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The Mathisson–Papapetrou equations are used to study the deviation
of the spinning particle world lines and trajectories from the corresponding
geodesic lines in Schwarzschild’s background. The traditional form of these
equations and their consequences in terms of the comoving tetrads are con-
sidered. Analytical and numerical calculations for the equatorial motions
are performed. The circular, quasi-circular, and quasi-radial motions of the
highly relativistic spinning particle are analyzed. Different illustrations are
presented.
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1. Introduction

The history of research on the behavior of a spinning particle in general
relativity is only one year “younger” than the history of the Dirac equation.
Indeed, in 1929, papers [1–3] were published in which the generalization of
Dirac’s equation for the case of the curved spacetime was obtained. The next
step was made in 1937 when the equations of motions of a classical (nonquan-
tum) spinning particle were derived [4]. Later, the corresponding equations
were rederived in [5–9] using alternative methods. Now, these equations
are known as the Mathisson–Papapetrou (MP) or Mathisson–Papapetrou–
Dixon (MPD) equations. In recent paper [10], the spin–gravity coupling is
considered without mentioning the Dirac and MP equations.

To interpret the spin–gravity effects that follow from the MP equations
in the Schwarzschild and Kerr field, the clear analogies with the spin–orbit
and spin–spin interactions in electromagnetism were considered [11]. For
this purpose, the corresponding expressions in the post-Newtonian approxi-
mation are analyzed. Now, the MP equations are often used to describe the
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behavior of very different spinning objects: from small particles such as elec-
trons, protons, and neutrinos [12–17] to massive extended objects, pulsars,
and black holes [18–22]. In recent paper [23], the spin–gravity effects are
considered for a charged spinning particle in the charged black hole. It is
important that the MP equations follow, in a certain sense, from the general
relativistic Dirac equation as a classical approximation, the corresponding
wide list of papers is presented in [24, 25].

A separate direction of research on the spin–gravity effects concerns the
specificity of highly relativistic motions of a spinning particle in various grav-
itational fields. These effects are under consideration in Schwarzschild’s,
Kerr’s [24], and the Schwarzschild–de Sitter backgrounds [26, 27]. It was
established that in the highly relativistic region of the particle velocity, the
spin–gravity coupling shows new important properties. In general, in this
region, the deviation of the particle’s motion from the geodesic motion be-
comes much larger than at low velocity.

Depending on the spin orientation and the direction of particle’s motion
relative to the source of the gravitational field, the spin–gravity coupling
acts on the particle as some repulsive or attractive force. Different cases of
strong repulsive action for a highly relativistic spinning particle are consid-
ered in [24, 26–28].

The main purpose of this paper is to investigate the strength of the
highly relativistic spin–gravity coupling in Schwarzschild’s background by
estimating the acceleration of the spinning particle relative to the spinless
one from the point of view of a comoving observer. That is, in comparison
with the studies of spin–gravity effects in Schwarzschild’s background by
other authors, as well as with our previous studies, in this paper, we not
only compare the shape of world lines and trajectories of the spinning and
spinless particles, but also investigate the value of the acceleration of the
spinning particle relative to the geodesic free fall. Another important goal
of the research and our new result is the development of a computational
procedure that makes it possible to describe the solutions of the original
Mathisson equations in the equatorial plane of the Schwarzschild metric,
which are appropriate for the analysis of the highly relativistic motions of a
spinning particle.

The study of the strong spin–gravity coupling is important when dis-
cussing possible experiments for registration of spin–gravity effects, in par-
ticular, in the context of paper [10].

The paper is organized in the following way. In Section 2, the MP equa-
tions and some of their consequences are presented. The solutions of these
equations for circular motions in Schwarzschild’s background are considered
in Section 3. In Section 4, the explicit form of the MP equations for the
equatorial motions in this background is presented using the constants of
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motion. Section 5 is devoted to describe the method for choosing values
of these constants that correspond to the motion of the particle’s proper
center of mass. In Section 6, the deviation of the spinning particle from the
noncircular geodesic free fall in Schwarzschild’s background in terms of its
coordinates and velocity is studied. The acceleration of the spinning parti-
cle relative to the free falling spinless particle is estimated in Section 7. In
Section 8, we consider an example of the effect of highly relativistic spin–
gravity coupling on the motion of the spinning particle, which complements
the results of Section 6. We conclude in Section 9.

