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Understanding the properties and physical phase of the dense strongly
interacting matter present in the cores of neutron stars or created in their
binary mergers remains one of the most prominent open problems in nu-
clear astrophysics. While most microscopic analyses have historically relied
on solvable phenomenological models of nuclear and quark matter, in re-
cent, years a model-independent approach utilizing only controlled ab-initio
calculations and astrophysical observations has emerged as a viable alter-
native.

In these lecture notes, I review recent progress in first-principles weak-
coupling calculations within high-density quark matter, shedding light on
its thermodynamic and transport properties. I cover the most important
technical tools used in such calculations, introduce selected highlight re-
sults, and explain how this information can be used in phenomenological
studies of neutron-star physics. The notes do not offer a self-consistent
treatment of the topics covered, but rather aim at filling gaps in existing
textbooks on thermal field theory and at connecting the dots in a story
developed in several recent research articles, to which the interested reader
is directed for further technical details.
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1. Introduction

The qualitative idea that a competition between gravity and the degen-
eracy pressure of matter composed of nucleons could give rise to compact
astrophysical objects dates back to more than 90 years [1], and the first di-
rect observation of rapidly rotating pulsars will soon reach the ripe age of
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60 [2]. Yet, it is only during the past 10 years that neutron stars (NSs) have
truly become a functioning laboratory of dense nuclear and quark matter
(NM and QM), owing largely to recent dramatic advances in observational
astrophysics. Milestone results from the 2010s and 2020s include accurate
mass measurements of several individual high-mass NSs [3-5], often taking
advantage of general relativistic effects such as the Shapiro Delay [6]; in-
creasingly precise radius measurements utilizing X-ray emission from NSs
[7-12]; and most famously the first-ever detection of a gravitational-wave
(GW) signal from a binary NS merger by the LIGO and Virgo collabora-
tions in 2017 [13-15]. In addition to the first GW signal, GW170817, the
same merger event gave rise to an associated electromagnetic signal across
a wide spectrum, recorded by altogether 70 different observatories [16, 17].
This marked the dawn of an era of multimessenger astronomy, the future of
which looks bright, with several new GW observatories capable of recording
a postmerger signal, including the Einstein Telescope [18] and the Cosmic
Explorer [19], being planned at the moment.

In order to draw robust microphysics lessons from the increasing amount
of high-quality observational data on NS properties, it is imperative to simul-
taneously develop our theoretical understanding of matter at supernuclear
densities. Here, the dominant physical effects are described by the theory of
the strong nuclear interaction, Quantum Chromodynamics (QCD), with sub-
leading but important roles played by the electromagnetic and weak sectors
of the Standard Model. Due to the sign problem of lattice QCD at nonzero
baryon chemical potentials pp [20], a nonperturbative first-principles ap-
proach available at all relevant densities is unfortunately unavailable, leav-
ing us with effective-theory frameworks and weak-coupling expansions to
work with. Indeed, the ab-initio tools available in the cold and dense part
of the QCD phase diagram include Chiral Effective Theory (CET), valid for
moderate-density NM up to somewhat above the nuclear saturation density
ns = 0.16/fm3 (see, e.g., [21]); perturbative QCD (pQCD), available be-
yond some tens of saturation densities [22, 23|; and with some reservations,
methods such as Functional Renormalization Group [24| the AdS/CFT con-
jecture that allows access to the strongly coupled regime of many QCD-like
theories albeit not QCD itself |25, 26].

In the lecture notes at hand, our focus will be on the physics of ultra-
dense QM. More specifically, we aim at providing an introduction to the
methods used in recent perturbative determinations of the thermodynamic
and transport properties of dense unpaired QM and briefly review the appli-
cation of these results to phenomenological studies of NS matter. While we
will at times perform brief example calculations, these notes are not meant
to serve as a stand-alone textbook. On the contrary, we will rely on exist-
ing treatments of the basics of thermal field theory and supplement them
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with brief introductions to computational methods specific to finite density,
pointing out the most useful references where they have been developed or
applied at the state-of-the-order level.

The remaining seven sections of the notes cover the following topics:

2. Basics of perturbative thermal field theory at finite density;
3. Soft effective theories at finite temperature and density;

4. The Hard Thermal Loop effective theory;

ot

High-order perturbative calculations at finite density;

&

Transport properties of dense QM;
7. Model-independent studies of the NS-matter equation of state;
8. Outlook towards future developments.

In Sections 26, we will pay particular attention to thermal-field-theory tech-
niques specific to finite density that have received limited attention in ex-
isting literature, while in Section 7, we will focus on the role of QM ther-
modynamics in recent model-independent determinations of the NS-matter
equation of state (EoS).

In the perturbative calculations performed in these lecture notes, we
shall mostly employ the imaginary-time formalism of thermal field theory,
implying that our four-dimensional metric is Euclidean 7, = d,,. For all
other conventions, we use the definitions specified in the preface of [22].

2. Basics of perturbative thermal field theory in dense QCD

Perturbation theory is without doubt the most popular and versatile
computational tool in quantum field theory (QFT), with applications rang-
ing from collider problems in vacuum (see, e.g., |[27]) to thermal-field-theory
challenges in hot and /or dense environments such as the early Universe or the
fireball created in a heavy-ion collision [23]. Within the latter context, the
weak-coupling approach can be used to determine not only Euclidean “bulk
thermodynamic” quantities but also transport coefficients |28, 29| and even
time-dependent quantities related to, e.g., thermalization dynamics [30].

In the context of NS physics, of primary interest in these lecture notes,
the phenomenologically most important quantity is the EoS of dense beta-
equilibrated QCD matter, i.e. the relationship between its pressure and
energy density. This quantity can be shown to be in a rough one-to-one
correspondence with the so-called NS mass-radius relation (see Section 7),
implying that both NS observations and microphysical calculations can be
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used in a model-independent inference of the properties of NS matter. Such
calculations form the topic of Section 7 and serve as the primary motivation
for the high-order perturbative determinations of QM thermodynamics that
we will be studying in this and the following three sections.

In the realm of high temperatures, perturbative thermal field theory
is a well-developed and mature field, with multiple textbooks devoted to
the subject. For the imaginary-time formalism, we employ here two widely
used sources include [22, 31|, while for the real-time alternative, we can
recommend |23, 32]. Given that these references touch upon cold and dense
fermionic matter only very briefly (two exceptions being Section 7 of [22]
and Section 6.4 of [23]), we will here start from a brief review of the basic
equilibrium thermodynamic properties of such systems at low perturbative
orders.

Any weak-coupling calculation in cold and dense QM proceeds as an
expansion around a system of noninteracting quarks at sizable chemical po-
tentials and small or vanishing temperature. The physical properties of such
a system resemble those of the conduction electrons in a metal — a canon-
ical example system in undergraduate statistical mechanics — and can be
qualitatively understood based on the small-T" behavior of the Fermi—Dirac
distribution function

1
ng(e) = oe—m/T 11 0 O(n—e), (1)
with € = ¢(p) denoting the free one-particle dispersion relation. The step-
function form of this quantity implies that in the strict 7" = 0 limit, all
quantum-mechanical states are filled inside a momentum-space Fermi sphere
with a radius determined by the relation €(p) = p and unoccupied outside it.
This reflects the effect of the Pauli exclusion principle and is in stark contrast
with the low-temperature behavior of bosonic systems, characterized by a
condensation of particles to the lowest quantum state available [33].
Interaction corrections to the thermodynamic properties of the free sys-
tem can be obtained by expanding the path-integral representation of the
grand canonical partition function in powers of the coupling constant. For a
relativistic gauge field theory coupled to Dirac fermions with separately con-
served number densities (thus allowing the introduction of the corresponding
chemical potentials)!, this quantity takes the form [22]

! In the case of QCD, this implies neglecting the effects of flavor-changing weak inter-
actions, which is a good approximation in heavy-ion collisions, but not inside neutron
stars. We will return to this issue when discussing beta equilibrium below.
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Here, we denote gluon fields in the adjoint representation of the SU(3) gauge
group by AZ, a =1,2,...,8 being the corresponding color index; adjoint-
representation ghosts by ¢®: fundamental-representation quarks of flavor f
by 1y; the covariant gauge parameter by &; and the function defining the
covariant gauge by G* = —0,,A,. Finally, the field strength tensor and the

fundamental-representation covariant derivative appearing above read
Ff, = 0,40 — 0,A% + gf*™ AL AS . D, =0,—igAlT*,  (3)

where f2%¢ and T stand for the structure constants and Hermitian genera-
tors of the gauge group. Boundary conditions of the fields in the imaginary
time direction 7, running from 0 to § = 1/T, are indicated in the functional
integral above, and the Euclidean « matrices and other necessary quantities
are properly defined and listed in [22].

Just as at high temperatures, the weak-coupling expansion of the pres-
sure, or the logarithm of the partition function, of a cold and dense system
is organized in terms of a loop expansion in connected vacuum or bubble
Feynman diagrams. The first two orders of the expansion proceed without
complications, with the subtraction of p-independent vacuum terms and
the renormalization of quark masses and the gauge coupling g successfully
removing all 1/e ultraviolet (UV) divergences encountered in dimensional
regularization. Analogously to the high-T' case, uncanceled infrared (IR)
divergences, however, appear at the three-loop order, which necessitates the
use of either explicit diagrammatic resummations or low-energy effective
field theories (EFTs). Given that this will be the main topic of the next
two sections of these notes, we will here leave this issue aside and simply
point out some of the most important technical differences between loop cal-
culations performed in the high- and low-T" realms, relying on the reader’s
familiarity with the former context (based on textbooks such as [22]):

— While the use of the Matsubara formalism is required at all nonzero
values of temperature in the imaginary-time formalism, both bosonic
and fermionic sum-integrals become continuous integrals in D = 4 — 2¢
dimensions in the strict 7' — 0 limit. This implies that we may write
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i /dpo / 1= ZO QL Z / (bosons) ,

oco+ip
d
i / dpo / dp = / (fermions) , (4)
{P} —ootip P

where the tilde in the latter integration measure reminds us of the
fermionic nature of the corresponding momentum. In practical calcu-
lations, it is often advantageous to start the evaluation of the momen-
tum integrals from the temporal ones, for which so-called cutting rules
(see Section 5) offer a convenient book-keeping tool. Note also that
many references use slightly differing conventions for the integration
measures, with angular brackets often used to signify the fermionic
nature of four-momenta.

