ [0,∞) by
introducing

r̂ =
y

1− y
, y ∈ [0, 1) , v(r̂) = w(y) (A.6)

and subsequently solving the Schrödinger equation by expanding w(y) in a
power series in y. However, due to the boundary condition at r = 0, the
series expansion must be taken as

w(y) = y
N−1

2

∞∑
n=0

cny
n . (A.7)

The resulting recursion relation for the coefficients cn is somewhat unen-
lightening. For the first few coefficients we find

c1 = c0
(N − 1)

2
,

c2 = c0
N3 −N − 8Ê

8N
,

c3 = c0
N4 + 3N3 −N2 − 3N + 16

√
N − 24Ê(3 +N)

48N
. (A.8)

A simple yet effective way to obtain the spectrum Ê is by demanding that
cn = 0 for sufficiently large n. For instance, setting c2 = 0 leads to the
crude estimate E(n=2)

0 = (2λ)
1
3
N3−N

8 for the spectral gap. In practice, we
find that the larger N , the higher n needs to be in order for the spectral
gap from cn = 0 to stabilize. Our results for the spectral gap for different
N and n are summarized in Table 1. One should note that the result for
the spectral gap for the one component theory N = 1 is consistent with the
result from [25, Eq. (IV.16)].
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Table 1. Estimates for the spectral gap E0

λ
1
3 N

for various values of N resulting from
solving cn = 0 for different approximation levels n. One should note that results
stabilize as n→ ∞ as well as for N → ∞.

N 1 2 3 4 5
n = 3 0.209987 0.276277 0.500798 0.847447 1.30688
n = 7 0.781176 0.591071 0.472416 0.429663 0.438973
n = 11 0.657241 0.602466 0.583693 0.544103 0.498688
n = 15 0.668003 0.581889 0.552725 0.543857 0.536674
n = 19 0.668383 0.586494 0.551802 0.533517 0.524978
n = 23 0.667887 0.586368 0.553458 0.534786 0.522767
n = 27 0.667991 0.586166 0.553281 0.535322 0.523688
n = 31 0.66799 0.586204 0.553199 0.535197 0.523837

N 6 7 8 9 10
n = 3 1.87549 2.55159 3.33429 4.22307 5.21761
n = 7 0.486257 0.564257 0.669113 0.79867 0.951676
n = 11 0.469752 0.461883 0.47327 0.501472 0.544575
n = 15 0.520139 0.498165 0.480726 0.473021 0.476145
n = 19 0.521291 0.516602 0.507002 0.494293 0.483397
n = 23 0.51547 0.511692 0.50933 0.505614 0.498988
n = 27 0.5154 0.509576 0.505916 0.503775 0.501855
n = 31 0.515885 0.509889 0.505314 0.502048 0.499932

Appendix B

Fixing parameters in EFTs

For the case of /π EFT, the two-neutron parameter C0 was identified
with the s-wave scattering length in Eq. (37). In this appendix, I derive the
corresponding relation for bosons. To this end, consider a simple example
theory with an effective Lagrangian density

L = ϕ

(
i∂t +

∇2

2M

)
ϕ− 2C0

4!
ϕ4 , (B.1)

where, for illustrative purposes, we take ϕ to be a boson. The Lagrangian
obeys Galilean invariance and corresponds to an interacting non-relativistic
field theory if C0 is non-vanishing.
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A standard calculation in quantum-field theory is the S-matrix

S = 1 + iT , (B.2)

where the interaction part T (also referred to as “T -matrix”) may be ex-
pressed in terms of Feynman diagrams, see, for example, Section 4.6 in
Ref. [67]. Let us consider two-particle scattering: dividing L into a free field
theory part L0 = ϕ

(
i∂t +

∇2

2M

)
ϕ and an interaction part LI = L − L0, the

T -matrix can be written as

T = ⟨ϕ1ϕ2|ei
∫
d4xLI |ϕAϕB⟩amputated, fully connected , (B.3)

where time-ordering is implicit and the attributes “amputated” and “fully
connected” refer to the class of Feynman diagrams contributing to T . Here,
ϕ1, ϕ2, ϕA, ϕB are shorthand for the properties of the scattered particles,
e.g., incoming particles 1 and 2, while A and B are outgoing particles. Ex-
amples for diagrams contributing to T are

T = + 1
2 + 1

4
+ . . . ,

(B.4)
where the symmetry factors for the diagrams have been made explicit and
the Feynman rules in momentum space are:

— There is a factor of −2iC0 for every vertex;
— Energy and momentum are conserved at each vertex: (2π)4δ(Ein −

Eout)δ
3(pin − pout);

— Integrate over every loop momentum:
∫ d4p

(2π)4
;

— Each propagator is given by ∆(E,p) with E,p positive in the direction
of momentum flow;

— All external lines are set to unity.