2. Mathisson–Papapetrou equations

According to Mathisson’s pioneer paper [4], the corresponding equations
can be written as

D

dτ

(
muλ + uµ

DSλµ

dτ

)
= −1

2
uπSρσRλ

πρσ , (1)

DSµν

dτ
+ uµuσ

DSνσ

dτ
− uνuσ

DSµσ

dτ
= 0 , (2)

Sλνuν = 0 , (3)

where uλ ≡ dxλ/dτ is the particle’s 4-velocity, Sµν is the antisymmetric
tensor of spin, m is the constant of the particle’s mass, and D/dτ is the
covariant derivative along uλ. Here, and in the following, Greek indices run
through 1, 2, 3, 4 and Latin indices run through 1, 2, 3; the signature of
the metric (−, −, −, +) and the units c = G = 1 are chosen. Naturally,
for Sµν = 0, Eqs. (1)–(3) reduce to the geodesic equations. For Sµν ̸= 0,
the two subsets of ordinary differential Eqs. (1) and (2) cannot be integrated
separately. However, in some important partial cases, one can obtain explicit
solutions of subset (2) independently of subset (1). For example, when a
spinning particle is moving in the equatorial plane of Schwarzschild’s metric.

Relation (3) was introduced in the natural way in the framework of the
general procedure of obtaining Eqs. (1)–(3) [4]. Namely, for the correct
definition of the inner rotation, it is necessary to calculate the value Sµν

relative to the center of mass of a rotating body. Then relation (3) follows
in a simple way [29]. However, an unusual situation arises in relativistic
mechanics, which is impossible in classical mechanics. Indeed, in special
relativity, the position of the center of mass of a rotating body depends on
the reference frame [30]. That is, here we are not dealing with one center of
mass, but with many centers, and all of them are located on the so-called
disk of centers of mass [30]. It is important that all centers satisfy the same
relation (3). Among these centers, there is only one, which is located in
the geometrical center of the disk and can be named the proper center of
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mass. Here, the word “proper” means that this center is determined in the
frame of reference where the axis of the body’s rotation is at rest. All other
(nonproper) centers of mass move around the proper center. The analogues
situation takes place with a spinning particle in general relativity: Eqs. (1)–
(3) have both a single solution that describes the motion of the proper center
of mass and a family of solutions that have the circular or helical character
and describe the nonproper centers [30, 31]. It means that in the study
of Eqs. (1)–(3) in general relativity, it is important to select the solution
for the proper center, because it is this solution that directly describes the
propagation of the spinning particle in the curved spacetime. These circular
or helical solutions do not appear if, instead of MP Eqs. (1)–(3), the MPD
equations are used of the form [6, 7]

DP λ

dτ
= −1

2
uπSρσRλ

πρσ , (4)

DSµν

dτ
= 2P [αuβ] , (5)

SλνPν = 0 , (6)

where
P ν = muν + uλ

DSνλ

dτ
(7)

is the particle 4-momentum. That is, in Eqs. (4)–(6) instead of (3) relation
(6) is used. In general, when the second term on the right-hand side of
Eq. (7) is not equal to 0, Pν is not parallel to uν , and (6) does not coin-
cide with (3). Nevertheless, in different physical situations, relation (6) is
a good substitute for (3). However, in general, for the highly relativistic
motions, there is a clear restriction on the use of (6). For example, it is
shown that under condition (6), a spinning particle, which begins motion in
Schwarzschild’s field with a velocity less than the speed of light, can be ac-
celerated to the superluminal velocity [32]. Another unphysical result under
this condition follows from the analysis of the expression for the spinning
particle 4-momentum through its 4-velocity: it is shown that for the highly
relativistic tangential velocity, the values of the momentum components be-
come imaginary [24]. Since in this paper we take into account the highly
relativistic motions of a spinning particle, in the following, we will consider
Eqs. (1)–(3).

Many results, analytical and numerical, on solutions of the MP equations
under various conditions are presented in [33–37].

Both Eqs. (1)–(3) and (4)–(6) have a constant of motion

S2 =
1

2
SµνS

µν , (8)

where |S| is the absolute value of spin.
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The tensor Sµν and the 4-vector sλ are used as a characteristic of the
spin of the particle, where by definition

sλ =
1

2
ελµνσ

√
−guµSνσ , (9)

where ελµνσ and g are the Levi-Civita symbol and the determinant of the
metric tensor, respectively. It follows from (9) that

sλu
λ = 0 , (10)

and Eq. (2) takes the form

Dsλ

dτ
= sµ

Duµ

dτ
uλ, (11)

i.e. the 4-vector of spin is Fermi transported [24].
In practical calculations, it is convenient to use the three-component

value Si as well, where by definition

Si =
1

2u4
εikl

√
−gSkl , (12)

where εikl is the spatial Levi-Civita symbol [24].
It is appropriate to consider a consequence which follows from Eqs. (1)–