— A convenient simplification occurring in the strict 7" = 0 limit is the
exact vanishing of vacuum graphs containing no quark loops — a direct
consequence of the massless nature of gluons and the vanishing of
scalefree integrals in dimensional regularization. At higher loop orders,
the same mechanism leads to the vanishing of vacuum diagrams that
contain quark loops but also a factorized purely bosonic sub-diagram,
such as the first 11 diagrams of Fig. 3.

— A subtlety not present in studies of the short-lived quark—gluon plasma
(QGP) created in heavy-ion collisions that needs to be taken into ac-
count when considering the high-density matter inside NSs is related
to maintaining chemical (beta) equilibrium and local charge neutral-
ity?. To achieve both limits, one typically needs to add electrons to the
system and implement a number of constraints between the chemical
potentials of the relevant particle species.

For the three lightest quark flavors present at NS densities, the require-

ment of beta equilibrium implies the relations us = pg and py, = pg— e

between the four chemical potentials present. This allows parametriz-

ing the system in terms of only two chemical potentials, typically taken

to be pg and ., while local charge neutrality adds one more constraint
2 1 1

— 3Nd ~ 3Ms = Me.- (5)

The last relation allows us to further solve u. as a function of pug.

2 The reason one can neglect these effects in heavy-ion physics is related to the fact
that the electromagnetic and weak interactions operate on much longer timescales
than the strong-interaction processes.
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In the simplified limit of three massless quark flavors, typically a good
approximation for bulk thermodynamic quantities at perturbative den-
sities, the above equations admit the simple solution of w, = puqg = s
and pe = 0. This means that both local charge neutrality and beta
equilibrium can be maintained without the presence of electrons and
with equal number densities for the three lightest quark flavors. Cor-
rections to this limit due to a nonzero strange-quark mass can be con-
veniently obtained using the quark-mass expansion scheme recently
introduced in [34].

To get some hands-on experience in concrete perturbative calculations at
high density, let us next consider the first two orders in the weak-coupling
expansion of the pressure of cold and dense QM. Up to a p-independent
vacuum part, the leading-order (LO) pressure of a system of noninteracting
quarks at nonzero flavor-dependent quark chemical potentials p;y but van-
ishing temperature can be written in the simple form (cf. Eq. (7.43) of [22])

paep ({ur}) = 2N, Z//ln po+iuf)2+p2+mfc , (6)

F oy e

where the number of colors N, is kept unspecified for the sake of generality.

It is convenient to begin the calculation with the integral over pg. We
could in principle perform it directly in the above logarithmic form, but a
more straightforward strategy is to first carry out a differentiation with re-
spect to Eg = p2+m} and later integrate the result over the same parameter.
To this end, we consider the integral

/ dpo 1 _ / dp(] 1
21 (po +ipy)” + B2 2 (po + ipg — iEyp) (po + ipy +iE,)

—00 — 00

2E,
where we closed the integration contour over the upper halfplane. Integrat-
ing this expression with respect to Eg from Ez = 12, where the contributions
to the pressure vanish on physical grounds (this represents the quark mass
threshold), we easily obtain

[oe)
dpo
2T

—00

In [(po +ipg)® +p? + mﬂ = (Bp—np)© (B —py)  (8)

and further



4-A4.8 A. VUORINEN
péen {n}) = QNCZ/ (Ep —ps) © (Ep — piy)
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Here, we have at the second equal sign discarded two terms — proportional
to the 1 in ©(E, — p;) = 1 — O(p; — Ep) — that either correspond to a
p =T = 0 vacuum contribution or vanish in dimensional regularization,
and at the last stage, finally proceeded to the massless limit where the
spatial momentum integral trivializes. It is worth comparing the simplicity
of this computation to the complications one encounters with its finite-7T'
counterpart, considered, e.g., in Section 7, Appendix A of [22].

Proceeding next to the Next-to-Leading Order (NLO) in the massless
limit, we encounter one two-loop diagram with a quark loop, first consid-
ered in [35]. Carrying out the Lorentz and color contractions, we straight-
forwardly obtain

_;@ - _dAg2d_1//P2P Q)

d—1 1
= —dpg®’—— 5 /P2 , (10)

b

where dy = N2? — 1 is the dimension of the adjoint representation of the
gauge group SU(N.) and we have explicitly included the negative sign and
symmetry coefficient of the diagram on the left-hand side of the equation.
A clean factorization of the result into a product of two one-loop (fermionic)
integrals can clearly be observed from the final form of the result.

The sole one-loop master integral appearing in the above expression is
clearly identical to the one in Eq. (7), from where we can immediately take
the result for the pg integration. A straightforward calculation utilizing this
intermediate result produces now

oo
1
——— [4a Ll 11
P2 1 /pp®u P)=-g3: (11)
0

P
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where we have set d = 3 and dropped a scalefree integral that vanishes in
dimensional regularization. With this result, we obtain the pressure of cold
and dense QM up to NLO,

N, dag?
PgIéOD({Mf}) = (12;2 " 64nt ZM?M (12)
!
a result first derived close to 50 years ago [35].

3. Soft effective theories for deconfined QCD matter

At the three-loop order, performing the integrations for individual vac-
uum diagrams becomes technically considerably more demanding, with very
few graphs displaying factorization to lower-order integrals (see [36] for re-
cent general results concerning factorization). In addition, explicit compu-
tations performed both at nonzero and vanishing temperatures display un-
canceled IR divergences in specific vacuum diagrams featuring single gluon
propagators raised to powers higher than unity due to the presence of self-
energy-type insertions. Unlike the UV divergences that cancel upon renor-
malization, these divergences are of a physical origin, related to contribu-
tions from long-distance interactions mediated by low-momentum gluons. To
cancel them, something more is required, and here the discussion naturally
separates into two different realms: nonzero and vanishing temperatures.

We begin the story from the perhaps more familiar limit of high tempera-
tures, where the boundary conditions of the fields contributing to Eq. (2) al-
low us to express their dependence on the imaginary time coordinate xg = 7
through discrete Fourier series. In practice, we write

p(r.m) =T Y on(a)e™, (13)
Y(r,xe) =T Z Jn(w)eiw%%, (14)

for bosonic and fermionic fields ¢ and ), respectively, with the Matsubara
frequencies wP® = 2naT and w!™ = (2n + 1)7T acting as thermal mass
terms for the three-dimensional field components carrying the index n. At
high T, all three-dimensional fields except for the massless n = 0 modes of
bosons are protected against IR problems by these nonvanishing masses, so
that the minimal effective theory capable of describing the IR physics of hot
QCD becomes a three-dimensional theory for the n = 0 components of the
Ap and A; fields. What sets the Lorentz components of the original gauge
field apart here is the fact that the gauge field of a three-dimensional theory
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only has three (spatial) components. This makes the n = 0 component of Ay
an adjoint scalar field in the effective theory, capable of acquiring a nonzero
mass term in the corresponding effective Lagrangian.

The process of building three-dimensional effective field theories for the
description of high-temperature QFTs by integrating out the nonzero Mat-
subara modes of four-dimensional fields is known as dimensional reduction.
It possesses a long history dating back to the original work of Appelquist
and Pisarski in 1981 [37] and subsequent refinements in the 1990s by Ka-
jantie et al. |38] as well as Braaten and Nieto [39]. For QCD, a particularly
important step was taken in [40], where the widely-used terms Electrostatic
and Magnetostatic QCD (EQCD and MQCD for short) were coined for the
three-dimensional theories capable of describing the equilibrium physics of
length scales x > 1/(gT) and 1/(g*T), respectively. While the former of
these theories takes the form of a three-dimensional Yang—Mills theory with
an adjoint scalar (see, e.g., [22] for more details),

Leqcp = inCJLFZ + tr[Dy, Ag]? + mitrAZ + A\ (trA%)2 + XotrAd,  (15)
in MQCD, the Ay field with an O(¢gT') mass is integrated out as well. These
theories can be used to account for the soft contributions to equilibrium
thermodynamic quantities such as the equation of state, but at lower tem-
peratures, their use is limited not only by the lack of a scale hierarchy be-
tween the hard (77") and soft (¢7') scales, but also by the explicit breaking
of the Z(N,) center symmetry of the Yang-Mills part of QCD. This can be
further remedied by supplementing the effective theory with a more versatile
field content, thus extending the applicability of dimensional reduction to
somewhat lower temperatures [41, 42].

The effects of quark chemical potentials can be introduced to the dimen-
sionally reduced EFTs in a fairly straightforward manner [43, 44], with the
main effects seen in small shifts of the EFT parameters from their g = 0
values and in the introduction of one new EQCD operator of the form trA3.
Upon increasing the parameter /T to values greatly exceeding unity, one,
however, eventually exits the regime of validity of dimensional reduction.
As demonstrated in [45], this takes place when the temperature is reduced
below the scale T' ~ mp, where mg stands for the leading-order electric
screening mass

Car +TF 1
mi = ¢ TTQ + Gy ZN? (16)
f

and Ty = Ny/2. The physical effect that takes place when T is lowered well
below mpg is that more and more bosonic Matsubara modes become soft and
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need to be resummed, a process depicted in Fig. 1. In other words, the field
content of EQCD is no longer sufficient to capture all of the soft physics in
need of a resummed treatment.