The propagator ∆(E,p) in momentum space may be calculated by perform-
ing a Fourier transform ϕ(x) =

∫ dE dp
(2π)4

e−iEt+ip·xϕ(E,p) in

−i
∫

d4xL0 = −i
∫

dE dp

(2π)4
|ϕ(E,p)|2

(
E − p2

2M

)
=

dE dp

(2π)4
|ϕ(E,p)|2∆−1(E,p) ,

∆(E,p) =
i

E − p2

2M + i0+
≡ ∆(P ) , (B.5)

where we collectively denote four-momenta as P ≡ (E,p).
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With this set of Feynman rules, the T -matrix for the above diagrams
can be evaluated. One finds that there is an overall factor of momentum
conservation, which for the two-particle scattering case at hand implies

iT = (2π)4δ(E1 + E2 − EA − EB)δ
3 (p1 + p2 − pA − pB) iM . (B.6)

(Note that our normalization convention differs from the standard relativistic
quantum field theory, cf. Ref. [67], but this difference does not play a role
for the results found below.) Here, M is the scattering amplitude as defined
in quantum field theory, and for the set of diagrams given in, it is given by

iM = 2(−iC0) + 2(−iC0)
2

∫
d4P

(2π)4
∆(P )∆(P1 + P2 − P ) + . . . (B.7)

It is convenient to evaluate M in the center-of-mass frame, e.g., E1 = E2 =
EA = EB = E

2 , p1 = −p2 = k, pA = −pB = k′. Since these particles are
on-shell, E = k2

M = k′2

M . With these choices, the relevant loop integral in the
scattering amplitude becomes∫

dp0 d
3p

(2π)4
∆(p0,p)∆(E − p0,−p) = i

∫
d3p

(2π)3
1

E − p2

M + i0+
. (B.8)

The integral is linearly divergent, so a regularization scheme has to be cho-
sen. We will follow Ref. [68] by employing dimensional regularization where
D = 3 → D = 3− 2ϵ such that∫

dDp

(2π)D
1

p2 − k2 − i0+
=

1

(4π)D/2
Γ

(
1− D

2

)(
−k2

)D/2−1
,

= D→3 −
ik

4π
. (B.9)

Therefore, the scattering amplitude in the center-of-mass frame is given by

M = −2C0 − 2C2
0M

ik

4π
+ . . . (B.10)

Now, let us redo the calculation in the context of the Schrödinger equa-
tion for two-particle scattering. For two particles with mass M interacting
with a two-body potential V , the Hamiltonian is given by

H =
2p2

2M
+ V̂ =

p2

M
+ V , (B.11)

where H0 = p2

M is the free Hamiltonian. The free retarded Greens function
operator is given by

G0 =
1

E −H0 + i0+
, (B.12)
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which can be used to write a solution to the full time-independent Schrödinger
equation H|ϕ⟩ = E|ϕ⟩ as

|ϕ⟩ = |k⟩+G0V |ϕ⟩ , (B.13)

where |k⟩ is the solution to the free Schrödinger equation which we take to
be normalized as ⟨x|k⟩ = eik·x. The free retarded Greens function may be
calculated with standard methods, finding

⟨x|G0|x′⟩ = −M
4π

eik|x−x′|

|x− x′|
, ⟨p′|G0|p⟩ =

(2π)3δ3(p− p′)

E − p2/M + i0+
(B.14)

such that the solution (B.13) to the full Schrödinger equation for short-range
potentials V becomes

ϕ(x) = eik·x − M

4π

eik|x|

|x|

∫
d3x′ e−ik

′·x′
V
(
x′
)
ϕ
(
x′
)
, (B.15)

where k′ ≡ k x
|x| . This form may be compared to that of a scattered wave

with scattering amplitude f(k,k′)

ϕ(x) = eik·x +
eik|x|

|x|
f
(
k,k′) , (B.16)

from which it follows that

f
(
k,k′) = −M

4π
⟨k′|V |ϕ⟩ . (B.17)

We will find that the scattering amplitude f as used in the Schrödinger equa-
tion is related to the scattering amplitude M calculated in quantum field
theory (B.7) up to a normalization. For a spherically symmetric scattering
potential, the scattering amplitude may be decomposed entirely in partial
waves as

f
(
k,k′) = ∞∑

l=0

(2l + 1)Pl(cos θ)

k cot δl(k)− ik
, (B.18)

where k · k′ = k2 cos θ and δl(k) are the energy-dependent scattering phase
shifts. For low-energy scattering k → 0, the higher partial waves are sup-
pressed and s-wave scattering l = 0 dominates the scattering amplitude.
One finds that in this case, the form of the s-wave phase shift is universally
given by

k cot δ0(k) = − 1

a0
+
r0
2
k2 +O

(
k3
)
, (B.19)
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where a0 and r0 are the s-wave scattering length and effective range, re-
spectively. The scattering length and effective range are reliably measured
experimentally for a variety of systems.

Using again the result for the scattering amplitude in the Schrödinger
calculation given in Eq. (B.17), where |ϕ⟩ is given by Eq. (B.13), we have

f = −M
4π

(
⟨k′|V |k⟩+ ⟨k′|V G0V |k⟩+ . . .

)
. (B.20)

Using ⟨k′|V |k⟩ = V (k,k′) and the known form of Green’s function (B.14)
leads to

f = −M
4π

(
V
(
k′,k

)
+

∫
d3p

(2π)3
V
(
k′,p

) 1

E − p2/M + i0+
V (p,k) + . . .

)
.

(B.21)
Comparing (B.21) to Eq. (B.7) when using (B.8), one finds that the structure
of the integrals is very similar. In fact, one finds that

f =
M

4π

M
2

(B.22)

if V (p, q) = C0 such that if we focus on low-energy (s-wave) scattering, we
have

4π

M

1

− 1
a0

− ik + r0
2 k

2 + . . .
= −C0 + C2

0M
ik

4π
+ . . . , (B.23)

which implies

C0 =
4πa0
M

. (B.24)

Note that the matching includes the term linear in k in (B.23) which is a non-
trivial consistency check. Equation (B.24) implies that we have matched the
leading low-energy constant C0 to an experimentally measurable quantity,
the scattering length a0.

