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These lecture notes consist of two major connected parts. The first
part (Sections 1 and 2), after a brief historical introduction, deals with the
physics of critical points in thermodynamic equilibrium. The features of
the fluctuations relevant to the QCD critical point search are highlighted.
The second part (Sections 3 and 4) focuses on the recent developments in
the description of the fluctuation dynamics especially relevant to the QCD
critical point search in heavy-ion collisions.
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1. Introduction

Almost exactly 200 years ago, Cagniard de la Tour performed an exper-
iment which led to the discovery of critical points in a number of liquids [1].
One can think about this groundbreaking experiment as an attempt to ad-
dress the following question: What happens if a liquid is heated in a sealed
container to such (temperature and pressure) conditions that its propensity
to evaporate competes with its propensity to expand, as illustrated in Fig. 1.

Cagniard de la Tour discovered that the boundary (meniscus) separating
liquid and gas phases disappears. This phenomenon occurred for all liquids
he experimented with, including water. He also described the phenomenon
now called critical opalescence.

Michael Faraday, at the time, was working on the problem of liquefying
gases — his report on the liquefaction of chlorine appears in the same issue
as the English translation of Cagniard de la Tour’s article [1|. Faraday
took great interest in Cagniard de la Tour’s discovery, in particular, in its
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Fig.1. A schematic representation of Cagniard de la Tour’s experiment, with the
heating “histories” indicated by the vertical (fixed volume) lines on the pressure-
density diagram (solid lines are isotherms). One can think of this experiment as
a (density) scan of the phase diagram. On the left: if a small amount of fluid is
placed in a sealed container and heated, the fluid evaporates and the meniscus goes
down. On the right: if the fluid fills most of the container, the fluid expands and
the meniscus goes up. There must be a certain intermediate, critical filling fraction
at which evaporation and expansion compete. What happens to the meniscus at
this point?

intriguing implication of the continuity between liquid and gaseous phases.
Curiously, Faraday was frustrated that Cagniard de la Tour had not named
the novel phenomenon and struggled to come up with a name he needed to
refer to a “point at which the fluid and its vapour become one according to
a law of continuity” [2].

Full understanding of the ubiquity of the phenomenon and its logical
consequence — continuity between “liquid and gaseous states” — was solid-
ified after systematic quantitative studies by Andrews [3], who also coined
the name “critical point” we use today.

The desire to explain the liquid—gas continuity and the critical point led
Leiden University Ph.D. student van der Waals [4] to discover a model of the
equation of state based on, revolutionary at the time, molecular description
of matter. The law of corresponding states formulated by van der Waals to
describe near-critical fluids paved the way for the concept of universality of
critical phenomena.
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The phenomenon of critical opalescence was understood by Smoluchowski
[5] as an effect of density fluctuations. This discovery was followed by quan-
titative theoretical description by Einstein [6].

The ubiquity of critical phenomena led Landau to develop the well-known
classical theory of phase transitions [7|. But it took much more work to un-
derstand the crucial role of fluctuations. This work includes the pioneering
contributions by Fisher, Kadanoff, and Wilson, which led to the modern un-
derstanding of the (fluctuating) field theory (including quantum field theory)
in terms of such essential concepts as scaling and renormalization group.

Thermodynamic critical points are ubiquitous in Nature. Not only prac-
tically all fluids possess such a point, but similar phenomena occur in com-
pletely different physical systems, such as, e.g., ferromagnets. The univer-
sality of critical phenomena extends over a vast range of physically different
systems.

Hot and dense QCD matter dominating the Universe moments after the
Big Bang, or recreated in heavy-ion collision experiments, is a fluid. It is
natural to ask if this fluid also possesses a critical point. This is a non-trivial
question first of all because this fluid, unlike the fluids in which critical points
have been observed so far, is relativistic. In that respect, we are especially
interested in the critical point which is related to deconfinement and chiral
restoration transition, and we call this point the QCD critical point!.

There are two necessary prerequisites for the existence of the critical
point. One of them is the existence of two phases (e.g., liquid and gas).
QCD matter does, indeed, possess such two phases, shown in Fig. 2 —
Hadron Resonance Gas (HRG) and Quark—Gluon Plasma (QGP), the latter
having liquid properties [9]. Another prerequisite is the continuity between
these two phases. Such a continuity has been, indeed, by now rather firmly
established by first-principle lattice calculations at zero net baryon density,
or up =0 [10].

Does the crossover separating the two QCD phases at zero pupg turn into
a first-order transition at some finite value of up, and what is that value?
Le., where is the critical point on the QCD phase diagram (see Fig. 2)?
Unfortunately, this question cannot, at this time, be answered by a lattice
calculation due to the notorious sign problem.

However, this question can be addressed experimentally, by scanning
QCD phase diagram in heavy-ion collision experiments [11], as illustrated
in Fig. 2. The sought signatures of the critical point are based on the non-
monotonic dependence of fluctuations on the collision energy, \/syn [8, 12, 13].

! The critical point of nuclear matter (see Fig. 2) is also of interest. However, its ex-
istence is not in question and its location at temperature of the order of 10 MeV
(commensurate with the binding energy of nuclear matter), much smaller than nu-
cleon rest energy, makes it somewhat similar to non-relativistic liquid—gas critical
points.
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Fig.2. A schematic rendering of the QCD phase diagram as it is currently un-
derstood or conjectured [8]. Superimposed are expansion “histories” of fireballs
created in heavy-ion collisions at varying energies used in the beam energy scan
experiments (white lines labeled /sy in GeV). The experimental freezeout points
(red) illustrate the dependence of the freezeout point on \/syy.

While fluctuations in thermodynamic equilibrium near critical points,
and their role in such critical phenomena as critical opalescence have been
long and well understood, heavy-ion collisions present an additional chal-
lenge — fluctuation dynamics.

The QCD matter (QGP) fireball created in heavy-ion collisions evolves
sufficiently slowly that it can be described by hydrodynamics. However,
the separation of scales is not astronomical, as in usual condensed matter
contexts. As a result, fluctuations, which take time to relax to evolving equi-
librium during the expansion, could deviate substantially from equilibrium
values at freezeout.

After a brief introduction to equilibrium fluctuations (which can be also
found elsewhere, e.g., [8]), these lectures will describe the recent progress
achieved in the dynamical description of fluctuations.

2. Fluctuations in thermodynamics, critical fluctuations

2.1. Relation between equation of state and fluctuations

In thermodynamic equilibrium (by definition), the probability of the sys-
tem to be found in a given microscopic, i.e., quantum, state depends only
on the conserved quantum numbers of this state, such as energy, momen-
tum, charge, etc. Therefore, the probability of a given macroscopic state,
characterized by a given set of macroscopic variables, such as energy, is
proportional to the number of microscopic states with these values of the
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macroscopic variables. That probability is equal to the exponential of the
entropy, by definition. Therefore, the dependence of the entropy on en-
ergy, etc., i.e., the equation of state (EoS), determines the probability of the
fluctuations for a system in thermodynamic equilibrium [14].