The minimal effective theory replacing EQCD at low temperatures turns
out to be a four-dimensional EFT constructed for all soft gluon modes sat-
isfying P? < m% and thus requiring some form of resummed treatment?.
This EFT, the form of which can be most straightforwardly derived by con-
sidering the soft-external-momentum limit of gluonic amplitudes, is dubbed
Hard Thermal Loops (HTL) and was first introduced by Braaten and Pis-
arski already in 1989 [46, 47]. Since then, the HTL framework has been
successfully applied to the derivation of numerous physical quantities in-
cluding the bulk thermodynamic properties of high-temperature QGP at
vanishing [48] and nonzero chemical potentials [49], the EoS of cold and
dense QCD and QED [50-54], dynamical observables such as production
and decay rates |28, 55|, and even transport coefficients at various orders of
perturbation theory [29, 56].

® = ip,

~ A .
2ent N

T~# T~mE T=0

Fig.1. An illustration of how more and more bosonic Matsubara frequencies fit
inside a circle of constant radius mg as the temperature is lowered first to a small
number times mg ~ gp and then all the way to the 77 = 0 limit. Note that
for fermions, the result would be very different due to the imaginary offset of the
Matsubara frequency by iu.

4. Hard Thermal Loops: basic properties and simple applications

The development of the HTL effective theory has been documented in
multiple review articles and even textbooks, including e.g. [23, 32, 57|, and
the theory itself has been extended to new physical realms and higher pertur-
bative orders even relatively recently [58, 59]. To keep the present discussion

3 Note that fermions continue to be protected against IR problems also in the cold and
dense limit through their nonvanishing chemical potentials. This can be understood
in physical terms from the fact that all quantum-mechanical states are filled within
the Fermi sphere, implying that only hard fermions with momenta of the order of p
can propagate.
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at a tractable level, we will limit its treatment here to the parts of the theory
necessary for determining the leading soft contributions to the pressure of
cold and dense QM. This implies we will be mainly interested in the one-
loop HTL gluon self-energy, which characterizes how the propagation of soft
gluons is modified by the medium and that can be obtained from a particu-
lar (soft-external-momentum) limit of the same quantity in full QCD. While
the result can be shown to take a universal form, being equally applicable
in the high-temperature regime, we will for simplicity perform the computa-
tion in the strict T' = 0 limit, allowing some technical simplifications to be
implemented. After the derivation of the leading-order HTL self-energies,
we will apply the result to the determination of the leading nonanalyticity
in ag of the weak-coupling expansion of the pressure of cold and dense QM.

The gluon self-energy, or the gauge field self-energy tensor, is defined by
the Schwinger—Dyson equation, which relates it to the difference of the full
and bare inverse propagators

(P) = (070 (P) = (D) (). (a7

Here, the free propagator takes the usual form

_ _ 2
(o) (P) = P T o 1s)

in the covariant gauges, with £ being the corresponding gauge parameter.

Simply put, Hﬁg(P) is thus gauge-theory generalization of the scalar-field
1

PEETP)

Although a symmetric rank-two tensor in four dimensions, in principle,
contains 10 independent components, various symmetries of the system can
be seen to significantly reduce this number. First, while four-dimensional
Lorentz invariance is broken by the existence of a preferred frame in a system
in thermal equilibrium — the rest frame of the heat bath of the medium —
three-dimensional rotational invariance is enough to strongly limit the pos-
sible structures appearing in the result. In practice, it implies that the
self-energy tensor can be given as a linear combination of at most four in-
dependent elements: the metric J,, and three symmetric rank-two tensors
composed with the external momentum P, and the four-vector singling out
the temporal direction, n, = d,0. Current conservation, implemented via
the Slavnov—Taylor identities, further restricts the possible form of the tensor
by requiring it to be transverse with respect to the external four-momentum
in vacuum. As discussed in detail in [59, 60], the situation becomes more
complicated in a thermal setting, where transversality depends on whether
non-Abelian interactions are present, what loop order is being considered,

self-energy, which dresses the massless scalar propagator as % —
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and even which (covariant) gauge has been chosen. Here, it suffices to note
that for QCD at nonzero p but vanishing temperature, the one-loop self-
energy must be transverse irrespective of the gauge one is working in.

The transversality of the LO self-energy implies that the tensor can pos-
sess at most two independent components, typically labeled according to
their transversality properties with respect to the external three-momentum.
Omitting the Kronecker delta function in the adjoint color indices, the result
of this decomposition reads

I, (P) = I3 (P) + (PP, (P) + g (P)Py, (P), (19)

where the UV divergent vacuum part HL’&V‘C(P) represents the T'—0, u—0
limit of the polarization tensor and can be seen to be proportional to PQ(SW—
P,P,, being thus subdominant for soft external momenta. The matter part
of the self-energy is, on the other hand, divided into a transverse (T) and a
longitudinal or Euclidean (E) part, with the corresponding projection oper-
ators reading

— pipj
P (P) = 6uidy, <6¢- - pzj> ) (20)

P,P,
P2
It is straightforward to verify that apart from the obvious transversality of

]P’EV(P) with respect to the external three-momentum, these tensors satisfy
the following properties (see, e.g., [31]):

IP’EV(P) = S —

— P, (P). (21)

PX5(P)PY (P) = PX(P), X=T,E, (22)
PXs(P)PY (P) = 0, X#Y, (23)
PL(P) =d—1, Py (P)=1. (24)

Moving on to the actual evaluation of the gluon self-energy, we first
note that the one-loop gluon polarization tensor can be obtained from the
sum of all amputated one-particle-irreducible Feynman diagrams with two
external gluon lines. Its general expression at nonzero 7' and p is rather
lengthy, and we refer the interested reader to Eq. (C1) of [45], where the
Feynman gauge version of this quantity is displayed. In the strict T = 0
limit, some simplifications occur, though, and e.g., the purely bosonic term
only contributes to the vacuum limit of the tensor. If we are moreover
interested in the soft (or HTL) limit of the result, where |P| < p and the
components of the loop momentum ¢ can subsequently be assumed to be
dominant over those of P, we observe part of the fermionic contribution
dropping out as well. This leaves us with the much more manageable T' =0
expression
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( ‘T 0= _922 25MV _ / (2Q 2P)M(2Q 5 P)V (25)
/] T Q2Q-P)
Q Q
to work with, where the fermionic integration measures remind us of the
presence of pi in the corresponding fermion propagators.

To derive results for the two functions II1(P) and IIg(P), it suffices
to consider two independent components or contractions of the self-energy
tensor, for which we choose I1,,, and IIpg. Omitting terms that are clearly
subdominant for soft external momentum P, we obtain

T(Plroo ~ ~20-28* Y [ 5. (26)
7 g

Q

200 — 2
Q Q

IIoo(P)|7=0

of which we have already evaluated the tadpole integral in Eq. (11). To this
end, let us here concentrate on the latter term in the above expression for
Iy, i.e., the only integral with nontrivial dependence on P.

A key observation simplifying the evaluation of the ¢¢ integral in

~ (20 — po)*
HP) = | ——s 28
(P) | @G- py (28)
Q
is that two of the four poles, including qo = —ip — iq, always reside on the
lower halfplane, while two, including qo = —ip + ig, can reside on either

halfplane depending on the magnitude of the three-momentum ¢ in compar-
ison with the chemical potential p. Writing the resulting step function in
the form of ©(¢ — ) = 1 — O(p — ¢) and recognizing the appearance of a
p-independent integral that can be dropped, we straightforwardly obtain for
the vacuum-subtracted “matter” part of the function

~ 1 [e(—9q (2iq — po)? (2iq + po)?
TP )ma = 2q/ . {(iq—P0)2 TP Grrm)P T <q-p>2}

m s
1 . (2iq — po)?
— d dfsin 0 . 9
87 2/ qq/ o {PQ—?iqrpo—2q-p+CC (29
0 0

where we have on the latter row set d = 3 and abbreviated the complex
conjugate of the first expression (for real P,) by c.c.
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The two integrations remaining in Eq. (29) can now be straightforwardly
carried out. Upon an expansion of the result to leading order in P/q, the
final expression becomes

2 .
~ +p
Pyt = £ 1——“001 Do TP 30

( )mat 47_[_2 P ipo P ) ( )

implying that we have obtained a remarkably simple analytic form for the
soft-external-momentum limit of the original integral. In particular, all de-
pendence on the hard scale p has neatly factorized from the rest, leaving
behind a nontrivial function of the ratio of the two independent components
of the external momentum, py and p = |p|.

Combining the above result with that of Eq. (11), we are now ready to
write down final expressions for the HTL self-energy components [I1(P) and
II(P). Setting d = 3 everywhere, a simple calculation produces

PQ
2p?

P2
Me(P) = 5 WP),  In(P) = SI(P) -

ST (P) = ST, (31)

using which |and taking into account the sum over flavors in Eqgs. (26) and
(27)] we quickly reach the final gauge-invariant result

2 P2 2 ; 1
[T p) — _mEQ{pg_%an}? (32)
2 p2 \ P2 2 ipy—p
P2 WPy, Do+ P
THTL py — 2 [ Uy e VLI 33
E ( ) Ep 2p Zp(]_p ( )

with mg denoting the leading-order electric screening mass from Eq. (16).
With these self-energies, the full HTL-resummed gluon propagator finally
becomes

PL (P PE (P P,P,
Dﬁ?’(P):dab{PQ—ﬁ](YTzP)+P2iI<YEzP)+iP/§)2 } ) (34)

where we have again reinstated the gauge-parameter term from the free
propagator.

Interestingly, the final result for the HTL self-energies and the HTL-
resummed gluon propagator take precisely the same forms as in the more
general case of nonzero temperatures and chemical potentials; see, e.g., Sec-
tion 8 of [22]. It is also worth noting that both self—energy components de-
pend on the external momentum only through the ratio 22 p so that defining
an angle ¢ via tan ¢ = p/py, we can parameterize the entire LO HTL self-
energy as a function of this single dimensionless variable. This result suffices
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for typical low-order computations utilizing the HTL effective theory, while
at higher orders, one may, depending on the quantity being determined, also
require the use of the HTL vertex functions, the HTL fermion self-energy, or
subleading corrections to the above result from higher loop orders or a power
expansion in P/u. For detailed derivations of these additional features of
the HTL theory, we recommend a recent review by Haque and Mustafa [57]
as well as the original research article [59], where the real-time formalism of
perturbation theory is applied to the gluon polarization tensor at nonzero T’
and .