Appendix C

Solution to homework problems

Solution to problem 1.1

One way to calculate the perturbative ground-state energy E0 is to write
down the perturbative expansion for the path integral for the partition func-
tion

Z =

∫
Dϕ e−

∫ β
0 dτ ϕ̇2

2

1− λ

β∫
0

dτϕ4(τ) + . . .

 (C.1)
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and use Wick’s theorem to rewrite this as

Z = Z0

1− λ

β∫
0

3G2(0) + . . .

 , (C.2)

where
Z0 =

∫
Dϕ e−

∫ β
0 dτ ϕ̇2

2 , G(τ) = ⟨ϕ(τ)ϕ(0)⟩0 . (C.3)

We can read off the propagator from the ‘free’ action S0 =
∫ β
0 dτ ϕ̇

2

2 as

G(τ) = T
∑
n

eiωnτ

ω2
n

, (C.4)

with ωn = 2πnT and n ∈ Z the bosonic Matsubara frequency. Since the zero
mode ω0 = 0, this expression is ill-defined, so our naive result is G(0) = ∞,
corresponding to a diverging result for E0.

However, we could try to do better by explicitly ignoring the zero mode,
so that

G(0) = 2T
∞∑
n=1

1

ω2
n

=
2β

(2π)2
ζ(2) =

β

12
, (C.5)

and

Z = Z0

(
1− 3λβ3

144
+ . . .

)
. (C.6)

Recasting this as

Z = Z0 e
− 3λβ3

144 (C.7)

and comparing to the expected result Z ∝ e−βE0 in the low-temperature
limit, we get E0 = limβ→∞

3λβ2

144 → ∞, which is still not a sensible result.
The upshot is that there is no simple way to calculate E0 in perturbation

theory for the pure quartic oscillator. This problem does not have a pertur-
bative solution! This could have been anticipated from the known scaling
behavior E0 ∝ λ

1
3 , which does not easily lend itself to a nice power series

in λ. To obtain even the simplest finite result for E0 requires resumming an
infinite number of perturbative diagrams.

Solution to problem 1.2

Starting with the auxiliary field action

SE =
N

2
Tr ln

[
−∂2τ + 2iζ

]
+

β∫
0

Nζ2

4λ
, (C.8)
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we first perform a split into a constant mode ζ0 and fluctuations ζ ′

ζ(τ) = ζ0 + ζ ′(τ) , (C.9)

with
∫ β
0 dτζ ′(τ) = 0. Next, it is useful to convert the logarithm of the

differential operator to frequency space. This is easily done by recognizing
that the whole expression arose from integrating out the scalar fields

Sϕ =

β∫
0

dτ ϕ⃗(τ)
[
−∂2τ + 2iζ0 + 2iζ ′(τ)

]
ϕ⃗(τ) . (C.10)

Fourier-transforming the fields

ϕ⃗(τ) = T
∑
n

eiωnτ ϕ̃n (C.11)

with the bosonic Matsubara frequencies ωn = 2πnT and n ∈ Z leads to

Sϕ = T
∑
ij

ϕ̃i
[
δi,−j

(
ω2
i + 2iζ0

)
+ 2Tiζi+j

]
ϕ̃j . (C.12)

Letting j → −j, we thus can write the action in matrix form

Sϕ = T
∑
ij

ϕ̃i
[
δij
(
ω2
i + 2iζ0

)
+ 2Tiζ ′i−j

]
ϕ̃j , (C.13)

and hence, the auxiliary field action in Fourier space becomes

SE =
N

2
Tr ln

[
δij
(
ω2
i + 2iζ0

)
+ 2Tiζ ′i−j

]
+
Nβζ20
4λ

+
NT

4λ

∑
i

ζ ′iζ
′
−i . (C.14)

Expanding the logarithm generates terms of the order of ζ ′0, ζ ′2, ζ ′3, ζ ′4, . . .

Tr ln
[
ω2
i + 2iζ0

]
+Tr ln

[
δij +

2Ti

ω2
i + 2iζ0

ζ ′i−j

]
=
∑
i

ln
[
ω2
i + 2iζ0

]
−1

2
(2Ti)2

∑
i,j

Giζ
′
i−jGjζ

′
j−i +

1

3
(2Ti)3

∑
ijk

Giζ
′
i−jGjζ

′
j−kGkζ

′
k−i + . . . ,

(C.15)

where Gi ≡ 1
ω2
i +2iζ0

, and the term linear in ζ ′ vanishes because ζ ′0 = 0 as a
consequence of

∫
dτζ ′(τ) = 0. Shifting the index i → i + j, the quadratic

term becomes in the zero-temperature limit

2T
∑
i

ζ ′iζ
′
−iT

∑
j

GjGi+j → 2

∫
dk

2π
|ζ ′(k)|2

∫
dp

2π

1

p2 + 2iζ0

1

(p+ k)2 + 2iζ0
,

(C.16)
which is the expression quoted for the Gaussian fluctuations in Lecture 1.
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The cubic, quartic, and higher-order terms in ζ ′ in the expansion (C.15)
can be treated by expanding the exponential, symbolically as

e−x
3−x4−x5+... = 1− x3 − x4 − x5 + . . . , (C.17)

and noting that all odd terms in this expansion vanish because the auxiliary
field action is quadratic in ζ ′. Hence, the first non-vanishing correction to
the Gaussian fluctuations comes from the quartic term in (C.15), given by