This fundamental relationship between fluctuations and EoS is at the
core of Einstein’s description [6] of the density fluctuations, whose singular
behavior near critical points explains the phenomenon of critical opales-
cence [5].

The entropy in question is the entropy of the open system which can ex-
change conserved quantities, such as energy and charge with the surround-
ings (thermodynamic bath) at temperature 7" and chemical potential . The
corresponding probability distribution for the values of energy density € and
charge density n is given by

P(e,n) ~exp{V][s(e,n) — Be+ an]} , (1)

where = 1/T, o = p/T, and V is the volume of the thermodynamic
system. In the thermodynamic limit, i.e., for large V', the probability is
sharply peaked around the maximum determined by the familiar conditions

Le., the entropy s(e,n) determines the relationship between conserved den-
sities €, n, and the corresponding thermodynamic quantities 1" and pu.

The quadratic form of second derivatives of the entropy must be negative
to ensure thermodynamic stability. This form can be diagonalized using
variables m = s/n (specific entropy) and p (pressure). The probability of
small fluctuations in terms of these variables is given by

Pwexp{—‘g <n2(5m)2+wﬁ62(5p)2+...>}, (3)

Cp S

where ¢ = (9p/0¢)y, and w = € + p.

Specific heat ¢, = Tn(0m/0T), diverges at the critical point. This corre-
sponds to the probability of fluctuations developing a “flat direction” along
which §p = 0, where the fluctuations of the specific entropy V{((6m)?) =
¢p/n? become large?. The non-monotonic behavior of fluctuations as the

2 Other thermodynamic quantities also develop large fluctuations at the critical point.
For example, V{(6n)?) = xrT, where xr = (On/0u)r is also divergent. The specific
entropy m = s/n is special from the hydrodynamic point of view. Unlike, e.g., baryon
density, m = s/n is a normal hydrodynamic mode in ideal hydrodynamics, i.e., being
a ratio of conserved densities specific entropy is a diffusive mode which does not mix
with propagating sound modes.
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critical point is being approached and passed during the QCD phase di-
agram scan has been proposed as a signature of the QCD critical point
[12, 15].

Before proceeding, let us pause to note that in these lectures, we focus on
the fluctuations intrinsic in any system which affords local thermodynamic,
statistical description. These fluctuations are determined by the equation
of state, as discussed above. In the context of heavy-ion collisions, we must
distinguish these fluctuations from the fluctuations which are determined
by the initial state of the system. For example, from the fluctuations of the
initial geometry of the system. In experiments, such separation is not always
trivial. Typically, it involves selecting collisions with similar centrality, i.e.,
similar collision geometry. The effects of the initial fluctuations are also
qualitatively different from those of thermodynamic fluctuations in that the
correlations induced by initial fluctuations are longer range (in longitudinal
rapidity space) than the thermodynamic fluctuations we discuss [16]. Most
importantly, the \/syn dependence of the initial fluctuations does not reflect
the non-monotonicity inherent in the thermodynamic fluctuations in the
vicinity of the critical point.

2.2. Universality and non-Gaussianity of critical fluctuations

Since the equation of state is universal near critical points, the fluctua-
tion phenomena are also universal. In this section, we shall describe some
universal properties of the fluctuations which are relevant to the search for
the QCD critical point in heavy-ion collisions.

Since the coefficient of the (6m)? term in Eq. (3) vanishes at the critical
point, non-Gaussian terms in Eq. (3), such as dm3, ém?*, etc., become im-
portant. This makes non-Gaussianity of fluctuations a telltale signature of
the critical point [17].

Similarly, the vanishing of the coefficient of dm? in Eq. (3) makes gradient
terms, such as (Vdm)?, important and leads to the divergence of the corre-
lation length £ of the fluctuations at the critical point. The non-Gaussianity
of fluctuations and the divergence of the correlation length go hand in hand
since the limit V/£2 — oo, which ensures the Gaussianity of the fluctuations
via the central limit theorem, is in obvious conflict with & — oo.

The fluctuations at length scales of the order of the correlation length
cannot be described by the variable §m, or by the uniform “mean field” dm,
alone. Instead, the fluctuating spatially varying field dm(z) must be consid-
ered. The corresponding scalar field theory — ¢* theory in three dimensions
— is universal in that it describes a wide range of critical phenomena from
liquid—gas critical points to uniaxial (Ising) ferromagnets. The full details
of the universal theory of critical phenomena are beyond the scope of these
lectures, and are covered in many textbooks and reviews on critical phenom-
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ena [18, 19]. Here, we shall emphasize only the basic properties which are
most relevant to the critical point search in the beam-energy scan heavy-ion
collision experiments.

The universality means that we can consider fluctuations of m, or any
other quantity, whose fluctuations diverge at the critical point, such as
baryon number or entropy density (and in the case of ferromagnets, magne-
tization density) as an order parameter and map it onto the field variable ¢
in the ¢* theory, i.e.,

Am=m—me~ ¢, (4)

where m is the value of m at the critical point and the implicit coefficient
of proportionality is determined by the normalization of the field ¢. The
universality of the critical point phenomena means that the probability of
fluctuations can be expressed in terms of the field ¢

Pl¢] ~exp{—v <—h¢+;¢>2+ 2¢4+;<V¢>)2.-->}, (5)

where we expanded in powers of ¢ and kept the leading non-Gaussian term
¢* as well as the leading gradient term (V¢)2. At the critical point, the
ordering field A and the reduced temperature r vanish. The probability
becomes non-Gaussian and, at the same time, the correlation length £, pro-
portional to r~1/2 in the mean-field approximation (i.e., neglecting fluctu-
ations), diverges. The cumulants of the order parameter ¢ also diverge,
according to

() ~ &%, ()~ (oh) ~ T (6)

with (approximate) powers different from mean-field values due to fluctua-
tions. Here and below “c” stands for “cumulant”, i.e., (¢*)¢ = (¢?) — 3(¢?)2.

It is important that, unlike the variance (¢?), which measures the width
of the probability distribution, the cubic and quartic cumulants, which mea-
sure the shape, are not positive definite. The cubic cumulant, measuring the
skewness of the probability distribution P, has the sign determined by the
sign of h. The sign of the quartic cumulant can be understood by looking
at the value of the cumulant along the crossover line r > 0 at h = 0, as
illustrated in Fig. 3. The distribution along this line starts off as Gaussian
away from the critical point and then splits into two maxima on the phase
coexistence (first-order phase transition) line for r < 0. As r — 40, the
distribution becomes “flatter” which is represented by the negative value of
the quartic cumulant?.