As a straightforward application of the LO HTL self-energy derived
above, let us now briefly return to the weak-coupling expansion of the pres-
sure of dense zero-temperature QM. Here, we first note that the only three-
loop vacuum diagram displaying an IR divergence in the T' = 0 limit can be
written in the form

1 d [I2(P)  IIA(P)
4@ - TA {(d—l) (;2)2+(£2)2+...}
P

[ flap B

- 4 (P2)2 + (p2)2
P

where we first utilized the expansion (19) for the gluon self-energy, left out
IR~convergent terms generated by the vacuum part, and finally retained only
the LO IR behavior of the integrand by replacing the full self-energies by
their HTL limits.

To cure the IR divergence in the final form of Eq. (35), the simplest way
to proceed is to explicitly resum all ring diagrams of the same type, each
taking the form

—1)Nd T (p)) Y
I, D da 2)N A {(d—l)( T(Pz()N))
P

_l’_

T (P)” (36)
(P2)N ’

with NV denoting the number of one-loop self-energy insertions in the graph.

Recognizing here the coefficients of the Taylor expansion of the function

In(1+ ), we may explicitly perform the sum » 3_, Ilfi\;g, obtaining a quan-

tity identifiable as the LO pressure of the HTL effective theory

e a— —%A / {(d— 1) [K? + T{™(P)] + In [K? + ITE™(P)]}
P

D

= - [{@- 0[P+ @) + [P+ o) } - 1)

P
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Here, we have on the lower line defined the scaled quantities P = mgP and
™ (P) = m2 1Ix (), with X standing for either T or E.
To proceed from here, we first make use of the standard integral

/ (iifg In(K? +m?) = —mD(Z;_)g/ 2 (38)

that can be used to take care of the radial integration in Eq. (37). This
quickly produces (see [22] for details)

o damE I'(D/2)(—D/2)
(4m)% (D - 1)/2)

s

< [as st o @1 AP0 + 0] @9
0

where the prefactor is of the order of m%}_% /€. Tt is precisely this product

of a D-dependent power of mg and 1/e that upon a power expansion in €
gives rise to a term of type a2 Inag in the weak-coupling expansion of the
QM pressure.

Setting now € = 0 in the angular integral of Eq. (39), a straightforward
calculation produces

™

[ a0 sino (@~ 1 o) + o) = ] (10)

0

With this result, we may finally read off the coefficient of the leading non-
analyticity in the weak-coupling expansion of the pressure,

dAm4 A 2e /12 ¢ 1 d4m4
LO E 0 E
HTL 8(47r)2 <m2> € (6 ) 8(471’)2

nag+ -, (41)

a contribution first derived by Freedman and McLerran in 1977 using con-
siderably more involved computational techniques [35]. Note that the corre-
sponding 1/e divergence that we have discarded here is of UV type (in the
HTL effective theory) and cancels against a corresponding IR divergence in
the three-loop full theory vacuum diagram considered in Eq. (35).

5. QM thermodynamics at three and four loops

Next, we move on to the full three-loop order and beyond, i.e. towards
the state-of-the-art in perturbative calculations for QCD thermodynamics.
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Up to and including O(g®) contributions, the pressure of deconfined QCD
matter at nonzero temperature and density is most conveniently expressed
in a form first introduced in [51],

PQCD = PQCD — Psoft + Psoft

___naive naive res

- pQCD — Psoft + Psoft

___naive res naive res naive

= PQCD + PDR —PDR 1 PHTL — PHTL - (42)

Here, we have first added and subtracted the pressure of a properly defined
soft effective theory from the full QCD pressure, then noticed that the differ-
ence pQcp — Psoft 18 an IR-safe quantity that can be evaluated in a naive loop
expansion in the respective theories, and finally introduced a dimensionally
reduced (DR) effective theory as the minimal EFT for the n = 0 Matsubara
modes of gluons and HTL for all the nonstatic modes.

The five terms appearing in Eq. (42) are defined as follows:

naive

pgep denotes the naive loop expansion of the pressure of full QCD,
evaluated up to and including the three-loop order. Dimensional reg-
ularization is used to regulate both UV and IR divergences, of which
the former cancel upon renormalization. IR divergences of the form
1/e, however, remain, in addition to which the O(a2) part of the result
contains terms that diverge as p? ln% in the small-T" limit.

Phr denotes the pressure of the dimensionally reduced effective the-

ory EQCD, evaluated in a weak-coupling expansion within this theory
featuring a massive Ag propagator. The resulting contribution to the
pressure is IR safe by construction but contains a UV divergence.

naive

— ppr ¢ denotes a version of the EQCD pressure evaluated by treating the
Ap mass as an interaction. This leads to an expression that identically
vanishes in dimensional regularization due to the integrals becoming
scalefree, but the calculation can be seen to contain a cancellation
between equal but opposite UV and IR 1/e poles that convert the UV

divergence of pfjg into an IR one in the difference pSg — pﬁaﬁ"e. This

remaining IR divergence cancels against a similar term in pgeys.

piesy and phEYe denote the logarithmic HTL ring sum [cf. Eq. (37)]
and its expansion in self-energies up to and including quadratic order,
but with the contribution of the Matsubara zero mode left out. Both
expressions are IR finite at nonzero 7', but contain UV divergences
that cancel in the difference of the two terms. In the T — 0 limit, the
difference piy — pﬁ“lf‘ff develops an IR divergence proportional to InT’,
which is seen to cancel against the corresponding term in the 7" — 0
naive

limit of PQED-
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All in all, combining the five terms in the final form of Eq. (42), we recover
an expression that is free of both UV and IR divergences and agrees with all

previously known limits of the pressure up to and including order oe? /2 This
was the main result of [51] and continues to represent the state-of-the-art
result for the pressure up to and including all fully known perturbative orders
(i.e., not counting logarithms). The only exception to this is the large-Ny
limit of QCD, where an all-orders result for the high-temperature pressure
has been determined thanks to simplifications that occur in precisely this
limit (see, e.g., [61-64]).

Proceeding beyond the three-loop order, the derivation of new terms
in the weak-coupling expansion of the pressure becomes considerably more
involved and the methods used in the low- and high-temperature regimes
become increasingly disjoint. Here, we restrict our discussion to the strict
T = 0 limit, which was at the center of our attention already in the pre-
vious sections of these notes and which is importantly free of the famous
Linde problem [65], plaguing high-order perturbative calculations at finite
temperature. Given the complexity of the problem and the fact that parts
of it remain under active work, we will keep our discussion at a mostly qual-
itative level, concentrating on the structure of the weak-coupling expansion,
the physical origins of various contributions entering at the a2 order, and the
computational tools required in these calculations. For a reader interested
in further computational details, we will provide numerous references to the
original research articles below.

Up to and including the four lowest orders, the weak-coupling expansion
of the pressure of cold (T' = 0) and dense unpaired QM matter obtains the
schematic form [50, 66|

P = prD + Oésplf + Oégpg + Ofgpg
+olpy + olps
+ olpy, (43)

where the coefficients p5 and p§' contain linear logarithms of the coupling
as and the coefficient p§ both linear and quadratic (In? ag) logs [67]*. The
letters “h”, “s”, and “m” refer here to the “hard”, “soft”, and “mixed” sectors,
corresponding to different regions of momentum space that contribute to the
pressure at these orders. A detailed account of the different contributions can
be found in [66], the results of which we summarize here, paying particular
attention to the state-of-the-art a2 order.

4 Note that many terms here also depend on logs of the renormalization scale A that
cancel the scale dependence from the running of as order by order. We will mostly
skip this topic here, but a reader interested in the precise mechanism, in which these
cancellations occur, is referred to the Supplemental Material of [52].
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Hard sector: Similarly to the case of the finite-temperature pressure in
Eq. (42), the contribution of the hard momentum scale up to the pressure
of cold and dense QM originates through a naive loop expansion of the full
theory pressure. This necessitates the evaluation of all four-loop vacuum,
or bubble, diagrams of QCD at nonzero chemical potentials but vanishing
temperature, using dimensional regularization to regulate all divergences.
The UV divergences of the result are expected to be removed upon renor-
malization, while — similarly to the finite-T" calculation described above —
IR divergences will be seen to cancel against corresponding UV divergences
from the EFT calculations corresponding to the soft and mixed contributions
to the pressure.

At one-, two-, and three-loop orders, the evaluation of vacuum diagrams
can be performed analytically for vanishing quark masses, for which it was,
in fact, completed for arbitrary values of T and p in [44]. When a nonzero
strange-quark mass is implemented, numerical methods are, on the other
hand, required even in the strict T'= 0 limit, where the three-loop pressure
was first determined in [68]. This computation relied on the use of the so-
called cutting rules, where the underlying idea is to first perform all fermionic
(but not bosonic) temporal momentum integrals, reducing the evaluation of
the original Feynman integral to a sum of three-dimensional “phase-space”
integrations over vacuum (7" = p = 0) on-shell amplitudes. Below, we
will briefly specify the cutting rules and apply them to a simple example
calculation at the two-loop level, referring a reader interested in details of
their formal derivation to the original article [69].

The cutting rules act on a scalarized T' = 0 Feynman integral corre-
sponding to either a vacuum diagram or a Euclidean N-point function with
real-valued external momenta. The integral is assumed to be composed of
two types of (massive or massless) propagators, bosonic and fermionic, of
which the former are composed of real-valued momenta, while the temporal
components of the latter are shifted by iu as discussed in Section 2. We fur-
thermore assume that no fermionic propagator is raised to a power higher
than unity, although this restriction can be relaxed if proper care is taken
in the calculation |70, 71].

With these assumptions, the cutting rules amount to the following set of
five operations:

(i) Graphically perform all possible cuts of independent internal fermion
lines in the diagram, ranging from zero to the number of loops in
the graph. Here, the independence of a given set of internal lines is
equivalent to being able to choose the corresponding momenta as the
loop momenta in the Feynman integral in question.
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(71) For each cut fermion line with momentum P, remove the corresponding
propagator from the integral and place the same momentum on shell
in the thus generated amplitude by writing py = iF,, E, = p? +m?.