−1

4
(2Ti)4

∑
ijkl

GiGjGkGlζ
′
i−jζ

′
j−kζ

′
k−lζ

′
l−i , (C.18)

which together with the leading factor N
2 contributes a factor of

C3 = 1 + 2NT 4
∑
ijkl

GiGjGkGl
〈
ζ ′i−jζ

′
j−kζ

′
k−lζ

′
l−i
〉

(C.19)

to the partition function Z, where ⟨⟩ correspond to expectation values w.r.t.
to the Gaussian action for the fluctuations. The propagator for the auxiliary
fields from this action is〈
ζ ′iζ

′
j

〉
=
βδi,−j
N

Di , Di =
1

1
2λ + 4Πi

, Πi =
T

2

∑
j

GjGi+j . (C.20)

Using this in (C.19) leads to

C3 = 1 +
2T 2

N

×
∑
ijkl

GiGjGkGl (Di−jDk−lδi,k+Di−jDj−kδi,j+l−k+Di−jDj−kδl,j) , (C.21)

or after rearranging

C3 = 1 +
2β

N

(
2T
∑
i

G2
iS

2
i + T 2

∑
ik

GkGiDi−kVi,k

)
, (C.22)

where

Si = T
∑
j

GjDi−j , Vi,k = T
∑
j

Gj+i−kGjDj−k . (C.23)

In the zero-temperature limit, we have

C3 = 1 +
2β

N

(
2

∫
dk

2π
(G(k)S(k))2 +

∫
dk dp

(2π)2
G(k)G(p)D(p− k)V (p, k)

)
,

(C.24)
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with

S(p) =

∫
dk

2π
G(k)D(p− k) , V (p, k) =

∫
dq

2π
G(q+ p− k)G(q)D(q− k) ,

(C.25)
and

G(k) =
1

k2 +m2
, D(k) =

1
1
2λ + 4Π(k)

, m2 = 2iζ0 . (C.26)

The calculation of Π(k) was done in Lecture 1 as (29), giving

Π(k) =
1

2m (k2 + 4m2)
, (C.27)

so that the partition function to NNLO large N becomes

Z =

∫
dζ0 e

−Nβm
2

+Nβm4

16λ
−β

2

∫
dk
2π

ln(1+8λΠ(k))C3 , m2 = 2iζ0 . (C.28)

The integral can be evaluated as∫
dk

2π
ln (1 + 8λΠ(k)) = m

∫
dk

2π

[
ln

(
k2 + 4 +

4λ

m3

)
− ln

(
k2 + 4

)]
= m

[√
4 +

4λ

m3
− 2

]
. (C.29)

For C3, we need

S(pm) =
2λ

m

∫
dk

2π

k2 + 4

((k − p)2 + 1)
(
k2 + 4 + 4λ

m3

)
=

2λ

m

1
2
− 2λ

m3

2 + 1√
1+ λ

m3

p2 + 4
(
1 + λ

m3

)
+ 4
√
1 + λ

m3 + 1

 . (C.30)

The remaining integral could be done analytically, but since I am lazy, I will
evaluate it numerically for the LO mass parameter m = (2λ)

1
3 . We get∫

dk

2π
(G(k)S(k))2 ≃ m× 0.0375945 . . . ,∫

dk dp

(2π)2
G(k)G(p)D(p− k)V (p, k) ≃ m× 0.0168984 . . . (C.31)
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At large N , the integral over ζ0 is dominated by the saddle, which we
need to NNLO in large N . The saddle-point condition becomes

1

2
− m3

4λ
+

1

2N

d

dm

[
m

√
4 +

4λ

m3
− 2m

]
= 0 (C.32)

or

m = (2λ)
1
3

(
1 +

1

N

[
m

√
4 +

4λ

m3
− 2m

]) 1
3

. (C.33)

Expanding in powers of 1
N , we get for the mass parameter to NLO

m = (2λ)
1
3

(
1 +

−4 +
√
6

6N

)
, (C.34)

so that

− lnZ

β
= (2λ)

1
3 ×

(
3N

8
+

√
6− 2

2
+

11− 4
√
6

24N
− 0.18418

N

)
, (C.35)

where I have used the numerical values (C.31) for C3 given by (C.24).
Putting everything together, we have

E0 ≃ (2λ)
1
3

(
3N

8
+

√
6− 2

2
− 0.134

N

)
, (C.36)

so that the NNLO contribution to the ground-state energy is

ENNLO
0 ≃ −0.1689×N−1λ

1
3 . (C.37)

Solution to problem 1.3

Following the same steps as in the lecture for QM, we obtain the expres-
sion for the path integral partition function

Z =

∫
Dζ e−SE , SE =

N

2
Tr ln [−∂µ∂µ + 2iζ] +

β∫
0

dτ

∫
d2x

Nζ2

4λ
.

(C.38)
Splitting the auxiliary field into a constant ζ0 and fluctuations, the LO
large-N expression once again does not include the contribution from the
fluctuations, hence

lim
N≫1

Z =

∫
dζ0 e

−SR0 , SR0 =
N

2
Tr ln [−∂µ∂µ + 2iζ0] +

NβV ζ20
4λ

,

(C.39)
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where V =
∫
d2x is the “volume” (area) of space. We now need to calculate

the trace of the logarithm, which can be done using the thermal sum result
in Lecture 1 as follows:

Tr ln
[
−∂µ∂µ +m2

]
= V

∑
n

∫
d2k

(2π)2
ln
[
ω2
n + k2 +m2

]
= 2V

∫
d2k

(2π)2
ln

[
2 sinh

(√
k2 +m2

2T

)]

= βV

∫
d2k

(2π)2

√
k2 +m2 + 2V

∫
d2k

(2π)2
ln

[
1− e−

√
k2

+m2

T

]
. (C.40)