3 The quartic cumulant is related to kurtosis, K: K = (¢*)°/($?)?, which has an
advantage of canceling the overall normalization of ¢.
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Fig. 3. Left: The sign of the quartic cumulant k4 = (¢*)¢ as a function of ¢* (Ising
model) field theory parameters h and r. Right: Schematic representation of the
probability distribution P[¢] in Eq. (5) at different points on the h = 0 line.

For » < 0, on the coexistence line, while the distribution is symmetric,
the symmetry is spontaneously broken and the fluctuations occur around
one of the maxima. This skewness effect dominates the quartic cumulant
making it positive (see, e.g., [20] for more details).

The linear mapping from the Ising model variables i and r and the QCD
variables g and T" captures the singular behavior of the QCD thermodynam-
ics due to the fluctuations of the order parameter field ¢, as well as due to
the next-to-leading relevant operator (¢ in the mean-field approximation)
[21-23].

Such a mapping has been standardized in Ref. [24] using 6 parameters:
T, e, w, p, a1, and as. The parameters T, and up. set the location of
the QCD critical point, while oy is the angle of the slope of the coexistence
line (first-order phase transition line) at the critical point in the T versus up
plane. It is also the slope of m = m, (critical isentrope) line at the critical
point and is obtained by mapping the zero magnetization line ¢ = 0 (i.e.,
zero magnetic field h = 0) of the Ising model onto the QCD phase diagram.
The angle «y is the angle of the line on the QCD phase diagram onto which
the constant temperature line passing through the Ising critical point maps.

The non-Gaussian cumulants of the order parameter such as m are pro-
portional to those in the Ising model (or ¢* theory, see Eq. (4)), but mapped
onto the QCD phase diagram. In particular, these cumulants contain sin-
gular contributions which diverge at the critical point with universal powers
of the correlation length, given approximately by [17]

A((om)*) ~ >, A(Om)P°) ~ €M A(Bm)h) ~ €T, (7)

where A reminds us that this is a contribution to cumulants, singular at
the critical point. There are, of course, less singular and regular contribu-
tions, or baseline. The search for the critical point is aimed at detecting the
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non-monotonic dependence of fluctuations measures on the collision energy
V/SNn as the critical point is approached and passed, i.e., as the correla-
tion length increases and then shrinks back to non-critical background, or
baseline, values.

For example, the quartic cumulant around the QCD critical point is illus-
trated in Fig. 4 (a) [20]. The resulting dependence on the collision energy,
as it is varied in the region where the freeze-out occurs near the critical
point, is illustrated in Fig. 4 (b). The characteristic non-monotonicity of
this cumulant is one of the signatures of the critical point searched for in
the beam energy scan experiments [8].

SNN

Wy

baseline
- wy

UB
(a) (b)

Fig.4. The equilibrium expectation for the quartic cumulant of fluctuations as a
function of temperature and baryon chemical potential on the QCD phase diagram
in the vicinity of the critical point. Red and blue colors reflect the sign of the
cumulant — negative and positive respectively. Compare to Fig. 3. The sign
changes as the QCD phase diagram is scanned by varying /sy, and thus T
and pp, along the freeze-out “trajectory” (dashed green line).

The most recently published experimental measurements of quartic cu-
mulants by the STAR Collaboration indicate a non-monotonic dependence
of the type similar to the one shown in Fig. 4 (b) (see, e.g., Fig. 4(2) in
Ref. [25]). While the magnitude of the cumulant sensitively depends on
the EoS, and thus is hard to predict (hence the lack of the vertical scale
in Fig. 4 (b)), the experimental results indicate that monotonic dependence
is excluded at 3.1c level [25-27]. While not yet a definitive indication of
the presence of the QCD critical point, this intriguing result motivates the
second phase of the beam energy scan (BES-II) program which has collected
higher statistics data being processed and analyzed currently.
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We shall focus on the recent progress achieved in connecting these equi-
librium fluctuations to the experimental measurements. There are at least
two steps that need to be made to get from the equilibrium thermodynamic
fluctuations to the experimental observables:

First, like thermodynamic variables themselves, the fluctuations of these
variables evolve. This evolution is subject to conservation laws which may
lead to significant memory effects, i.e., the lag of the fluctuations behind the
instantaneous equilibrium values.

Second, the thermodynamic/hydrodynamic quantities are not measured
by experiments directly. An important step is connecting the fluctuations of
these quantities to the observables, such as measures of particle multiplicity
fluctuations and correlations.

The following two sections will review the recent development towards
accomplishing these two steps necessary for connecting the theory and the
experiment.

3. Fluctuations in hydrodynamics

8.1. Stochastic hydrodynamics

There has been significant recent progress in understanding and describ-
ing the dynamics of local thermodynamic fluctuations in hot relativistic flu-
ids, such as the QCD matter making up a heavy-ion collision fireball.

The evolution of the QCD matter in the heavy-ion fireball is successfully
described in the framework of hydrodynamics. This description is inherently
statistical, and therefore, fluctuations are an essential part of this descrip-
tion. One can also understand this fact by invoking fluctuation—dissipation
theorem according to which dissipative systems (such as non-ideal hydrody-
namics) have to be stochastic.

There are two complementary approaches for describing dynamics of
fluctuations, which we shall refer to as stochastic and deterministic. Both
begin with the Landau-Lifshits theory of hydrodynamic fluctuations [28].
In this theory, generalized to a relativistic context in Ref. [16], the equations
of hydrodynamics are stochastic.

The hydrodynamic description exists due to the separation of scales. The
timescale of relaxation to local equilibrium (typical microscopic time, such
as inter-collision time) is much shorter than the time needed to transport
conserved quantities and establish global equilibrium. This is typically a
diffusion time proportional to the square of the size of inhomogeneities in
the system. This latter slow evolution process is essentially governed by
conservation equations, which we can write generically as

OuJ" =0 (8)
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by combining all conserved currents into an array
g ={ng. o} (9)

We use the ‘breve’ accent to denote stochastic (fluctuating) quantities. For
QCD, such conserved currents include currents of energy and momentum,
T+ as well as conserved charge currents, NY', among which we shall focus
on the baryon charge ¢ = B.

While each current involves one time and three spatial components, there
is only one equation for each current in (8). Therefore, to close the system of
equations, we need to express all 4 current components in terms of 1 variable
— the conserved density. To maintain relativistic covariance, we want this
density to be a covariant object (scalar for the baryon charge density, or
vector for energy-momentum density). The density in the lab frame would
not do.

