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This paper describes a procedure for estimating the number of iterations
in the main loop of a recently proposed algorithm designed to detect helical
charged particle tracks in detectors submerged in a magnetic field. The
calculations are based on a Monte Carlo simulation of the ATLAS inner
detector. The resulting estimates of numerical complexity suggest that
using the new procedure for online triggering is not feasible. There are
however some areas, such as triggering for particles in a specific sub-domain
of the phase space, where using this procedure might be beneficial.
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1. Introduction

The fast and accurate recognition of helical charged particle tracks in
data collected by modern colliders such as the High Luminosity LHC [1] is
a crucial step in uncovering physics beyond the Standard Model. Before the
start of an experiment, new methods for handling large amounts of data
collected by the detector in real time and new algorithms for performing
tracking [2–5] need to be considered. Particles with long lifetimes, that
decay at large distances from the beam line, are of particular interest [6]. A
review of methods used for particle tracking is available in [7]. The algorithm
from [8] was proposed as a novel way to search for such charged particle
tracks in data from high-energy physics detectors submerged in a uniform
magnetic field. It is designed to be agnostic to the origin of particle tracks
making it possible to detect particles with longer lifetimes.

(6-A1.1)
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The algorithm can be divided into independent iterations. Each individ-
ual iteration searches the collected data for helical charged particle tracks
with a given set of parameters and consists of three steps:

1. Load the input data in the form of Cartesian coordinates of N detected
track positions: D = {(xi, yi, zi), i = 1 . . . N}.

2. Calculate the image space D′ = {uxc,yc,ν(xi, yi, zi), i = 1 . . . N} by
mapping a special function uxc,yc,ν over D. This function has an addi-
tional dependence on three parameters of the helix (these are discussed
in more detail below): the helix axis, or center, is located at coordi-
nates xc, yc and the helix pitch ν. If a helical charged particle track
which matches the additional parameters of uxc,yc,ν is present in the
data collected by the detector, then these points will be mapped into
a straight line along ẑ.

3. A peak detected on a x̂–ŷ histogram of D′ indicates the existence of a
helical particle track in D with parameters xc, yc, ν.

In these steps, N is the total number of Cartesian points from the detector
and uxc,yc,ν is a special transformation that takes a helix with given param-
eters xc, yc, ν and turns it into a straight line along ẑ making it detectable
as a histogram peak.

The three parameters of helical tracks used in the procedure are illus-
trated and described in Fig. 1. The explicit form of the “unraveling” func-
tion u was given in [8] as

uxc,yc,ν(x, y, z) := (xc, yc, 0) +Rẑ

(
zν√

(x− xc)2 + (y − yc)2

)
× ((x, y, z)− (xc, yc, 0)) . (1)

This transformation is a rotation Rẑ(α) of a Cartesian point along ẑ with a
center of rotation at (xc, yc) in the x̂–ŷ plane. What makes this transforma-
tion useful is a careful choice of the angle of rotation α. This angle depends
on the ẑ coordinate and allows the detected Cartesian points from a particle
track with parameters xc, yc, ν to be “unraveled” into a straight line along ẑ.
This collection of points can be detected as a peak on a x̂–ŷ histogram. In
this paper, a slightly more general form of (1) is used

uxc,yc,ν(x, y, z) := (xc, yc, 0) +Rẑ

(
(z − z̄)ν√

(x− xc)2 + (y − yc)2

)
× ((x, y, z)− (xc, yc, 0)) , (2)
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Fig. 1. A helical particle track projected on the x̂–ŷ plane is a circle or a frag-
ment of a circle. The detector is centered around the origin and the beam
line is perpendicular to the diagram. The helix axis, or center, position is
(xc, yc). The third parameter ν is not illustrated and plays the role of the
helix pitch. This can be seen in the explicit form of a point on the helix:
(xc, yc, 0)+

(
r cos

(
−ν(z−z0)

r

)
, r sin

(
−ν(z−z0)

r

)
, z
)
, where r is the helix radius and

z0 fixes the helix’s position along ẑ.

where the additional parameter z̄ gives the flexibility to choose the fixed
point of the transformation

uxc,yc,ν(x, y, z̄) = (x, y, z̄) . (3)

Setting z̄ = 0 turns (2) into (1) and results in the fixed point being on the
z = 0 plane. This placement of the fixed point can be problematic since the
z = 0 plane contains, in the Monte Carlo simulations used, the interaction
point and may result in many peaks, close together on the x̂–ŷ histogram
of D′ making them difficult to distinguish. When using real data, the fixed
point should be placed at a safe distance from the expected interaction point.
More details about the algorithm can be found in [8].

2. Determining the step size

As mentioned in Section 1, the algorithm can be divided into independent
iterations, each iteration searching the input data for tracks with a given set
of parameters. In order to arrive at a full implementation of the algorithm, it



6-A1.4 K. Topolnicki, T. Bold

is necessary to determine the change of helix parameters from one iteration
to another

xc, yc, ν → x′c, y
′
c, ν

′ . (4)

The original paper [8] used an approximate approach based on dimensional
analysis to determine the total number of these iterations. These results
were not precise and a new approach was needed.

In this paper, we use a method based more directly on a realistic, Open
Data Detector [9], Monte Carlo simulation of a detector. The following
procedure is used to determine the allowable parameter step sizes:

1. Chose a reference trajectory from a random event generated by the
simulation.

2. Set z̄ to match one point on the reference trajectory. This step will
make it easy to calculate the x̂−ŷ position of the “unraveled” trajectory
in D′.