Now, using dimensional regularization we evaluate∫
d2k

(2π)2

√
k2 +m2 =

1

(4π)

Γ
(
−3

2

)
Γ
(
−1

2

)m3 = −m
3

6π
. (C.41)

In terms of m2 = 2iζ0, the R0-action, therefore, is

SR0

NβV
= −m3

12π
+ T

∫
d2k

(2π)2
ln

[
1− e−

√
k2

+m2

T

]
− m4

16λ
, (C.42)

and the saddle-point condition becomes

0 = −m
2

4π
+m

∫
d2k

(2π)2

nB

(√
k2 +m2

)
√
k2 +m2

− m3

4λ
, (C.43)

where nB(k) = 1
eβk−1

is the Bose–Einstein thermal distribution factor. The
remaining integral can be evaluated as

∫
d2k

(2π)2

nB

(√
k2 +m2

)
√
k2 +m2

=

∞∑
n=1

∫
dk

2π

k e−nβ
√
k2+m2

√
k2 +m2

= − T

2π
ln
(
1− e−βm

)
.

(C.44)
We distinguish the cases of the free theory λ = 0, where m = 0, and the
strong coupling limit λ→ ∞, for which m has to fulfill

mβ

4π
+

1

2π
ln
(
1− e−βm

)
= 0 . (C.45)

This equation has the curious solution

mβ = 2 ln
1 +

√
5

2
. (C.46)
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The pressure p and entropy density s for the theory are given as

p = −SR0

βV
, s =

dp

dT
, (C.47)

where p is evaluated at the stationary point (solution for the saddle-point
condition). Since p contains both explicit T -dependencies as well as implicit
dependencies (e.g. those through the T -dependence of m), we split

s =
∂p

∂T
+
∂p

∂m

dm

dT
. (C.48)

However, since ∂p
∂m ∝ ∂SR0

∂m = 0 for the saddle point, we simply have

s =
∂p

∂T
= N

∫
d2k

(2π)2
ln

[
1− e−

√
k2

+m2

T

]

−Nβ
∫

d2k

(2π)2

√
k2 +m2nB

(√
k2 +m2

)
=

Nβ

4π

∞∫
m

dx
(
3x2 −m2

)
nB(x) , (C.49)

where I have used integration by parts to obtain the last result.
For the free theory case, m = 0, and one finds

sfree =
3Nβ

4π

∞∑
n=1

2

n3β3
=

3NT 2ζ(3)

2π
. (C.50)

By contrast, for the strongly-coupled theory, one has

s∞ =
Nβ

4π

∞∫
m

dx
(
3x2 −m2

)
nB(x) ,

=
NT 2

2π

[
3Li3

(
e−βm

)
+ 3βmLi2

(
e−βm

)
− (βm)2 ln

(
1−e−βm

)]
. (C.51)

Noting that for the saddle point (C.46), one can use the identities

ln
(
1− e−βm

)
= −βm

2
,

Li2

(
e−βm

)
=

π2

15
− (βm)2

4
,

Li3

(
e−βm

)
=

4

5
ζ(3)− π2βm

15
+

(βm)3

12
, (C.52)
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and hence, one finds

s∞ =
12NT 2ζ(3)

10π
=

4

5
sfree (C.53)

matching the finding in Ref. [18].

Solution to problem 1.4

We start with the auxiliary-field formulation of the partition function
also given in Lecture 1

Z =

∫
Dϕ⃗Dζ e−

∫
d3x[ 12 ϕ⃗(−2+2iζ)ϕ⃗+ N

4λ
ζ2] . (C.54)

For further convenience, we rescale ζ → ζ
2 to find

Z =

∫
Dϕ⃗Dζ e−

∫
d3x[ 12 ϕ⃗(−2+iζ)ϕ⃗+ N

16λ
ζ2] . (C.55)

We can always rewrite the field ζ = ζ0 + ζ ′, where ζ0 is the global
zero mode and ζ ′ are fluctuations around that zero mode. Ignoring the
contributions from the fluctuations gives the R0 partition function

ZR0 =

∫
Dϕ⃗
∫

dζ0 e
−

∫
d3x[ 12 ϕ⃗(−2+iζ0)ϕ⃗+

N
16λ

ζ20 ] , (C.56)

where the integral over ζ0 is a normal integral (not a path integral!). For
R0, the integral over the fields ϕ⃗ is quadratic, so the integral can be done in
closed form. One finds

ZR0 =

∫
dζ0 e

βV NP(
√
iζ0 ) , (C.57)

where at zero temperature

P (m) = −1

2

∫
d3k

(2π)3
ln
(
k2 +m2

)
+
m4

16λ
. (C.58)

At large N , ZR0 is given exactly by the method of steepest descent, e.g., the
integral over ζ0 is evaluated from the location of the saddle. The saddle-point
condition is

P ′(m) = 0 = −m
∫

d3k

(2π)3 k2 +m2
+
m3

4λ
, (C.59)

which is in the form of a gap equation.
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In the strong-coupling limit, the gap equation is

−m
∫

d3k

(2π)3
1

k2 +m2
= 0 . (C.60)

The integral can be solved in dimensional regularization to give

−m
(
−m

4π

)
= 0 , (C.61)

which only has the solution m = 0.
The full propagator in R0 is given by

⟨ϕi(x)ϕj(0)⟩ = Z−1

∫
dζ0

∫
Dϕ⃗ e−

∫
d3x[ 12 ϕ⃗(−2+iζ0)ϕ⃗+

N
16λ

ζ20 ]ϕi(x)ϕj(0) .