(3) in terms of the local tetrads values λµ
(ν) that correspond to the comoving

frame of reference, when λµ
(4) = uµ [24]. (Here and in the following, the local

indices are placed in the parenthesis.) Then the local components of the spin
4-vector satisfy the condition s(4) = 0 and the relation s(µ)s

(µ) = −S2 [29]
(sign “−” is present on the right-hand side of this relation as a result of our
choice of the metric tensor signature). If for convenience the first spatial
local vector lies along the direction of spin, then

s(1) ̸= 0 , s(2) = 0 , s(3) = 0 , s(4) = 0 , s(1)s
(1) = −S2 . (13)

When, in addition, the second local spatial vector is oriented along the
particle’s motion, then it follows from Eq. (2) that

γ(k)(1)(4) = 0 , (14)

where γ(k)(1)(4) are the Ricci coefficients of rotation [24]. At the same con-
ditions from Eqs. (1)–(3), we have [24]

ma(1) + s(1)R(1)(4)(2)(3) = 0 , (15)

ma(2) + s(1)
(
R(2)(4)(2)(3) − ȧ(3) − a(2)γ(2)(3)(4)

)
= 0 , (16)

ma(3) + s(1)
(
R(3)(4)(2)(3) + ȧ(2) − a(3)γ(2)(3)(4)

)
= 0 , (17)
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where a(i) ≡ γ(1)(4)(4) and R(i)(4)(2)(3) are the corresponding local compo-
nents of the Riemann tensor; a dot denotes differentiation with respect to
the particle’s proper time τ . The local 3-vector a(i) has the direct physical
meaning as the acceleration of the spinning particle relative to the free mo-
tion of a spinless particle. At s(1) = 0, i.e. for a spinless particle, according
to (15)–(17), a(i) = 0.

3. MP equations in Schwarzschild’s metric and their solutions
for circular motions

We use the Schwarzschild metric in the standard coordinates x1 = r,
x2 = θ, x3 = φ, and x4 = t. Then the nonzero components of the metric
tensor gµν are

g11 = −(1− 2α)−1 , g22 = −r2 ,

g33 = −r2 sin2 θ , g44 = 1− 2α , α ≡ Mr−1 , (18)

where M is Schwarzschild’s mass.
In the following, we will consider Eqs. (1)–(3) for the spinning particle

motion in the plane θ = π/2, when spin is orthogonal to this plane and
S1 = 0, S3 = 0, S2 ̸= 0. Then from (2), we obtain

S2 = rS , (19)

where S is the constant that is present in (8). We stress that Eq. (19) is valid
if the spin is aligned with the coordinate θ, in other words, with the z axis.
Without any loss in generality, we choose the orientation of the particle’s
spin such that Sθ ≡ S2 > 0.

It is easy to check that Eqs. (1)–(3) have the simple partial solution
with u1 ̸= 0, u4 ̸= 0, u2 = 0, and u3 = 0 which describes the radial
motion of a spinning particle. According to this solution, for any value of
the particle’s spin, this motion coincides exactly with the radial motion of
a spinless particle that is described by the correspondent geodesic lines in
Schwarzschild’s metric. It means that in the case of the radial motion, any
influence of the spin–gravity coupling on the particle world line is absent.
Another situation takes place for the circular motion of a spinning particle
in Schwarzschild’s background.

Equations (1)–(3) admit the circular motions with constant orbital ve-
locity, when u1 = 0, u2 = 0, u3 = const. ̸= 0, and u4 = const. ̸= 0. Indeed,
with relation (19), it follows from Eq. (1) that

m
(
Γ 1
33u

3u3 + Γ 1u4u4
)
+ 3αr−2u3u4S2

+(1− 3α)
(
u3u3 − αr−2u4u4

)
u3u4S2 = 0 , (20)



Examples of Strong Action of Highly Relativistic Spin–Gravity . . . 7-A1.7

where Γ π
ρσ is the Christoffel symbol. This equation together with the relation

g33u
3u3 + g44u

4u4 = 1 (21)

(which is the partial case of the known general relation for the 4-velocity
components uµuµ = 1) determines the dependence of the orbital velocity on
the radial coordinate r and the spin component S2. Then from (20) and
(21), we obtain the equation for the tangential component of the 4-velocity
u⊥ = ru3

u3⊥β(1− 3α)2−u2⊥(1− 2α)(1− 3α)+u⊥βα(2− 3α)+α(1− 2α) = 0 , (22)

where
β ≡ S2

mr2
(1− 2α)1/2

(
1 + u2⊥

)1/2
. (23)

In the trivial case when M = 0 (and α = 0) according to (18), we have
from (22)

u⊥ =
1

β
=

mr

Su4
, (24)

i.e. the expression for the known so-called Weyssenhoff’s circular orbits in
the Minkowski spacetime [31].