3. Set the step sizes dxc,dyc, dν = 0, 0, 0.

4. All parameters xc, yc, ν of the reference trajectory are known. Use
xc+dxc, yc+dyc, ν+dν to “unravel” the whole event. If the unraveling
parameters do not match the reference trajectory parameters exactly,
the reference helix will not unravel into a perfectly straight line.

5. Look for peaks in a bin centered at (xc, yc). Bin shapes and sizes are
shown in Fig. 2.

6. Depending on if a peak is present or not, increase or decrease the step
sizes dxc,dyc, dν accordingly. In practice, the step sizes dxc,dyc, dν are
chosen to move the helix axis (xc, yc) in two perpendicular directions
as shown in Fig. 3.

7. Repeat from 4 to determine the maximum change dxc, dyc,dν in ref-
erence trajectory helix parameters xc, yc, ν for which the reference tra-
jectory is still detected.

The condition for the step size is that before and after (4) the helix is
still detectable. Using this condition, the end result of the 7-step procedure
above is a map of maximum allowable step sizes for different helix parameters
xc, yc, ν. The Open Data Detector [9] simulation was also used in [8] but
the simulation data was not used in estimating the numerical complexity of
the algorithm.
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Fig. 2. The shape of bins used to determine step sizes. A single bin is a ∆w width
fragment of a round slice centered around the helix axis (xc, yc) with thickness ∆t.
In the calculations used for this paper ∆w = 10−4 m and ∆t = 5× 10−5 m. These
numbers ensured that over TODO of helices were detected.
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Fig. 3. When creating a map of allowable parameter changes, the helix center
(xc, yc) was moved in two directions: along the vector from the origin â and per-
pendicular to this vector p̂.
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Considering the cylindrical symmetry of the detector, it can be assumed
that the maximum allowable step sizes are a function of the helix axis dis-
tance from the origin rc and the absolute value of the helix pitch |ν|

damax
c = damax(rc, |ν|) ,

dpmax
c = dpmax(rc, |ν|) ,

dνmax = dνmax(rc, |ν|) .

Here, instead of using dxc, dyc, a shift along â and p̂ is considered as in Fig. 3.
The resulting maps are illustrated in Figs. 4–6. They can be directly used
to calculate the total number of iterations in the helix detection algorithm.

Fig. 4. Map of allowable shifts damax(rc, |ν|) , in meters, of the helix center (xc, yc)

in the â direction from Fig. 3. The horizontal axis rc is the distance of the helix
axis from the origin. The vertical axis is the absolute value of the helix pitch ν.

The total number of iterations necessary to search for helical tracks in a
region G of (rc, |ν|) is

MG = 2

∫
G

2πrc
dpmax(rc, |ν|)

1

damax(rc, |ν|)dνmax(rc, |ν|)
drcd|ν| . (5)

Here,
2πrc

dpmax(rc, |ν|)
is the number of iterations necessary for searching in the whole circle in the
p̂ direction and

1

damax(rc, |ν|)dνmax(rc, |ν|)
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Fig. 5. Map of allowable shift dpmax(rc, |ν|), in meters, of the helix center (xc, yc)

in the p̂ direction from Fig. 3. The horizontal axis rc is the distance of the helix
axis from the origin. The vertical axis is the absolute value of the helix pitch ν.

Fig. 6. Map of allowable shifts dνmax(rc, |ν|) in the helix pitch, see Fig. 1. The
horizontal axis rc is the distance of the helix axis from the origin. The vertical axis
is the absolute value of the helix pitch ν.

is the density of helix parameters in a d|ν| by drc region. The product of
these two quantities multiplied by drcd|ν| results in a number of iterations
necessary to investigate an infinitesimal region of (rc, |ν|). The additional
factor of 2 before the integral is there to account for the helix pitch ν = ±|ν|.

For demonstration purposes, the regionG is chosen such that 0.1 ≤ |ν| ≤
1.1 and 1.0 m ≤ rc ≤ 2.0 m. The numerical evaluation of the integral of (5)
results in

MG ≈ 1.62× 1011 . (6)
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In order to find all charged particle trajectories, the region G should be
expanded making the total number of necessary iterations even larger. This
unfortunately indicates that the algorithm from [8] is not a good option for
triggering applications.

3. Summary and conclusions

The number of iterations necessary in order to carry out the main loop of
the helix detection algorithm from [8] was estimated using a realistic Monte
Carlo simulation of the ATLAS detector. Unfortunately, this indicates that
the numerical complexity of the procedure is too big for triggering applica-
tions.

The Monte Carlo simulations used provide a good picture of the ATLAS
detector. However, the generated events have a very small number of tracks
originating away from the detector. To investigate the effect of these parti-
cles on the step size, a larger statistic is needed. Unfortunately, it is unlikely
that this would have a significant effect on (6). In addition to the large
numerical complexity, choosing helix parameters for the iterations would
require constructing a non-uniform grid of helix parameters.

The method proposed in [8] indicates not only the existence or non-
existence of a charged particle track in data collected by the detector but also
gives estimates of the track’s parameters. This, coupled with the algorithm
being agnostic to the origin of the track, means that it might still find
potential uses in data analysis for high-energy physics experiments.
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