(C.62)
In Fourier space in the strong-coupling limit then

GR0(k) = Z−1

∫
dζ0 e

βV NP(
√
iζ0 ) 1

k2 + iζ0
. (C.63)

In the large-N limit, the integral gets evaluated through the method of
steepest descent, fixing the value of iζ0 at the solution of the gap equation.
That value was calculated in the preceding step, and we find

GR0(k) =
1

k2
. (C.64)

From this, we find
ηLO = 0 . (C.65)

To go beyond this result, we need to increase the large-N accuracy by
keeping sub-leading terms. To this end, add and subtract terms

1

2

∫
d3kϕ⃗(−k)Σ(k)ϕ⃗(k) , (C.66)

and
1

2

∫
d3kζ ′(−k)Π(k)ζ ′(k) , (C.67)

to the R0 action. Since the same terms were added and subtracted, the QFT
is unchanged. The functions Σ and Π can be fixed by calculating ⟨ϕ⃗(x)ϕ⃗(0)⟩
and ⟨ζ ′(x)ζ ′(0)⟩ to leading non-trivial order in large N . You are welcome to
do this calculation, but the end result (in x-space) should be

Π(x) =
1

2
G2(x) , Σ(x) = 4D(x)G(x) , (C.68)
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where in Fourier space D(k) = 1
N

1
1
2λ

+4Π(k)
, cf. Ref. [24] (note this reference

uses different convention/notations such as Π ↔ Σ). The resulting action
is called resummation level 2 or R2 for short.

In R2, in Fourier space at zero temperature, we have

Π(k) =
1

2

∫
d3p

(2π)3
1

p2(p− k)2
. (C.69)

We can use Feynman parameters to rewrite this integral as

Π(k) =
1

2

∫
d3p

(2π)3

1∫
0

dx
1

[p2x+ (1− x)(p− k)2]2
. (C.70)

Shifting the integration variable p and performing the integration over p
using dimensional regularization, we can write this as

Π(k) =
1

2

∫
d3p

(2π)3

1∫
0

dx
1

[ p2 + (1− x)xk2]2

=
1

16π

1∫
0

dx
1√

x(1− x)k2
=

1

16
√
k2
. (C.71)

Using this result in the strong-coupling expression (C.68), we get

Σ(k) =
1

N

∫
d3p

(2π)3
G(p− k)

Π(p)
=

16

N

∫
d3p

(2π)3

√
p2

(p− k)2
. (C.72)

Feynman parameters are again used for this expression, giving after a similar
shift of integration momenta as before

Σ(k) =
16

N

Γ
(
1
2

)
Γ
(
−1

2

) ∫ d3p

(2π)3

1∫
0

dx
x−

3
2

[ p2 + x(1− x)k2]1/2
. (C.73)

The remaining integral can again be calculated easily in dim-reg by replacing

3 → 3− 2ε . (C.74)

One finds

Σ(k) =
16

N

Γ
(
1
2

)
Γ
(
−1

2

) µ2ε

(4π)
3
2
−ε
Γ (−1 + ε)

Γ
(
1
2

) 1∫
0

dxx−
3
2
[
x(1− x)k2

]1−ε
. (C.75)



Quantum Field Theory in Large-N Wonderland: Three Lectures 4-A2.45

Expanding this expression to O(ε0) in small ε, one obtains

Σ(k) =
k2

Nπ2

1∫
0

dx

√
(1− x)2

x

(
1

ε
− ln(x(1− x)) + ln

µ̄2 e1

k2

)
. (C.76)

The remaining integral over x can be evaluated analytically, finding

Σ(k) =
4k2

3Nπ2

(
1

ε
+ ln

µ̄2

k2
+

16− 6 ln 2

3

)
. (C.77)

The formal expansion

G−1(k) =
(
k2
)1− ηLO

2
− ηNLO

2N
+...

=
(
k2
)1− ηLO

2

(
1− ηNLOk

2

2N
ln k2 + . . .

)
(C.78)

should be compared to

G−1
R2(k) = k2 +Σ(k) = k2 +

4k2

3Nπ2

(
1

ε
+ ln

µ̄2

k2
+

16− 6 ln 2

3

)
+ . . . (C.79)

Comparing the coefficient of the logarithmic term, we find

ηNLO =
8

3π2
, (C.80)

so that the critical exponent becomes

η =
8

3Nπ2
+O

(
1

N2

)
. (C.81)

This matches the result published in Ref. [69].

Solution to problem 2.1

In the strong-coupling limit, the pressure from (55) becomes

lim
a0→−∞

p(0, ∆) → 2µ

5

(2Mµ)
3
2

3π2
g

(
µ√

µ2 +∆2

)
. (C.82)

Finding the minimum of this function w.r.t.∆ is akin to finding the minimum
of the function g, defined below (55) in terms of elliptic integrals

g(y) = y−
5
2

[(
4y2 − 3

)
E

(
1 + y

2

)
+

3 + y − 4y2

2
K

(
1 + y

2

)]
, (C.83)
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and relating y = 1√
1+∆2

µ2

. It turns out that the condition g′(y) = 0 is

equivalent to

K

(
1 + y

2

)
= 2E

(
1 + y

2

)
, (C.84)

which is not easy to solve in closed form, but gives y ≃ 0.65223 . . . or

lim
a0→−∞

∆ = µ× 1.1622 . . . (C.85)

for the gap parameter.
By contrast, in the weak coupling case, the condition dp

d∆ = 0 forces ∆
to be very small. Therefore, expanding the elliptic integrals for small ∆, we
have

∆2 = 64µ2 × e
−4+ 2

√
2π2

C0M
3
2
√
µ , (C.86)

which upon using (37) gives the desired expression for the gap ∆ in the weak
coupling limit.