The fluid itself, however, allows us to define (in each space-time point) a
reference frame associated with fluid’s motion. This frame is often referred
to as the “local rest frame” of the fluid. Following Landau, we chose for that
purpose the frame in which the momentum density vanishes. The 4-velocity
of such a frame solves the following equation (known as “Landau condition”):

TH G = eut . (10)

Since 7% fluctuates, so does #*. Equation (10) also defines the energy
density € in the fluid’s rest frame. The rest frame charge density is defined
similarly 7q = @, Ny’

It is convenient to define an array of these covariant variables — one for
each conservation equation in (8)

U =, J" = {iy, &} . (11)

In order to close the system of equations, we need to express all components
of the currents in J* in terms of the covariant variables in ¥. The separation
of scales in hydrodynamics means that this relationship is local. I.e., the
currents J (z) are functions of variables ¥(z) and its gradients at the same
point x

JHW] = {nut, eu'u” — p(g"" — uHu")} + diffusive/viscous gradients. (12)

The key point of the Landau—Lifshits theory of hydrodynamic fluctu-
ations is that the constitutive relations such as (12) are only satisfied on
average — hence the absence of the ‘breve’ in Eq. (12). For fluctuating
quantities, there is a random discrepancy, which is due to the microscopic
degrees of freedom excluded from the hydrodynamic description. Hence,

Jh =g ||+ 1", (13)
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where Z* is the local noise, <f“> = 0, whose correlation function,
(2" @) T (22)) ~ 6D (w1 — 22), (14)

is determined by the fluctuation—dissipation theorem, ensuring that the equi-
librium fluctuations and correlations have the correct magnitudes in agree-
ment with thermodynamics.

The evolution of fluctuations can be then described by, for example,
directly solving this system of stochastic equations (8) and (13). In a nu-
merical simulation, this stochastic approach, however, produces a problem
(also known as infinite noise problem) due to the fact that the noise is sin-
gular at 1 = x9 in Eq. (14). The resulting solutions are dependent on the
hydrodynamic cutoff, i.e., the finite elementary hydrodynamic cell size, b,
complicating the “continuum limit” b — 0. Some solutions to this problem
within a numerical simulation have been proposed and implemented in the
literature [29, 30|, but we shall not discuss them here.

8.2. Deterministic approach to hydrodynamic fluctuations

The approach which deals with the infinite noise problem before the
actual numerical simulation is performed has been also developed recently
for Bjorken flow [31-33|, for arbitrary relativistic flow [34-36|, and for non-
Gaussian fluctuations [37, 38|. In this deterministic approach, one expands

in fluctuations around the average ¥ = (%)
U=+, (15)

thus obtaining stochastic equations for the fluctuations é¥ on the deter-
ministically evolving inhomogeneous fluctuation averaged background ¥ (x).
These equations can then be used to derive deterministic equations obeyed
by the correlation functions of the fluctuations, i.e., by averages of the prod-
ucts of the fluctuations, such as (0¥ (z1) 0¥ (x2)).

The short-distance singularity of the noise results in ultraviolet diver-
gences in the deterministic equations — the infinite noise problem. Indeed,
expanding constitutive equations (13) to quadratic order and averaging, one
finds

1 92gH

§W<m(g¢) oWy (2)) + ..., (16)

(I"(@)) = 7w @) +

where a, b index hydrodynamic variables in the array (11). The last term in
Eq. (16) is singular because the correlator of hydrodynamic variables is eval-
uated at coinciding points, and in (and near) equilibrium (0%, (x1)0W(z2)) ~
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0(z1 — x2). The support of the delta function is of the size of the hydro-
dynamic cell b, over which the operators defining conserved densities are
averaged to obtain classical (stochastic) hydrodynamic variables ¥.

The key observation is that these singular (divergent in the limit b — 0)
contributions are local due to the hydrodynamic separation of scales we
discussed already. Thus, the divergent terms in Eq. (16) must simply renor-
malize the local terms already present in the “bare” constitutive relations in
Eq. (12). The resulting system of renormalized equations for hydrodynamic
evolution of the renormalized average densities, as well as the correlation
functions, is ultraviolet finite, i.e., cutoff independent, and the continuum
limit can be taken (see, Refs. [35, 36] for more detail).

After the renormalization, the averaged hydrodynamic equations keep
the form of usual hydrodynamic equations to the first order in gradients
with renormalized, i.e., physical, equation of state and transport coeffi-
cients. However, finite (i.e., cutoff-independent) fluctuation contributions
appear beyond that order. These terms introduce contributions non-local in
space (effectively being of order 3/2 in gradients) and also non-local in time,
leading to the phenomena known as “long-time tails”. Near the critical point,
these fluctuation effects also lead to critical slowing down of the relaxation
to equilibrium [34] and the related divergence of kinetic coefficients, most
notably, of bulk viscosity [34, 36, 39].

8.8. Multipoint Wigner transform

Since fluctuations occur on shorter length scales than the hydrodynamic
evolution of the background [31, 34, 35|, it is convenient to consider Wigner-
transformed equal-time correlation functions. For a fluid at rest globally,
the Wigner transform definition is straightforward

Wan(t, x;q) = /dgy <5Wa (t, T+ %) '8 (t, T — %) > e 'Y (17)

where 0¥, is the fluctuation of a hydrodynamic field from array (11) labeled
by index a.

Non-Gaussianity of fluctuations, important for the critical point search,
is described by connected correlation functions of k£ > 2 fluctuation fields

Hayooap(tx, . xp) = (00, (8 @) ... 0W,, (L, @) ... )0 (18)
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The corresponding generalization of the Wigner transform was introduced
in Ref. [37] in terms of the Fourier integral with fixed midpoint

o= w (19)
i.€.,
Wcu...ak (t, q,. .. ,Qk) = /d3y1 efiql-yl. .. / d3yk e*iqk-yk
4+ 4
%53 (ylkyk> Huy. (t,x+y1,....,x+1yp). (20)

Due to the delta-function factor in Eq. (20), the function W does not change
if all gs are shifted by the same vector. This means that one of the q
arguments is redundant. In practice, it is sufficient to know the function W
at all values of ¢ which add up to zero. In particular, the correlator Hg, . q,
can be obtained via inverse transformation

B o B oo
Ha1...ak(t;w17...,$k) :/(27:_1)13 equ yl"‘/(Qﬂ_q)k;) elqk Yk

x(21)36®) (g1 + - + @) Way . o (t 25 G1 - Qi) (21)

where y; = x; —x. For k = 2 the generalized Wigner function Wy (t, —q, q)
coincides with the usual 2-point Wigner function defined in Eq. (17).