(i4i) Set p = 0 in each of the uncut fermion propagators and evaluate the
corresponding integrals while assuming all components of the external
momenta to be real-valued.

(iv) Integrate over the three-momenta of the cut lines with integration
measure —O(u — Ey)/(2Ey) (times the usual 1/(27)? associated with
momentum integrals), with the integrand being the vacuum (u = 0)
on-shell amplitude generated by the cutting.

(v) Sum all the individual contributions together.

This procedure reduces the evaluation of the original finite-y diagram to a
number of separate terms, in which the p-dependence resides only in the
theta functions of the phase-space integration measures. This is a signifi-
cant simplification, as the values of the vacuum amplitudes can typically be
taken from collider-physics literature and the phase-space integrals are by
construction UV finite.

As a simple example case, we inspect next the T'= 0, u # 0 integral

1 1 1
12(:“):/]P2+m2Q2+m2(P_Q)21
P Q

(44)

where the momenta P and @) correspond to massive fermions at nonzero
chemical potential and P — @) to a massless boson. Identifying two as the
number of independent fermionic momenta, the cutting rules amount to
writing the integral in the form (see Fig. 2)

Fa(p) = 195" 4 1390 o) 4+ 13" ), (45)

where the 0-cut part refers to the (uninteresting) p = 0 version of the original
integral, while the 1- and 2-cut parts carry all the p-dependence of the
original graph

—eu O(n—F, 1 1
L t(“)_'“2/ g%p)/QMmﬂ@—@z
Q
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Fig.2. A graphical illustration of the cutting of the two-loop graph I(u) discussed
in the main text, with solid lines corresponding to a massive scalarized fermion
propagator with nonzero u, dashed lines to its u = 0 version, and dotted lines to a
massless bosonic propagator. The figure is taken from [23].

The resulting integrals can be performed numerically at ease, or even ana-
lytically for m = 0 (see Appendix D of [71] for details), to reach the final
result for the two-loop diagram. Note that the factor of two in the one-
cut expression above results from the two separate one-cut terms producing
identical results due to a symmetry of the original integral. It should be
noted that such symmetries are not always present in higher-loop cases, and
care must be taken not to automatically equate two terms that differ, e.g.,
by the relative direction of fermion flow in two separate fermion loops.

The cutting rules were first used in [68] to evaluate all massive three-loop
vacuum diagrams of QCD in a calculation that would have been considerably
more challenging without this crucial computational aid. Proceeding all the
way to four loops, the complexity of the calculations becomes considerably
more challenging, however, and only two out of the altogether 52 individual
graphs depicted in Fig. 3 have been fully evaluated so far |53, 72]. From the
rest, the first 12 of Fig. 3 are found to vanish because they either contain
a factorized scalefree integral or their color trace gives zero. Active work is
currently underway to evaluate the remaining diagrams, with promising first
steps taken recently in a yet unpublished article [73]. The steps involved in
this process include performing the color traces and Lorentz algebra of all
graphs (in a general covariant gauge), then dividing the result into group-
theory-invariant sectors, and finally systematically implementing momentum
shifts and other standard manipulations to achieve the cancellation of the
covariant gauge parameter £ within each group theory sector.
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Fig.3. A list of all four-loop vacuum diagrams of QCD containing at least one
fermion loop, shown together with the associated signs and symmetry coeflicients.
The first 12 diagrams can be shown to exactly vanish due to either containing a
factorized scalefree integral (first 11 graphs) or being proportional to a vanishing
color algebra (graph 12). The figure has been composed by Pablo Navarrete.

After the above process, we are left with a relatively high number of
independent master integrals (of the order of 100) to evaluate, which one
may try to reduce using various novel methods, including but not limited to
four-dimensional IBP identities recently generalized to the T' = 0, u # realm
in [71]. Finally, once the seemingly irreducible masters have been identified,
the remaining task is to evaluate them starting from the ones that factorize
into lower-loop-order entities.

The evaluation of the genuine four-loop master integrals is a very chal-
lenging task that involves a mix of analytic and numerical methods, with
only a handful of cases completed so far [73]. An important complementary
tool, which holds for the simultaneous evaluation of all IR convergent four-
loop integrals, is based on the loop-tree duality (LTD) method of vacuum
perturbative QFT [74]. This method was recently generalized to nonzero
chemical potentials and successfully applied to the evaluation of the infa-
mous “bugblatter” diagram [72]°, which represents the LO difference between
the pressures of cold and dense QCD and its phase-quenched version (see,
e.g., |76]). The main difference between the LTD and cutting rules methods
is that in the former, one first evaluates all temporal momentum integrals
instead of just the fermionic ones, which avoids the generation of artificial IR
divergences and, at least in some cases, leads to more manageable numerical
calculations.

® For the etymology of the name of this diagram, see [75].
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Soft and mixed sectors: The only soft scale present in cold and
dense QM originates from the long-distance screening of gluon fields and
can be identified with the 7" — 0 limit of the chromoelectric screening mass
mg ~ gup in Eq. (16), i.e., the same parameter that appears in the LO
HTL self-energy derived in the previous section. At the O(a?) order for the
pressure, it no longer suffices to only work with this quantity, but we need
to additionally consider other elements of the effective theory, including the
HTL vertex function, and derive corrections to the LO self-energy both in
the form of two-loop contributions and power corrections in the soft exter-
nal momentum. The necessary calculations were first described in [66] and
subsequently carried out in [50, 54], to which we refer the interested reader
for technical details. Here, we instead restrict our attention to a qualitative
account of the origins of the soft and mixed O(a) contributions to the QM
pressure, see Eq. (43).

The physical nature of the mixed and soft contributions to the O(a3)
pressure can be neatly illustrated through a practical example depicted in
Fig. 4, borrowed from [50]. Here, we begin with a single unresummed four-
loop vacuum diagram of full QCD that consists of two quark loops and four
additional gluon propagators. The fermion propagators are by construction
“hard”, being characterized by the scale p present in their temporal mo-
mentum components, while the gluon momenta can be either hard, with
P ~ p, or soft, with P ~ mg. Should one or several of the gluonic momenta
in the graph — say the vertical ones flowing into the one-loop self-energy
insertion in the first diagram of Fig. 4 — become soft, a simple power-
counting exercise shows that similar diagrams containing an arbitrary num-
ber of one-loop gluon self-energy insertions contribute at the same order in
the weak-coupling expansion [step (i) in Fig. 4]. Summing all such diagrams
using the low-momentum limit of the gluon self-energy [step (ii)] leads to the
emergence of a three-loop graph containing an HTL resummed gluon propa-
gator, which represents a typical mixed contribution to the O(a2) pressure,
denoted by p5' in Eq. (43). Repeating, finally, the same exercise for the
two remaining unresummed gluon lines, which clearly become both soft at
the same time [step (iii)|, leads to a fully soft two-loop contribution com-
putable within the HTL effective theory [step (iv)]. The final HTL graph
features also two resummed HTL vertex functions, one of which arises from
the lower quark loop of the original diagram, and contributes to the p§ term
of Eq. (43).

The successful evaluation of the soft and mixed contributions to the
O(a?) pressure presents a technically very challenging task that was com-
pleted only recently in [50, 54]. In these calculations, it was crucial to ensure
the proper cancellation of all IR divergences in the hard four-loop diagrams
of QCD against UV divergences originating from the soft two-loop diagrams
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(i)
P4 —

Fig.4. An illustration of how a single four-loop vacuum diagram in dense QCD
gives rise to a three-loop mixed diagram and a two-loop HTL graph when one or
several of the internal gluon lines become soft. The thin wavy lines correspond
to unresummed and the thick wavy lines to HTL-resummed gluon propagators,
respectively, while the gray blobs stand for HTL-resummed vertex functions.

in the HTL effective theory as well as UV and IR divergences originating
from the mixed three-loop graphs. It is also worth repeating that, as noted
above, the one-loop HTL self-energies needed to be generalized both by
two-loop corrections, evaluated in [59], and by power corrections in the soft
external momentum, derived in [54].

Convergence of the weak-coupling expansion: After the recent de-
termination of the mixed O(a2) contributions to the QM pressure in [54],
the current state-of-the-art result for the EoS of cold and dense QM contains
all terms appearing in Eq. (43) except for the finite, renormalization-scale-
independent part of pg, which amounts to one single number. As demon-
strated in Fig. 5, taken from [54], the effect of this new order on the conver-
gence of the weak-coupling expansion is dramatic. For typical values of the
missing coefficient, currently under intense scrutiny, the new N3LO band
improves the convergence of the pressure at all relevant densities. Such a
result would importantly enable lowering the density, at which the high-
density constraint is applied in model-independent determinations of the
NS-matter EoS, from the present approx. 40 ng down to perhaps 20 ng. As
we will discuss in detail in Section 7, this would have a dramatic effect on the
precision, at which we currently understand the properties of the ultradense
matter present inside NS cores.
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Fig. 5. The pressure of cold and dense massless QM in beta equilibrium [54]. Shown
are the NLO (blue band), NNLO (yellow), and NNNLO (green) perturbative orders,
of which the last one is new and contains one single undetermined coefficient ¢y set
to a value determined by a Bayesian estimation performed in [54] (see also [77]).

6. Transport properties of dense QM

In addition to the bulk thermodynamic properties of NS matter, first-
principles particle theory methods may provide valuable input for its trans-
port coefficients, describing physical phenomena such as diffusion, energy
and momentum dissipation, and the conduction of heat and electric cur-
rents. While in some cases also relevant for the properties of quiescent NSs,
they play a particularly important role in more dynamical settings, such as
supernovae explosions and the postmerger dynamics of binary NS mergers
(see, e.g., [78, 79]). In [80], it is argued that the most important transport
coefficient for NS mergers is the bulk viscosity ¢, which has subsequently
received considerable attention in recent literature, including two very re-
cent papers [81, 82| concentrating on its determination in QM. Here, we will,
however, begin the story with some general remarks followed by a brief look
into other transport coefficients in (mostly unpaired) dense QM, returning
to the somewhat special evaluation of ¢ only at the very end of this section.