Solution to problem 2.2

From (59), we find that in the limit a0 → −∞ we have

ϵ =
3

5
µn . (C.87)

Now, using n from (58) to express µ in terms of n, gives

lim
a0→−∞

ϵ =
3

10M
n

5
3

(
3π2

g(y)

) 2
3

. (C.88)

Using finally the value y ≃ 0.65223 from Problem 2.1 and evaluating the
function g(y) for this argument gives g(y) ≃ 2.2032, so that

ξ ≃ 0.590606 . . . (C.89)

for the Bertsch parameter.

Solution to problem 3.1

We take the hint in the problem assignment and add a vacuum energy
and (bare) mass term to the O(N) model Lagrangian, that is, instead of
(63), we study the Euclidean action

SE = S0 +

∫
d4x

[
1

2
∂µϕ⃗ · ∂µϕ⃗+

m2
0

2
ϕ⃗ 2 +

λ0
N

(
ϕ⃗ 2
)2]

, (C.90)
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where S0, m0, and λ0 are the bare parameters of the theory. The introduc-
tion of the auxiliary field progresses along the same lines as in Lectures 1, 2,
and 3, and after dropping the large-N suppressed auxiliary field fluctuations,
we have

lim
N≫1

Z =

∫
dζ0 e

−S0−N
2
Tr ln[−∂µ∂µ+2iζ0+m2

0]−
N
4λ0

∫
d4xζ20 . (C.91)

The integral we need to regularize is

1

2 vol
Tr ln

[
−∂µ∂µ +m2

]
= J(m) =

1

2

∫
d4k

(2π)4
ln
(
k2 +m2

)
, (C.92)

where vol =
∫
d4x andm2 = 2iζ0+m

2
0 is now a combination of auxiliary zero

mode and bare-mass parameter. Since the integrand has spherical symmetry,
we can split

J(m) =
1

2(2π)4

∫
dΩ

ΛUV∫
0

dk k3 ln
(
k2 +m2

)
, (C.93)

where we have put a cut-off ΛUV on the momentum integration to regular-
ize the divergence. The integral over the solid angle Ω in d dimensions is
known as ∫

dΩ =
2π

d
2

Γ
(
d
2

) , (C.94)

so that for d = 4, we have

J(m) =
1

(4π)2

ΛUV∫
0

dk k3 ln
(
k2 +m2

)
. (C.95)

The integral over momenta can be performed in closed form, and for ΛUV ≫
m2, we get

J(m) =
1

64π2

[
Λ4
UV ln

(
Λ2
UV e

− 1
2

)
+ Λ2

UVm
2 +m4 ln

(
m2

Λ2
UV

)]
. (C.96)

Therefore,

lim
N≫1

Z =

∫
dζ0 e

−S0−N vol
64π2

[
Λ4
UV ln

(
Λ2
UV e

− 1
2

)
+Λ2

UVm
2+m4 ln

(
m2

Λ2
UV

)
+

16π2ζ20
λ0

]
,

(C.97)
where m2 = 2iζ0 +m2

0.
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The exponent contains terms in m and ζ0, which are not independent.
Thus, we rewrite

ζ20 = −1

4
(2iζ0)

2 = −1

4

(
m2−m2

0

)2
= −1

4

(
m2−m2

0

)2
= −m

4

4
−m4

0

4
+
m2m2

0

2
,

(C.98)
such that the exponent contains the bare parameters m0, λ0, S0, and the
integration variable m.

Now, let us renormalize: we choose the vacuum energy constant S0 such
that it cancels the terms in the exponent that do not depend onm (obviously,
since S0 is a constant and m is still being integrated over, we cannot absorb
any m-dependent terms in a constant)

S0 = −N vol

64π2

[
Λ4
UV ln

(
Λ2
UV e

− 1
2

)
− 4π2m4

0

λ0

]
. (C.99)

This leaves us with

lim
N≫1

Z =

∫
dζ0 e

−N vol
64π2

[
Λ2
UVm

2+m4 ln

(
m2

Λ2
UV

)
− 4π2m4

λ0
+

8π2m2m2
0

λ0

]
. (C.100)

Next, renormalize the bare coupling by ensuring that the term propor-
tional to m4 in the exponent is finite. This can be done by absorbing the
logarithmic UV-divergence into λ0

ln

(
µ2

Λ2
UV

)
− 4π2

λ0
= − 4π2

λR(µ)
, (C.101)

where we had to introduce a fictitious renormalization scale µ so that the
argument of the logarithm does not have dimensions. We then have

lim
N≫1

Z =

∫
dζ0 e

−N vol
64π2

[
Λ2
UVm

2+m4 ln
(

m2

µ2

)
− 4π2m4

λR(µ)
+

8π2m2m2
0

λ0

]
. (C.102)

From (C.101), we see that

λR(µ) =
1

1
λ0

+ 1
4π2 ln

Λ2
UV
µ2

, (C.103)

and we have a choice for λ0. Choosing λ0 > 0 leads to a quantum trivial
theory. However, choosing λ0 < 0, e.g.,

λ0 =
4π2

ln
Λ2
MS

Λ2
UV

, ΛMS < ΛUV , (C.104)

leads to the running coupling result (69) in Lecture 3.
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Finally, cancel the remaining UV-divergence in the term proportional to
m2 choosing

Λ2
UV +

8πm2
0

λ0
=

8πm2
R(µ)

λR(µ)
, (C.105)

achieves this, and we are left with

lim
N≫1

Z =

∫
dζ0 e

−N vol
64π2

[
m4 ln

(
m2

µ2

)
− 4π2m4

λR(µ)
+

8π2m2m2
R(µ)

λR(µ)

]
. (C.106)

All terms in the exponent are now finite, and we can proceed to perform
the integral over ζ0. In particular, choosing mR(µ) = 0 (which corresponds
to m2

0 = −λ0Λ2
UV

8π > 0 for λ0 < 0) brings us back to the result in dimensional
regularization used in Lecture 3.