3.4. Evolution equations for fluctuations in o diffusion problem

The hierarchy of evolution equations was derived in Ref. [37] for fluctua-
tions of density in a diffusion problem, where the only hydrodynamic variable
is the diffusing charge density n which obeys the conservation equation and
Fick’s law with local noise

on=-V-N, N = —\(n)Va(n) + noise . (22)

The evolution equations describe the relaxation of the k-point functions
Wi of fluctuations of density n to equilibrium values given by thermody-
namics in terms of the equation of state a(n) (chemical potential divided by
temperature)

O Wa(q) = -2 [va*Wa(q) — A\q’] , (23a)
O Ws(q1, g2, q3) = =3 [vaiWs(, g2, a3) + 7' @t Wa(q2) Wa(q3)
+2XNq1 - @2Wa(q3)]| 155 » (23b)

O Wi(a1, g2, q3,q1) = —4 [v@i Wa(, @2, @3, q1) + 37/ aiWa(g2) Ws(, g3, q4)
+7" @i Wa(g2)Wa(gs)Walqs) + 3N a1 - ¢2Ws(, g3, )
+3X"q1 - @2Wa(q3)Wa(qa) | 1o57 » (23c)
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where v = Ao’ is the diffusion coefficient. In Eqgs. (23), we suppressed
arguments ¢ and «, as they are the same for all functions Wj. Furthermore,
note that all arguments of each function Wy add up to zero — reminiscent
of the momentum conservation in Feynman diagrams. Therefore, to save
space, we omitted the first argument in Wj, where this argument can be
inferred from the condition q; + -+ + g = 0. For example, Wa(q) =
Wa(,q) = Wa(—gq,q) or Ws(,q3,94) = W3(—gq3 — g4,q3,94). The symbol
[. .. J;—5 denotes the sum over all permutations of qz,. .. ,q) divided by 1/k!,
i.e., the average over all permutations. The diagrammatic representation of
Egs. (23) is given in Ref. [37] (see also Fig. 5).

(—o—) = Do+ ——

(4 ) =—oa + { + 3
(—+—)‘=4D—+—+4$_<+—§—0—+ j: + ;R;
Fig. 5. Diagrammatic representation of Eqgs. (23). See Refs. [37, 38].

Equations (23) represent the leading order in hydrodynamic gradient
expansion. The next order would correspond to loop diagrams (in terms
of the diagrammatic technique used in Fig. 5). It represents the feedback
of fluctuations. For two-point functions, such feedback has been considered
in Refs. [31-36], and the corresponding renormalization of hydrodynamic
equations has been shown to remove cutoff dependence due to the “infinite
noise” problem, as discussed above in Section 3.2.

3.5. Confluent formalism for arbitrary relativistic flow

For a relativistic fluid with non-trivial velocity gradients, the definition of
the equal-time correlator in Eq. (18) and its Wigner transform are insufficient
since the rest frame of the fluid is different at different space-time points,
and the concept of “equal time” is thus ambiguous. To maintain the Lorentz
covariance in the description of fluctuations, Ref. [35], and for non-Gaussian
fluctuations, Ref. [38], propose to use averaged local rest frame of the fluid
at the midpoint x = (¢,x) of the correlator to define “equal time”. The
same locally defined frame is also used to define, or measure, fluctuations of
velocity.

The idea is to equip every space-time point & with an orthonormal triad
of basis 4-vectors eg(x), a = 1,2,3, or e(x), spatial in the local rest frame
of the fluid at that point, i.e.,

e(z) -u(x)=0. (24)
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One can then define equal-time k-point correlators as functions of k space-
time points expressed as

zr1=z+e(x) -y, ... , xx=x+e(x) yi, (25)

in terms of the midpoint x and the separation 3-vectors yi, ..., ¥y, which
sum to zero: Y1 + ...+ yr =0.

Some of the fields in the correlator may not be Lorentz scalars, for exam-
ple, fluctuations of velocity, du. One would like to express such fluctuations
in a frame associated with the fluid, such as the local rest frame, rather
than in an arbitrary lab frame. The local rest frame of the fluid is, however,
different for different points z1,...,xg. To use the same frame for all points
while making sure that fluctuations represent deviations from the fluid at
rest locally, we boost the fluctuation variables (if they are not scalars) from
the rest frame at the point they occur, say, at * + y;, to that at the mid-
point x of the correlator. This operation leads to the confluent correlator
defined as

Haya (01, o) = ([A, 20)00 (1), - (A, 2)00 (g, ) (26)

where A(z,z1) performs the boost on the corresponding fluctuation field
0¥ (x1) such that the 4-velocities in points x1 and z are related by

Az, z)u(xr) = u(z) . (27)

Superscript “c” means “connected” as in Eq. (18).

We can now take the multipoint Wigner transform of the confluent cor-
relator we just defined in Eq. (26) with respect to the 3-vectors yi, ..., yx
describing the separation of the points in the local basis at point = (cf.

Eq. (20))

Wal..,ak (33; qi,---, Qk) = /d3y1 e—iq1-y1 e /dsyk e_iqk.yk

o (st
k

> Ho oz +e(@) yi,...,z+e(z) yr).(28)
The inverse is given by (cf. Eq. (21))
Ha1...ak(x + 61(33) *Y1,..., T+ ek(x) : yk)
3 3
:/ d°q eyt / d’qk etk Yk
(2m)3 (2m)?

: et
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Care must be taken also in defining a derivative with respect to the
midpoint of such a correlation function in order to maintain the “equal-time
in local rest frame” condition. The local rest frame is different in points x
and x + Az used to define the derivative. A derivative which maintains the
“equal-time” condition is introduced in Refs. [35, 36] and termed confluent
derivative. It is defined via the Az — 0 limit of the following equation:

Al’ : vVVal‘..CLk (:B’ (Ih crcy qk) = A(IE,IE + Al’)gll tt A(:E’ T + Al’)gﬁ
Wiy ob, (z3d1, - @) = Way o (@@, - ak) (30)
where
q =e(r+ Az) - [A(z + Az, z)e(z) - q] = R(x + Az, 2)q. (31)

In Eq. (30), the (non-scalar) fluctuation fields are boosted from point = +
Ax back to point z, similar to the definition of the confluent correlator in
Eq. (26). In addition, at = + Az, we evaluate the function using the set
of 3-wave-vectors g, given by Eq. (31), different from the set g; used at
point x. The new set is obtained by representing each vector g as a 4-vector
orthogonal to u(z), e(z) - g, then boosting this vector to the rest frame at
point x + Ax, and then expressing it again as a 3-vector, but now in the
basis e(x + Az) orthogonal to u(x + Az). The resulting transformation of
vector q is a rotation, denoted by R in Eq. (31).

Taking the limit Az — 0 in Eq. (30), one can express confluent derivative
as follows:

o d -
v,uWal...az = 8uWa1...a2 +k (wal“)q1&Wa1...ak - wzalwbag...ak.> )
T Ay Tk

(32)
where the confluent connection @ is a generator of the infinitesimal boost A
and W is a generator of the infinitesimal rotation R

Az + Az, z)% = o — Aztay,, (33)
R(z + Az, 2)% = & — Aac“c‘bzg. (34)

The indices a, b, aq ... a label fluctuating fields. The confluent connec-
tion (Dzb is non-zero when indices a,b refer to different components of a

Lorentz vector (such as du). In this case, the connection satisfies
V,u® = d,u® + (Dﬁ‘ﬁuﬁ =0, (35)

(local velocity is “confluently” constant), which follows from Eqs. (27) and (33)*.