Similarly to the more widely studied case of hot QGP, the transport
coefficients of cold and dense QM are technically considerably more chal-
lenging to determine than its equilibrium thermodynamic properties, which
is mainly due to the inherently Minkowskian nature of the former quantities.
This is reflected in the existence of only a handful of low-order perturbative
results for the most important transport coefficients, many of which more-
over date back tens of years [56, 83|. These quantities are typically defined
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through the response of the system to an imbalance in some local quantity,
and their evaluation often begins with the Boltzmann equation, describing
the evolution of an off-equilibrium statistical system. Here, our treatment of
the subject will be rather superficial, and the interested reader is referred to
the excellent review article [84] for more details on the transport phenomena
of dense QCD matter, including its confined phase.

The study of transport phenomena in dense QM often begins with the
Boltzmann equation describing the behavior of the quark distribution func-

tion f(r,p,1)

(i +o v rv) sl = (52) (a7)

Here, F' is an external force, r and p denote the position and three-momen-
tum of the quark being tracked, and the gluon-mediated scattering between
quarks is described by the highly nonlinear collision term on the right-hand
side of the equation (see, e.g., Eq. (1) of [56]). The near-equilibrium solutions
of this equation under various boundary conditions, say with a specific type
of external force or a fixed flow velocity for one quark flavor, inform us about
the response of the system to the perturbation in question and often allow
for solving a particular transport coefficient.

A very crude approximation to solving the Boltzmann equation amounts
to linearizing the collision term in the difference between the off-equilibrium
and equilibrium distribution functions. This amounts to the so-called relax-
ation time approximation, which was applied in the first works on transport
in dense QM or hot QGP, such as [85]. A major step forward was taken
somewhat later in [56], where the first self-consistent perturbative study of
transport in dense QM was performed with the full nonlinear collision term.
In this work, a major challenge was related to the long-range interactions
mediated by soft gluons, which — analogously to the O(a?2) pressure dis-
cussed above — would lead to divergent results if screening effects are not
properly taken into account.

While present also at high temperatures, the effects of dynamical screen-
ing, such as Landau damping, are particularly pronounced in transport cal-
culations at large chemical potentials and small temperatures, where the
system is characterized by three distinct momentum scales, up, T, and mg.
Of the three, the first can typically be assumed to be the largest, but the
ordering of the latter two is a priori unclear in the physical systems of inter-
est, such as binary NS mergers. This leads to technical complications in the
Boltzmann description, where the quark—quark scattering matrix element
within the collision term needs to be dressed with HTL-resummed gluon
propagators, featuring the self-energies of Egs. (32) and (33).
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From this point onwards, the steps needed to obtain LO results for var-
ious transport coefficients depend strongly on the quantity in question, and
we refer the interested reader to [56] for computational details. Here, we
merely note that two key quantities that aid the determination of a number
of transport coefficients from the diffusion constant to various conductivi-
ties and the shear viscosity include the momentum transfer between quarks
and the so-called momentum stopping time. Since the publication of these
LO results in 1993 [56], no perturbative improvements have, however, been
reported, which is largely due to the technical complexity of the NLO cal-
culations, reflected also in the first appearance of NLO transport results for
high-temperature QGP as late as in 2018 [29, 86]. Promising advances have,
however, been recently made in the holographic description of the same
transport coefficients as well as neutrino transport in the strongly-coupled
regime of QCD-like theories [87-89).

Returning finally to the transport coefficient of highest relevance for NS
mergers, the bulk viscosity ¢ of dense QM, we encounter a quantity whose
evaluation differs dramatically from the computations discussed above. In-
terestingly, it turns out that in an NS setting, the dominant contribution
to ¢ does not originate from QCD alone, but emerges when rapid density
oscillations in the macroscopic system force matter to depart from chemi-
cal equilibrium due to weak interactions not being able to keep up with the
compression rate. In rotating quiescent pulsars, these oscillations are related
to the different oscillation modes of the star (see, e.g., [90]), while in binary
NS mergers, they are often related to the complicated merger dynamics. A
straightforward calculation reviewed, e.g., in Appendix A of [81] shows that
in the so-called neutrino-transparent regime, where the dominant contribu-
tion to the bulk viscosity comes from the nonleptonic W-boson exchange
process u + d <> u + s, the bulk viscosity obtains the schematic form

A A2

€= w? + ()\101)2 '

(48)

Here, w is the angular velocity of the density oscillations, A; an electroweak
rate defined by % = —dcﬁs = A (us — pg), and the coefficients A; and C
are linear combinations of quark densities and susceptibilities, reproduced
in Egs. (4) and (5) of [81]. Interestingly, A; turns out to identically vanish
for mass-degenerate quarks, reflecting the vanishing of the bulk viscosity for
conformal systems and implying that it is necessary to include a nonzero
strange-quark mass in the evaluation of the coefficients A; and Cf.

Barring loop corrections to the electroweak data A1 (that may well be
sizable, see, e.g., [95]), a crucial implication of the form of Eq. (48) is that the
QCD contribution to the bulk viscosity of dense QM enters solely through
the thermodynamic quantities appearing in the coefficients A; and C;. As
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noted above, in their evaluation it is imperative to employ a nonzero strange-
quark mass, which may, however, be treated as an interaction following,
e.g., the mass-expansion scheme recently introduced in [34]. Precisely, this
was recently done in [81], where the thermodynamic functions contributing
to the bulk viscosity of unpaired QM were evaluated to an unprecedented
accuracy using both pQCD and two holographic models. The result of this
computation is displayed in Fig. 6, where the bulk viscosity is plotted as a
function of T' for various fixed baryon densities. We observe a qualitative
agreement between the weak- and strong-coupling calculations within QM
— even across different densities — but a sharp contrast to earlier nuclear-
matter results from [94], for which the bulk viscosity peaks at a considerably
higher temperature. It is tempting to speculate, whether this difference in
the peak temperatures might lead to observable effects in the postmerger
GW spectrum of a binary NS merger, should the effects of bulk viscous
dissipation on the merger dynamics be sizable enough.

One general remark about transport coefficients in dense QM is finally
in order. As the alert reader has surely noted, all of the discussion above
concerned the transport properties of unpaired QM, which is a natural start-
ing point, but very likely not the physical ground state of QCD at the low
temperatures and moderate and high densities realized in NSs and their bi-
nary mergers. Instead, it is widely believed that some type of quark pairing
takes place in physical QM, but due to the strongly-coupled nature of the
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Fig.6. The T dependence of the bulk viscosity in three-flavor unpaired QM [81],
evaluated in pQCD at the baryon density of 40 ngs and in two holographic models
V-QCD [91, 92] and D3-D7 [93] at 5 and 10n,. For reference, the quantity is also
shown for dense nuclear matter at three different densities [94] and at ng = 10n,
for a system of noninteracting quarks.
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system, the details of the pairing channel remain unclear at nonasymptotic
densities. Unlike in the case of equilibrium thermodynamics, where pairing
contributions to the EoS are expected to be strongly suppressed at all den-
sities where pQCD is applicable, many transport coefficients are moreover
thought to be highly sensitive to pairing, so calculations performed in the
unpaired phase will need to be generalized to color-superconducting phases
in the future. Given the technical nature of this topic, we refrain from a
more extensive discussion here and instead refer the interested reader to two
excellent review articles by Schmitt and collaborators [84, 96].

7. Model-independent inference of NS-matter properties

After describing the determination of the thermodynamic and transport
properties of unpaired QM at some length above, it is natural to finally ask,
how these results can be used in a more phenomenological setting within NS
physics. Here, the primary interest lies in a model-independent constraining
of the EoS and other properties of strongly interacting matter up to the
maximal O(5-10n;) densities reached inside physical NSs and the maximal
O(50-100 MeV) temperatures reached during NS mergers. A priori, it is
far from clear that perturbative results of the kind described in these notes
contain any information of practical use in such settings, given that weak-
coupling expansions in pQCD typically start converging only at densities
many times higher. Somewhat counterintuitively, the perturbative high-
density constraint, however, turns out very useful especially in EoS inference,
and NS observations can, in turn, be shown to constrain the thermodynamic
properties of QCD matter up to relatively high densities. Below, we will
shed light on these developments, paying particular attention to the use
of the pQCD constraint in the model-independent inference of NS-matter
properties. For a reader interested in NS physics from a more astrophysical
point of view, we can recommend, e.g., the recent review [97].

The key microscopic quantity one typically tracks in the description of
quiescent NSs is the EoS of dense QCD matter in the limits of vanishingly
small temperature T, local charge neutrality®, and beta equilibrium. This
is because it is precisely the relationship between the pressure and energy
density of this type of matter that closes the famous Tolman—Oppenheimer—
Volkov (TOV) equations governing hydrostatic equilibrium inside a nonro-
tating star [99, 100]

5 The requirement of local charge neutrality can, in principle, be relaxed to a global
one, allowing for the presence of two phases in coexistence, relevant for the case
of a first-order (deconfinement) phase transition. This is referred to as the Gibbs
construction, explained in more detail in, e.g., [98].
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dM(r)

i 471'7‘26(7‘),
dp(r) _ (e(r) +p(r)) (M(r) + 4mr®p(r)) (49)
dr r2 (1—2M(r)/r)

allowing one to solve the corresponding unique mass-radius (MR) relation
that can be compared to observations. Up to small deviations caused by
rotational frequencies, magnetic fields, and other similar quantities varying
from star to star, the masses and radii of every NS in existence should, in
principle, fall on the same MR-curve, dictated by the low-temperature EoS
alone. Conversely, should an accurate simultaneous determination of the
masses and radii of several individual NSs become feasible one day, one may
reverse engineer the TOV equations to obtain the EoS of cold and dense
beta-equilibrated QCD matter all the way from vanishing density to the
maximal central densities realized in stable NSs.