Solution to problem 3.2

The finite-temperature calculation proceeds exactly along the same steps
as in Lecture 3, resulting in the large-N partition function (65). The only
difference is that now the functional trace has to take into account the fact
that our volume is the thermal cylinder, with the Euclidean time in the
compact interval τ ∈ [0, β] and periodic boundary conditions. We have

Z =

∫
dζ0 e

−N vol×Veff(
√
2iζ0 ) , (C.107)

where

Veff(m) = J(m)− m4

16λ
, (C.108)

where J(m) now is given in terms of a sum-integral

J(m) =
1

2 vol
Tr ln

[
−∂µ∂µ +m2

]
=
T

2

∑
n

∫
d3−2ε

(2π)3−2ε
ln
[
ω2
n + k2 +m2

]
,

(C.109)
with ωn = 2πnT the bosonic Matsubara frequencies. The large-N evaluation
of Z leads to the saddle-point condition

dVeff(m)

dm2
= 0 , (C.110)

of which dJ
dm2 is one part. Specifically, we have

0 =
dVeff(m)

dm2
=

dJ(m)

dm2
− d

dm2

m4

16λ
. (C.111)
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Thus, we need

dJ(m)

dm2
=
T

2

∑
n

∫
k

1

ω2
n + k2 +m2

=

∫
d3−2ε

(2π)3−2ε

coth
√
k2+m2

2T

2
√
k2 +m2

. (C.112)

Using coth x
2T = 1 + 2nB(x) with nB(x) = 1

ex/T−1
, we have

dJ(m)

dm2
=

∫
k

1

2
√
k2 +m2

+

∫
k

nB

(√
k2 +m2

)
√
k2 +m2

. (C.113)

Since the second term in this expression vanishes in the zero-temperature
limit T → 0, the first term must be the zero-temperature contribution we
already calculated in the lecture. Specifically, using (66), we have

dJT=0(m)

dm2

∫
k

1

2
√
k2 +m2

= − m2

32π2

(
1

ε
+ ln

µ̄2 e1

m2

)
. (C.114)

We can evaluate the thermal piece by expanding the Bose–Einstein distri-
bution function∫

d3k

(2π)3

nB

(√
k2+m2

)
√
k2+m2

=
∞∑
n=1

∫
d3k

(2π)3
e−nβ

√
k2+m2

√
k2 +m2

=
∞∑
n=1

mT

2π2n
K1(nβm) .

(C.115)
Putting everything together, we have the finite-temperature saddle-point
condition

0 = − m2

32π2

(
1

ε
+ ln

µ̄2 e1

m2

)
+

∞∑
n=1

mTK1(nβm)

2π2n
− m2

8λ
. (C.116)

The bare-coupling constant is renormalized as before, so that we get for
the finite-temperature saddle-point condition

0 = − m2

32π2
ln
Λ2
MS

e1

m2
+mT

∞∑
n=1

K1(nβm)

2π2n
. (C.117)

At zero temperature, we recognize the perturbative saddle m = 0, and the
non-perturbative saddle at m =

√
eΛMS. At high temperature, the sum

over Bessel function dominates, and there is no real solution to (C.117). At
Tc > T ̸= 0, we have two real solutions fulfilling

m ln
Λ2
MS

e1

m2
= 8T

∞∑
n=1

K1(nβm)

n
. (C.118)
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For fixed T , the sum over Bessel functions is a monotonically decreasing
function of m, whereas the logarithm is a function that first rises, has a
maximum, and then decreases and becomes negative for largem. The critical
temperature Tc is the one where the sum over Bessel functions just touches
the logarithm function at one value of m only.

Solving (C.118) numerically, one finds that this is the case for

T = Tc ≃ 0.615663 · · · × ΛMS . (C.119)

Solution to problem 3.3

We will need the perturbative running coupling, which in the MS scheme
is given by

das
d ln µ̄2

= −β0a2s − β1a
3
s − β2a

4
s − . . . , (C.120)

where [4]

as ≡ αs

4π
, β0 = 11− 2

3
Nf , β1 = 102− 38

3
Nf ,

β2 =
2857

2
− 5033

18
Nf +

325

54
N2

f . (C.121)

Using the particle data book world average value

αs(MZ) = 0.1179± 0.0009 , (C.122)

where MZ = 91.1876 GeV is the Z-mass, one can solve the running (C.120)
numerically down from µ̄ = MZ until αs diverges. For the various loop
orders, this then leads to the following values of ΛMS for Nf = 5:

Loop order ΛMS

1 87 MeV
2 242 MeV
3 288 MeV

While the result has not converged yet, we can try to use the 3-loop
result

ΛMS ≃ 288 MeV (C.123)

as an estimate for the Landau pole in QCD. According to formula (84), this
then implies a critical temperature of

Tc ≃ 177 MeV , (C.124)
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for QCD. This is surprisingly close to

Tc = 176± 7 MeV , (C.125)

found for the confinement–deconfinement transition from the lattice QCD [70].
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