4 For a scalar field (e.g., energy density, pressure fluctuations, etc.), the confluent
connection is, of course, zero. E.g., V,dm = 0,dm.
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The rotation connection w is determined by Eqgs. (31) and (34)

ob b _
s = €q (8Meg + wz‘ﬂe&ﬁ) . (36)
Naturally, it satisfies
V,ued = el + wﬁﬁeg - &)E&eg =0 (37)

(local basis vectors are confluently constant).

The boost A is not defined uniquely by Eq. (27) — only up to a rotation
keeping uw unchanged. The simplest choice is the boost without additional
rotation, which corresponds to confluent connection given explicitly by

Whg = ugduu® —u*duug. (38)
For this choice of the confluent connection, the rotation connection also
simplifies to

ob = b opues . (39)

na «

3.6. Evolution equations for hydrodynamic fluctuations

There are five normal hydrodynamics modes, which can be described
as two propagating modes and three diffusive®. The propagating modes
correspond to fluctuations of pressure mixed with the fluctuations of the
longitudinal (with respect to the wave-vector q) velocity. The frequency of
these sound modes is ¢s|g|. The diffusive modes are the fluctuations of the
specific entropy m = s/n at fixed pressure and transverse velocity. The
relaxation rate of these modes is proportional to the square of their wave-
number g2. The slowest diffusive mode near the critical point is specific
entropy because its diffusion constant vanishes at the critical point.

In this review, we shall focus on the slowest diffusive mode m for two
reasons. First, because it is the slowest and, therefore, the furthest from
equilibrium mode. Second, in equilibrium, this mode shows the fluctuations
of the order parameter (i.e., dm ~ d¢, Eq. (4)), divergent at the critical
point.

The evolution equation for the Wigner-transformed confluent two-point
correlator of the specific entropy fluctuations, (dmdm), derived in Ref. [36]
reads

LWon(@)] = (00 Wi (@) = 2mm@? [Wonm(@) = 5| . (40)

n2

5 We focus on hydrodynamics involving baryon charge. Each additional charge adds
one diffusive mode to the count.
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where Ypm = k/c, — the heat diffusion constant, and £ is the Liouville
operator given by

LIWim] = |u-V — d,ut(e, - q) <e” : ;q)] Wonm - (41)

The first term is the confluent derivative along the flow of the fluid, while
the second describes stretching and/or rotation of the vectors g due to the
expansion and/or rotation of the fluid. In the case of expansion, one can
think of this term as describing the Hubble-like “red shift” of the fluctuation
wave-vector q. For example, for Bjorken flow the Liouville operator takes

the form

q3 0
L=0, — = 42
‘CBJ T aq3 ( )

where the second term describes the “stretching” of the fluctuations, i.e., the
“red shift” of the wave-number g3 due to longitudinal expansion®.

The first term on the r.h.s. of Eq. (40) describes the scaling of the fluctu-
ation magnitude with the volume of a hydrodynamic cell, as the cell expands
at the rate @ - u. This trivial rescaling could be absorbed by multiplying W
by a conserved density, such as the baryon density, n. The equation for a
rescaled function Ny, = nWp,, is the same as in Eq. (40), but without the

0 - u term
L[N (@)] = =27 @? [ Non(a) = 2] . (43)

n

The last term in Eq. (40) describes the diffusive relaxation of fluctuations
towards equilibrium given by thermodynamic quantity c,/n? (or ¢,/n for
Npm)-

It is instructive to compare Eq. (40) for Wy, (or the corresponding
Eq. (43) for Nym) to Eq. (23a) for the density-density correlator (dndn)
in the diffusion problem. The main difference is that the time derivative is
replaced by the Liouville operator, which takes into account the flow of the
fluid. The (9-u) term on the r.h.s. (absent when Eq. (40) is written in terms
of Num, Eq. (43)) is also an effect of the flow — expansion. The diffusive
relaxation terms are different because the correlated quantities are different,
omom in Eq. (40) and éndn in Eq. (23a). The coefficients, however, can be
mapped onto each other via substitution

n—m, 7:)\0/—>’Ymm=§7 A—)%, Wy = Ny, - (44)
D

6 Naturally, we have chosen the triad of the 4 vectors e in such a way that the spatial
part of the 4-vector es points along the direction of the longitudinal flow, while the
e1 and ez are constant. In this case, the rotation connection (&) terms vanish in
the confluent derivative in Eq. (32). The confluent connection (&) terms are absent
already for arbitrary flow because the fluctuating quantity, m, is a scalar.
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The evolution equations for non-Gaussian correlators Womm and Wommm
(or Nyvmm = 7*Winmm and Nypmmm = 7 Wommm) are qualitatively similar
to those in the diffusion problem in Eq. (23b) and (23c). However, unlike the
case of Wyym, where the whole equation (43) can be obtained from Eq. (23a)
for Wy by the substitution given by Eq. (44), only the terms containing
leading singularities at the critical point can be obtained from Eq. (23b)
and (23c) by the substitution (44) (with W3 — Nyymm and Wy — Ny )-
There are subleading singularities, which are due to the non-linearity of the
mapping n — m. These terms are written explicitly in Ref. [38].

4. Freeze-out of fluctuations and observables

The previous section was devoted to recent progress in describing the
evolution of fluctuations in hydrodynamics using correlators of hydrody-
namic variables in coordinate space. Heavy-ion collision experiments do not
measure such densities, or their correlations, directly. Instead, the particle
multiplicities and their correlations in momentum space are measured. In
this section, we describe how to connect the theoretical description in terms
of fluctuating hydrodynamics to these experimental observables.

4.1. Event-by-event fluctuations and their experimental measures

Typical experimental measures are cumulants of the event-by-event fluc-
tuations or correlations of particle multiplicities. For example, if N, is the
proton number in an event, its fluctuation in the event is N, = N, — (Np)
and ((6N)?) is its quadratic cumulant, or variance, where (...) is the event
average. Higher-order cumulants, measuring non-Gaussianity of fluctua-
tions, are constructed similarly (see, e.g., Ref. [8] for a review).

In addition, correlations between particles can be also measured, such
as (0NpONy) — a correlation between proton and pion multiplicities. Such
measures can also include higher-order correlators [40]. Similarly to corre-
lations between species, one can also consider correlations between particles
with different momenta.

The number of particles d3N; in a given momentum cell d3p is given by
the well-known Cooper—Frye formula [41]

d3p p*

N = 5 [ En@ he (45)
X

in terms of the phase-space distribution function f;(z,p) integrated over
the freeze-out hypersurface Y. Therefore, the correlations between different
momentum cells and/or between different species can be expressed in terms
of the correlation functions of fluctuations of fi(z,p): df = f — (f).