The most straightforward way, in which one could, in principle, use the
perturbative QM EoS in NS physics, is by extrapolating the result to much
lower chemical potentials, where it would be matched to a nuclear matter
EoS, similarly extrapolated from below. The simplest implementation of
such a setup would typically involve a first-order phase transition at the
baryon chemical potential where the two pressures are equal, while a more
refined setting would allow for the presence of a mixed phase of both quark
and nuclear matter. Precisely this was done in [68, 101], where the three-
loop pressure of cold QM was first evaluated with a nonzero strange-quark
mass and then matched with phenomenological EoSs for high-density NM
(see Fig. 7). This represented a significant step forward from earlier calcu-
lations employing simplistic model EoSs for QM, such as that of the MIT
bag model [102], but the approach nevertheless suffered from multiple prob-
lematic issues. First, the 3-5n, densities, where the matching of the NM
and QM EoSs was performed, are well outside the realms of controlled first-
principles calculations in both phases, so that predictions for quantities such
as the transition density or the associated latent heat can be considered in-
dicative at best. Also, there is no robust way to quantitatively assess the
systematic uncertainty involved in such a setup, and potentially sizable con-
tributions from important physical phenomena such as the onset of hyperons
[103] or quark pairing [96] are altogether ignored.

The most important shortcoming of the above setup clearly originates
from the assumption that the low- and high-density EoSs and their respective
uncertainty ranges are applicable also in the problematic region of NS core
densities. To improve from here, a natural alternative is to divide the den-
sity interval from zero to infinity into not two but three parts: a low-density
regime where ab-initio nuclear-physics methods such as CET produce reli-
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Fig.7. Results from a naive matching of phenomenological hadronic EoSs (blue,
red, and yellow dots and diamonds) to the perturbative QM EoS both with (brown
band) and without (green) a phenomenological pairing contribution [68].

able results, a high-density one where the pQCD EoS for QM converges in
a satisfactory manner, and an intermediate region where no first-principles
results are available. In the last density interval, the EoS can be allowed to
behave in any physically consistent way, with only subluminality (¢s < 1),
thermodynamic consistency as well as a smooth matching to the low- and
high-density EoSs required.

The qualitative idea described above and illustrated in Fig. 8 was first
implemented by Kurkela et al. in 2014 [104], following a similar extrapolation
of the CET EoS by Hebeler et al. just one year before [105]. The exploratory
study of [104] involved the use of two- and three-part polytropes in the
intermediate density regime, i.e. functions composed in a piecewise manner
from ansitze of the form of p = xkn);. After discarding EoS specimens that
do not support the existence of the most massive NSs observed, M =~ 2M¢
with Mg standing for the solar mass, the resulting EoS band was seen to
considerably tighten from that obtained in [105] (see Fig. 8). In addition,
a set of somewhat ad-hoc limits imposed on the polytropic v indices in the
extrapolated EoSs of [105] were now set on a more firm footing and shown
to originate from the high-density pQCD constraint.

Without significant advances in astrophysical measurements that can
be applied to constrain the interpolated EoS band at intermediate densities,
tightening the EoS bounds derived in [104] would have been a very slow pro-
cess, driven solely by advances in the low- and high-density microphysical
calculations. In late 2017, a dramatic new observation was, however, an-
nounced by the LIGO and Virgo collaborations, who reported the first-ever
detection of a GW signal from the binary NS merger GW170817 [13—15].
The GW signal was soon accompanied by associated gamma-ray and kilo-
nova observations [16, 17|, suggesting that the merger remnant very likely
underwent a delayed gravitational collapse into a black hole (BH).
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Fig.8. Left: an illustration of the schematic idea behind the first model-indepen-
dent interpolation study of the NS-matter EoS [104]. The red line on the left
illustrates the low-density EoS from CET [105], the orange band on the right the
high-density EoS from pQCD [68, 106], and the dashed black line in between rep-
resents a two-part polytrope. Right: the resulting EoS bands from the study pre-
sented in [104]. Shown here are bands generated with two- (green) and three-part
(solid blue) polytropes as well as results from an earlier extrapolation study [105]
(dotted blue) and a two-part polytrope calculation without a constraint requiring
that two-solar-mass NSs be supported by all viable EoSs (turquoise).

From the point of view of EoS inference, the most useful constraint from
the first LIGO/Virgo papers was a nontrivial upper bound for the tidal de-
formability of an approx. 1.4-solar-mass NS — a quantity that characterizes
the extent to which the shapes of two inspiraling stars get deformed un-
der each others’ gravitational fields [14]. With accurate knowledge of the
so-called chirp mass of the merger, this bound was quickly translated to
a constraint for the NS-matter EoS, whereby a large fraction of otherwise
viable candidate EoSs could be discarded for predicting too large radii and
thus tidal deformabilities for light pulsars. Early papers implementing this
new bound in either model-independent EoS studies or specific model EoSs
included, e.g., [109-125|, of which the one by Annala et al. [109] was the
first one to systematically utilize the pQCD high-density constraint.

Another important insight that emerged from the GW170817 merger
was related to the likely formation of a black hole through either a so-called
supramassive or hypermassive NS (see, e.g., [126] for an extensive discus-
sion of these scenarios)”. Depending on the scenario considered, this leads
to either more stringent (the more likely hypermassive scenario) or weaker

" In short, in the hypermassive NS scenario, the remnant experiences a rapid (mil-
liseconds to a few seconds) gravitational collapse while still undergoing differential
rotation, whereas in the longer-lived supramassive NS scenario, the remnant has time
to turn from differential to uniform rotation, then slowly loses angular momentum,
and finally collapses to a BH in a timeframe from seconds to hours.
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(supramassive case) constraints that were implemented in an interpolation
setup featuring the pQCD EoS in [108] (see also [110-112], which derived the
first constraints on the maximal TOV mass of a nonorotating NS and [127]
for a later refinement). The corresponding interpolation routine started by
expressing the speed of sound squared as a piecewise-linear function of the
quark chemical potential, illustrated in Fig. 9, and resulted in the EoS and
MR bands of Fig. 10. In the latter results, radius constraints published by
the NICER Collaboration in 2021 were implemented as well, amounting to
an 11.1 km lower bound for the radius of a 2Ms; NS at a 90% credence
[10-12].

While the results of Fig. 10 still represent the state-of-the-art of hard-
cut-type interpolation analyses, there are questions that studies of this kind
are unable to answer or that would at least require a further layer of analysis:

1. What is the quantitative impact of the high-density constraint on the
results, i.e. would similar results have been obtained also without the
pQCD EoS that we have worked so hard to derive in these notes?

2. Is there a way to assign likelihoods for various EoS behaviors and
take measurement uncertainties into account? The use of hard cuts in
EoS inference is clearly suboptimal, as it forces one to make a binary
decision (accept or reject a given EoS) based on minuscule differences,
such as whether the most massive NS an EoS is able to support is
199M@ or QOOMQ

3. Is it possible to transform the EoS constraints to statements about
the phase of matter inside NS cores? In particular, can we somehow
estimate the likelihood of NS cores containing deconfined QM?

Below, we will address each of these questions in turn, covering both the
technical tools needed in this work and the results from the said analyses.
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Fig.9. A schematic illustration of the speed-of-sound interpolation routine, origi-
nally developed for [107]. The figure is taken from [108].
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Fig.10. An example of the EoS and MR results from the analysis of [108], where
information from the NS radius constraints from the NICER Collaboration and
the likely delayed gravitational collapse of the GW170817 merger remnant were
taken into account, assuming here the more conservative supramassive scenario.
The color coding refers to the maximal value the speed of sound squared attains at
any density, made feasible by the ¢2 interpolation routine of Fig. 9. The observed
behavior clearly suggests that a hypothetical upper limit for ¢2 (see, e.g., the recent
[128]) would carry significant additional constraining power for EoS inference.

Starting from the first point, one may, in principle, ask two slightly dif-
ferent questions: (1) Do the piecewise-defined interpolation functions used
in calculations such as [107-109] allow for sufficient complexity for the EoS,
so that the results are not biased by the EoS ansétze? and (2) How would
the results change if the corresponding analyses were performed without
the high-density constraint? To address both issues at one go, Komolt-
sev, Kurkela, and collaborators decided to inspect the impact of the pQCD
constraint with an entirely different set of tools. In [129], they first demon-
strated that the high-density constraint implemented at 40ng limits the
NS-matter EoS down to below 3ns with no assumptions except for causal-
ity and standard thermodynamic relations. Following this, they employed
a very conservative nonparametric Gaussian Process (GP) interpolation to
pinpoint the effects of the pQCD constraint on the NS-matter EoS [130, 131].
The most important takeaway from these studies, where the pQCD limit
was treated in a similar fashion to astrophysical constraints and could be
turned on and off at will, was that it significantly softens the EoS at in-
termediate and high densities, leading to a lower maximum mass for sta-
ble NSs and a higher likelihood for the formation of a BH in binary NS
mergers. In [131], the authors, in addition, introduced a less conservative
method for implementing the pQCD constraint to EoS inference calculations,
with the corresponding marginalized QCD likelihood function available at
https://zenodo.org/records/10592568
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As to the second question concerning likelihoods and measurement un-
certainties, a very natural step forward is to extend the hard-cut analyses
described above towards Bayesian statistical inference, built on the famous
Bayes’ theorem

P(data|EoS)P(EoS)
P(data)

P(EoS|data) = (50)
In short, the idea is to turn the (difficult) question of determining the relative
likelihoods of various EoSs based on given observational data around and
instead solve the (substantially easier) problem of determining the likelihood
of the observational data based on a given EoS. Such a setup has by now
been implemented to the NS-matter EoS inference by multiple groups, with
early adaptations including, e.g., [132-136]. A key finding from these studies
is the very likely presence of a bump, i.e. a maximum, in the speed of sound
of NS matter at densities realized within physical NSs.