QCD Critical Point and Hydrodynamic Fluctuations in Relativistic ... 5-A4.21

To simplify and shorten notations, we shall combine the species index
(which includes all discrete quantum numbers, such as mass, spin, isospin,
etc.) together with the coordinate and momentum into a single composite in-
dex A = {i,z,p}. Therefore, the general correlator which, upon integration
over the freeze-out hypersurface, gives the observable correlation measures
has the form

(0fiy (1,p1) - 0 fip (Tho k) = (0fay - 0fa,) - (46)

Usually, the Cooper—Frye prescription (45) is applied to determine the
event-by-event averaged number of particles in terms of the averaged distri-
bution function (f4). This averaged function is expressed in terms of the
hydrodynamic variables, or fields, T'(z) and p(x)

(4) = (fia(wa,pa)) = [exp{Bla)ulz) - pa — a(x)ga} - (~1)**] '
where = 1/T, a = u/T, q4 is the charge of the particle A with respect to
the chemical potential p (baryon charge, for example), and s4 is the spin of
the particle.

In order to convert hydrodynamic fluctuations into particle event-by-
event fluctuations, we need an analogous freeze-out prescription for correla-
tors in Eq. (46).

4.2. Freeze-out of fluctuations and the mazimum entropy method

The generalization of the Cooper—Frye freeze-out to fluctuations has been
first considered in Ref. [16]. In the approach of Ref. [16], the fluctuations of
the phase-space distribution function f(x,p) are assumed to be caused by
fluctuations of the hydrodynamic variables/fields T'(z) and u(x) on which
f(z,p) depends, as in Eq. (47). As a result, coordinate space correlations in
T'(z) and p(zx) translate into the phase-space correlations in f(x,p).

This approach has an important flaw, which becomes obvious if one
considers fluctuations in an (almost) ideal gas. In this case, there are fluc-
tuations of hydrodynamic variables, such as charge density n(x), but there
are no momentum space correlations of f(z,p), which would, nevertheless,
be produced if the approach of Ref. [16] were to be applied. Instead, the hy-
drodynamic fluctuations of n(x) are matched on the particle side by trivial
(Poisson, in the ideal gas case) uncorrelated fluctuations of the occupation
numbers in each phase-space point.

This problem has been addressed in Refs. [42, 43] by subtracting this
trivial ideal gas contribution from hydrodynamic fluctuations of n(z) be-
fore applying the procedure of Ref. [16] to the remainder, which is due to
interactions and out-of-equilibrium dynamics.



5-A4.22 M. STEPHANOV

Generalization of this approach to fluctuations of other hydrodynamic
variables, and to non-Gaussian fluctuations, proved elusive until the prin-
ciple of maximum entropy for fluctuations was proposed and implemented
in Ref. [23]. In this approach, the matching of conserved hydrodynamic
densities such as €(z) and ng(x), defined in Egs. (10) and (11), is done on
an event-by-event basis. For example, we have to match the fluctuations of
conserved charge density

ngla) =3 [adtiwr) = [assia@) = [0®@-anbfa, 18)
ip 1 A
where fp is a 3-integral over momenta with the Lorentz-invariant measure

and ), is a sum over the species of particles with id label ¢ (corresponding
to mass, spin, isospin, etc.) carrying charge ¢; corresponding to density
ng (e.g., baryon charge when ny = np is the baryon density). We have
also introduced a convenient shorthand [ 4> which denotes the sum and the
momentum space integral together (but no space integration). One can think
of the composite index A as describing not only the particle “id” (i.e., mass,
spin, etc.) but also its position in the phase space (as if each particle species
has its own phase space): A = {ia,pa,z4}. Finally, we also introduced [,
which includes integration over the whole phase space (momentum py and
coordinate x4) of each particle species, and a convenient shorthand f4 =
fa(xa). The delta function simply reflects the locality of freeze-out (i.e.,
each hydrodynamic cell at point x is converted into particles located at
the same position x4 = z). Similarly, matching of the energy-momentum
density requires

5(e(w)u () = / P8 fa(z) = / PO (2 — 24)0f s (49)
i A

It is convenient to organize equations such as (48) and (49) into an indexed
array, where lowercase index a runs through five hydrodynamic variables
0, = 6{ng, eu}, similar to Eq. (11)

80, = 60, () = / PAS A, (50)
A
where
P = {qa, 0"} 0P (zg — xa) (51)

is the array of the contributions of a single particle at point x4 to hydro-
dynamic densities ¥, = {n, eu’} in a cell around point z, on the freeze-out
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surface. Similarly to particle index A, it is convenient to view hydrodynamic
field index a as a composite index labeling both the field and the point on
the freeze-out surface where the value of this field is measured.

Equation (50) for fluctuations imply relationships between the hydrody-
namic correlators in space points xg, ... Zq,,

Hy, gy = (00, ... 0¥q,), (52)

k

and particle correlators in phase-space points Aq ... Ag,

Garoa, =(0fa;--- 6fa,), (53)

which have the form

Hay. . ap = / Gay..aPat ... P (54)
A Ap

Equations (54) represent constraints on the particle correlators Gap..
imposed by conservation laws. These constraints alone are not enough
to completely determine G 4p... simply because there are more “unknowns”
G ap... then the constraints. The situation is similar already for ensemble
(i.e., event) averaged quantities, or one-point functions. In this case, the
knowledge of the averaged energy, momentum, and baryon density is not
sufficient alone to determine the particle distribution functions f4. Addi-
tional input is needed.

In the absence of additional information, the most natural solution is
the one which maximizes the entropy of the resonance gas into which the
hydrodynamically evolved fireball freezes out. That entropy is given by the
functional of fu

S[fA]Z/(%lJrfA) In(1+60afa) — faln fa, (55)

A

where 64 = (—1)?4 is determined by the particle spin s47. Maximizing
S[fal, subject to the constraints on f4 imposed by conservation laws, pro-
duces the well-known equilibrium distribution f4 given in Eq. (47), un-
derlying the Cooper—Frye freeze-out procedure, which has been widely and
successfully used for describing experimental data for half a century. This
observation has been also used recently to describe systematically deviations
from equilibrium due to viscous or diffusive gradients in Ref. [44].

7 Neglecting quantum statistics, 4.e., taking 4 — 0, one obtains the familiar Boltz-
mann entropy S[fa] = [, fa(l —1In fa).
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In order to apply the maximum entropy approach to fluctuation freeze-
out, one needs the entropy of fluctuations as a functional of f4 as well as
correlators Gap, Gapc, etc. Conceptually, this entropy, S[fa,Gas,...]
represents the (logarithm) of the number of the microscopic states in the
resonance gas ensemble with the given set of correlators. The single-particle

entropy S[fa] is the value of S[fa,Gap,...] when all correlators G4p... are
given by their values in the equilibrium resonance gas.
The expression for the functional S[fa, Gap,...| was found in Ref. [23].

For example, keeping only terms with the out-of-equilibrium two-point cor-
relators it reads®
So[f. G] = S[f] + 1T [log(CG) — CG +1] . (56)
The last term is always negative except for G = C~! = G which is the
equilibrium value of the correlator G, where Cup = —825[f]/(6f46fB).
When G =G, the last term vanishes and Ss is maximized with respect to G.
However, maximizing the entropy in Eq. (56) with respect to G under
constraints in Eq. (54) gives

@Y =@+ @ -B Y PAPE. (57)

In this equation and below, the repeated lowercase indices a, b, etc. imply
summation over the set hydrodynamic variables ¥,, ¥, and volume integra-
tion over hydrodynamic cells at points x4, xp. Due to the delta functions in
the definition of P2 in Eq. (51), these implied integrals in Eq. (57) simply
set the spatial arguments of (G~1)45 to those of (H1)®, i.e., x4 = x, and
g = xp. When hydrodynamic correlator H equals its equilibrium value H
in the resonance gas, the particle correlator G' equals G — its value in the
resonance gas (i.e., fadap, neglecting quantum statistics).

If deviations of fluctuations from equilibrium resonance gas are small,
equation (57) can be linearized in such deviations. The deviations could be
due to non-equilibrium effects, which have to be small for hydrodynamics to
apply, or due to effects of the critical point. The linearized equation relates
deviations of the particle correlators AGap = Gag — G ap to the deviations
of the hydrodynamics correlators AH,;, = Hy, — Hyp, from the resonance gas
values

AGap = AHy, (H'PG)" (H'PG)", . (58)

Similarly, the non-Gaussian cumulants G 4pc... of particle fluctuations
can be expressed in terms of the non-Gaussian cumulants of the hydrody-
namic variables Hgp,. . Such non-linear relations similar to Eq. (57) can be
derived from the corresponding entropy functional found in Ref. [23] and we
will not reproduce them here.

8 The calculation of the entropy of fluctuations along these lines for a two-point cor-
relator of hydrodynamic variables can be found in Ref. [34], and it is mathematically
similar to the 2-PI action in quantum field theory [45-49].
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Linearized relations valid for small deviations from the equilibrium reso-
nance gas, however, are simple and instructive. The relationship is similar to
Eq. (58), but instead of the “raw” deviations from equilibrium AG 45, and
AHgp..., i.e. correlations relative to equilibrium, the proportionality relation
holds between irreducible relative correlators AG 4p... defined in Ref. [23].

An irreducible correlator AG is different from the “raw”, or reducible, rel-
ative correlator AG by subtraction of correlations involving only a smaller
subset of the points AB.... The irreducible AH differs from AH similarly.

The resulting linear relation generalizes Eq. (58)
N N r— =\ @ r— ~\ Ok
AGay..a, = AHgy..qp (HT'PG)) .. (H'PG)) (59)

where AG and AH denote irreducible relative correlators for particles and for
hydrodynamic variables, respectively. For two-point (Gaussian) correlators
AG = AG and AH = AH and Eq. (57) reproduces Eq. (57).

Equation (58) thus solves the problem of translating fluctuations in hy-
drodynamics into correlations between particles at freeze-out, in such a way
as to obey the conservation laws on an event-by-event basis (by satisfying
constraints in Eq. (54)). As one can see, it systematically eliminates spuri-
ous “self-correlations” discussed at the beginning of this section not only for
Gaussian, but also for non-Gaussian cumulants.

Similarly to the way the maximum entropy approach reproduces and
generalizes the Cooper—Frye prescription for event averaged observables, the
maximum entropy approach to fluctuations reproduces, justifies, and gen-
eralizes prior approaches to freezing out fluctuations, in particular, of crit-
ical fluctuations, as shown in Ref. [23|. Such a prior approach involving
fluctuating background field o was introduced in Ref. [15], generalized to
non-Gaussian fluctuations in Refs. [20, 40|, and then further generalized to
non-equilibrium fluctuations in Ref. [50].

The o-field approach [15, 20, 40], however, besides the knowledge of
QCD EoS, requires the knowledge of the properties of the field o such as
its correlation length as well as its coupling to observed particles. These
properties would depend on the nature of this field — an a priori unknown
mixture of scalar fields such as chiral condensate, energy, and baryon num-
ber densities. It was also not clear how to deal with non-critical fluctuations
or contributions of lower-point correlations to higher-point correlators. All
these uncertainties are absent in the maximum entropy approach. The cor-
relations described by Eq. (59) are very similar to the correlations induced
by the o field given by a mixture of hydrodynamic fields determined by the
QCD EoS itself.
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The maximum entropy approach thus provides a direct connection be-
tween the fluctuations of the hydrodynamic quantities and the observed par-
ticle multiplicities, with their fluctuations. This connection is determined
by the EoS of QCD in the resonance gas phase where the freeze-out oc-
curs. The effects of the critical point and non-equilibrium are encoded in
the non-trivial correlations described quantitatively by Eq. (59).

5. Summary and conclusions

These lecture notes describe recent theory developments aimed at map-
ping QCD phase diagram and the search for the critical point in heavy-ion
collisions.

The existence and location of the QCD critical point is a major unan-
swered question about the QCD phase diagram. Universality of critical
phenomena, allows us to draw predictions which do not require precise mi-
croscopic knowledge of QCD dynamics.

In particular, singular behavior of the fluctuations at critical points
should manifest itself in non-monotonic dependence of the fluctuation mea-
sures in heavy-ion collisions as the critical point is approached and then
passed in the course of the beam-energy scan. This dependence is especially
pronounced for non-Gaussian fluctuation measures.

The dynamical nature of the heavy-ion collision fireball requires treat-
ment of fluctuations beyond equilibrium thermodynamics. This means not
only that we need to be able to describe fluctuations of hydrodynamic vari-
ables, but also that we need to be able to translate those hydrodynamic
fluctuations into the fluctuations and correlations of particle multiplicities
observable in experiments. The understanding of how to do this in a way con-
sistent with hydrodynamics, in particular, with conservation laws, has only
emerged recently. These recent developments are the focus of the lectures.

As is often the case with a developing field of research, these lectures can
only attempt to capture a snapshot of the current state of the art. Some
questions still require more careful analyses, and some tools, such as fully-
fledged simulation of the heavy-ion collision with fluctuations, still need to
be developed before comparison to experiment can become quantitative and
reliable. Naturally, much of the future development of the field will be
informed by the experimental data from the BES-II program at RHIC as
well as from experiments at planned future heavy-ion collision facilities [51].

I would like to express my gratitude to the organizers of the 63" Cracow
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