Finally, successfully answering the third and last of the above questions
requires knowledge of the expected properties of both nuclear and quark
matter in the strongly-coupled regime, where the deconfinement transition is
expected to occur but no controlled first-principles tools are available. The
unavailability of ab-initio results makes the question somewhat ill-posed,
but at least some guidance can be sought from a more tractable regime
of high-energy-density QCD matter, high-temperature QGP. For this sys-
tem, lattice simulations carried out by multiple collaborations over the past
two decades (see, e.g., [137, 138]) have convincingly demonstrated that the
transition from a hot hadron gas to QGP takes place as a crossover transi-
tion at a temperature of approx. 155 MeV and an energy density of slightly
below 400 MeV /fm?, although the precise numbers slightly depend on the
quantities being tracked. The most striking difference between the confined
and deconfined phases is related to the approximative conformal symme-
try of the latter: while the properties of hadronic matter are characterized
by the O(GeV) hadron masses, in QM, the only scaleful parameters are
the O(100 MeV) mass of the strange quark and the dynamically generated
Agep ~ 300 MeV scale parameter. This is reflected in the rapid confor-
malization of lattice results for multiple quantities, when the temperature
of the system is increased past the transition region, cf., e.g., Figs. 7 and 11
of [138].

For the cold and dense QCD matter inside NSs, the lack of first-principles
predictions to compare against means that phase identification must at least
partially rely on a comparison of the inferred properties of NS matter with
the known properties of QM and NM at considerably higher and lower den-
sities, respectively. Fortunately, there exist a large number of physical quan-
tities with clear predictions in various limits to which we can compare the
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results of our model-independent EoS inference. Such quantities include,
e.g., the speed of sound squared c2, the normalized trace anomaly and its
logarithmic derivative with respect to energy density, A = (e —3p)/(3¢) and
A’ =dA/dIne, the “conformal distance” d. = /A2 + (A’)2, the polytropic
index v = dIlnp/dlne, as well as the normalized pressure p/pgee. In Ta-
ble 1, taken from [139], we summarize the values these quantities take in
various limits: sub-saturation-density CET calculations, model results for
NM at NS-core densities, pQCD calculations around np = 40 ng, field theo-
ries exhibiting exact conformal symmetry (CFTs), and systems undergoing
a discontinuous first-order phase transition (FOPTs). A key takeaway from
this table is that, as expected, high-density QM is considerably closer to
the conformal limit than low- or high-density NM, implying that a possible
conformalization of NS matter would be a strong indication of the presence
of deconfined matter within NS cores.

The first serious attempt to inspect the possible conformalization of mat-
ter inside NS cores in a model-independent fashion was made in [107], where
the primary quantities studied included the polytropic index ~, the speed
of sound squared c¢2, and the normalized pressure p/pgee. The results that
emerged from this hard-cut-type study are summarized in Fig. 11. In short,
they indicate that while the properties of matter in the inner cores of light
1.4Mg NSs (blue and cyan diamonds in the figure) are well in line with
those expected based on model calculations for dense NM, things look dra-
matically different in the cores of maximally massive NSs (red and magenta
circles). In the latter case, the inferred properties of NS matter lie consid-
erably closer to those of QM at perturbative densities, indicating the likely
presence of deconfined matter inside the most massive stable NSs.

Table 1. A summary of the values that several physical quantities take in various
limits defined in the main text. The table is taken from [139].

CET Dense NM  Pert. QM CFTs FOPT

2 <1 (0.25,0.6] <1/3 1/3 0

A ~1/3 [0.05,0.25]  [0,0.15] 0 1/3—ppr/e
A ~0  [-04,-01] [-0.15,0] 0 1/3- A
de ~1/3 [0.25,0.4] <0.2 0 >1/(3v2)
v ox25 [1.95,3.0] [1,1.7] 1 0

p/pfree <1 [025 5 035] [055 1] 7 pPT/pfree
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Fig.11. The model-independent NS-matter EoSs from [107] (thin gray lines) plot-
ted as functions of normalized pressure, polytropic index, and speed of sound
squared, and compared to the high-density pQCD limit (blue band) and viable
models of high-density NM (thick black lines). Shown are also blue and cyan di-
amonds corresponding to the centers of 1.4Mg NSs according to the interpolated
and model EoSs, respectively, and the same for maximally massive NSs (red and
magenta circles).

In the recent work [139], the argument for QM cores was put on a con-
siderably firmer footing by tracking the conformalization of a number of
new physical quantities, utilizing the largest set of NS observations to date,
and most importantly, taking advantage of Bayesian inference techniques in
the analysis. As an optimal quantity for tracking the conformalization of NS
matter, the authors of [139] chose the conformal distance d. = /A% + (A')2,
which extends the use of the normalized conformal anomaly, first proposed
in the NS context by Fujimoto et al. [140]. The reasoning used was sim-
ple: while A may take on small values due to the quantity changing its sign
around a given density, d. tends to zero only when both A and its rate of
change are very small. In addition, when the triplet A, A’, and d. all tend
to zero, then the closely related quantities ¢2 and ~ will also approach their
conformal values of 1/3 and 1 due to the relations

2
A=l s A’_c§<1—1>. (51)
3 ol
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In Fig. 12 (left) from [139], we indeed witness the rapid conformalization
of d. between the central densities of 1.4M and maximal-mass NSs. The
corresponding likelihood for the existence of conformalized matter in the
cores of the most massive stable NSs was found to be around 80-90%, with
the remaining 10-20% likelihood corresponding to EoSs exhibiting FOPT-
like behavior at the central densities of maximal-mass NSs, indicating the
likely presence of a destabilizing phase transition (see also [141] for a related
study with similar conclusions). Whether this observation can be interpreted
as an indication of the existence of QM cores constitutes, in principle, a sep-
arate question, but some further reaffirmation can be obtained from the
normalized pressure, shown in Fig. 12, right, obtaining a value indicative of
a QM-like number of effective degrees of freedom at the same densities. It is
indeed worth noting that at high temperatures, the deconfinement transition
has been shown to occur when p/pgee < 0.2 [137, 138], while in the cold and
dense case, the same quantity obtains values around 0.4 in the inner cores
of maximal-mass stars.

As noted already in [107, 139] and alluded to above, one viable sce-
nario still remains that would altogether forbid the existence of QM cores:
a strong FOPT destabilizing the NS mass-radius sequence as soon as the
central density of the star reaches the transition density. While it is nontriv-
ial to make likelihood comparisons between two disjoint EoS ensembles —
e.g., the non-QM EoS in studies like [139] corresponded to arbitrarily rapid
crossovers — this issue has been studied in recent literature to some extent.
In the hard-cut study [142], it was demonstrated that if a strong first-order
transition is inserted in a simple polytropic NS-matter EoS, it is possible
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Fig.12. The behavior of the conformal distance d. and the normalized pressure
D/Dtree I a recent Bayesian study of the NS-matter EoS [139]. Shown are 68 and
95% credible intervals from a speed-of-sound interpolation and the 68% credible
interval from a GP calculation, while the vertical bars indicate the central densities
of 1.4Mg, 2Mg, and maximal-mass (Mroy) NSs at the 68% level.
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to construct EoSs that extend beyond the limits derived in papers such as
[107, 108]. More recently, Komoltsev implemented FOPTs to a Bayesian
framework involving GP regression [143], finding no evidence either favoring
or disfavoring destabilizing solutions. Other features seen in previous EoS
inferences without explicit phase transitions were seen to stay intact, though,
including most importantly a clear peak in the speed of sound. More work is
clearly needed to confirm or rule out the presence of a destabilizing FOPT,
possibly using a future postmerger GW signal that may carry traces of the
presence of a discontinuous transition [144, 145].

8. Outlook to future developments

In the lecture notes at hand, we have reviewed in some detail both the
methods used in first-principles perturbative thermal field theory calcula-
tions within high-density quark matter, and the applications of these results
to the model-independent determination of the neutron-star-matter equation
of state. In this discussion, we have not aimed at a self-consistent text-book-
style presentation, but have rather tried to aid the interested reader in their
journey of self-study. We have done so by filling in a number of gaps left
uncovered in existing textbooks on thermal field theory and by providing nu-
merous references to original research articles, including both older classics
of the field and more recent studies.

The topic of these lecture notes belongs to a growing subfield of nuclear
and particle physics, aimed at understanding the properties of strongly in-
teracting matter inside NSs. This is a rapidly evolving research topic, not
least due to the pace, at which neutron-star observations have progressed
during the past 10-15 years. Many recent advances have been made possi-
ble by an efficient interplay between microscopic theoretical calculations and
new observational insights, of which the quest to discover a new phase of
QCD matter inside NS cores represents a prime example. Without ab-initio
limits for the properties of low-density nuclear matter and high-density QM,
NS observations would at best provide ballpark estimates for the properties
of NS interiors, and without new observational constraints, the accuracy of
EoS inference would not have progressed much during the past decade.

Within the next couple of years, several important advances relevant for
the physics of NSs and their potential QM cores can be expected to emerge
from the microscopic side. CET and pQCD calculations of the thermody-
namics of low-temperature QCD matter are advancing at a rapid pace, with
the completion of the O(a?) pressure of cold and dense QM being finally in
sight. Once complete, this result is expected to dramatically improve the
precision to which we know the properties of deconfined matter at densities
of the order of 15-40n,. This will immediately have a significant impact
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on the model-independent inference of the NS-matter EoS, which continues
to be an active topic of research [146-148|. Alongside such developments,
the transport properties of dense QM are presently under intense scrutiny,
and model-independent bounds for the temperature dependence of the NS-
matter EoS, improving previous estimates such as those of [149, 150], are
upcoming. As reviewed in these lecture notes, a combination of such the-
oretical results and future observational advances, including the potential
detection of a postmerger GW signal from a binary NS merger, are expected
to hold the key to resolving long-standing puzzles in nuclear astrophysics.

I would like to thank Niko Jokela, Aapeli Karkkédinen, Mika Nurmela,
Risto Paatelainen, and Tomi Ruosteoja for useful comments on early versions
of these lecture notes.
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