For M ̸= 0, it follows from (22) and (23) that the value u2⊥ ≡ y satisfies
the equation

y4d4 + y3d3 + y2d2 + yd1 + d = 0 , (25)

where

d4 = ε2α2(1− 2α)(1− 3α)4 ,

d3 = ε2α2(1− 2α)(1− 3α)2
(
1− 2α+ 3α2

)
,

d2 = ε2α3(1− 2α)(2− 3α)
(
2− 10α+ 15α2

)
− (1− 2α)2(1− 3α)2 ,

d1 = ε2α4(1− 2α)(2− 3α)2 + 2α(1− 2α)2(1− 3α) ,

d = −α2(1− 2α)2 , (26)

and the notation
ε ≡ S

mM
(27)

is used.
In the partial case when ε = 0, i.e. for a spinless particle, Eq. (25) for

α ̸= 2 takes the form of the second-order algebraic equation for y

y2(1− 3α)2 − 2yα(1− 3α) + α2 = 0 . (28)
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From (28), we have
y = α(1− 3α) . (29)

Then, because u⊥ =
√
y, we write

u⊥ = ±
√
α(1− 3α)1/2 . (30)

Equation (30) is the known expression that follows from the geodesic equa-
tions in Schwarzschild’s metric for the circular motions of a spinless particle
(the two signs in (30) correspond to the orbital motions with different direc-
tions by the angle φ).

Let us consider the solutions of Eqs. (22) and (25) for M ̸= 0 and S ̸= 0,
i.e. α ̸= 0, ε ̸= 0. In the partial case when r = 3M , Eq. (25) takes the form

y2ε2 + yε2 − 3 = 0 . (31)

The positive root of this equation is

y = −0.5 +
√
0.25 + 3ε−2 . (32)

Then the corresponding solution of Eq. (22) is

u⊥ = −
√
−0.5 +

√
0.25 + 3ε−2 (33)

(one can check that for the above choice of the sign of the spin 3-vector
component S2 > 0, when according to (25) β > 0, Eq. (22) is satisfied only
for u⊥ < 0, as reflected in (33)). It is necessary to take into account the
physical condition for a spinning test particle [11]

|S|
mr

≪ 1 . (34)

Then according to (33) and (34),

u⊥ ≈ −31/4ε−1/2(1 +O(ε)) . (35)

and
u2⊥ ≫ 1 . (36)

It means that in the circular orbit with r = 3M , the orbital velocity of the
spinning particle is highly relativistic. The physical meaning of Eq. (35)
is clear: the smaller the value of spin, the more ultrarelativistic speed is
necessary for the particle’s motion in this orbit. It is easy to check that, by
choosing S2 < 0, from the corresponding equations follows the expression
for u⊥ which differs from (35) only in sign.
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Note that if instead of Eq. (1) its shortened form

m
D

dτ
uλ = −1

2
uπSρσRλ

πρσ (37)

is taken into account (Eq. (37) is often considered to study of the spin–
gravity effects in the linear spin approximation), then the algebraic equation
which determines the dependence of u⊥ on r for the circular orbits is

u2⊥(1− 3α)− 3u⊥βα− α = 0 . (38)

It is easy to check that in the particular case when r = 3M , the expression
which follows from (37) coincides exactly with (33). It means that the
solution which describes the circular motion in the orbit with r = 3M is
common for the exact MP Eqs. (1)–(3) and their linear spin approximation.
As a result, this particular solution is common for the MP equation both
under relations (3) and (6).

It is known from the geodesic equations in Schwarzschild’s metric that
a spinless particle with a nonzero mass of any velocity close to the velocity
of light, starting in the tangential direction from the position r = 3M , will
fall on the horizon surface within a finite proper time, whereas, a spinning
particle will remain indefinitely on the circular orbit with r = 3M due to the
spin–gravity coupling. This coupling compensates for the usual (“geodesic”)
attraction. Let us estimate the force of this coupling. For this purpose, we
use Eqs. (15)–(17). In the cases of the equatorial particle motions, it is not
difficult to calculate that

R(1)(4)(2)(3) = 0 , (39)

R(2)(4)(2)(3) = −3M

r2
u1u3

(
u4u

4 − 1
)−1/2

(1− 2α)−1/2 , (40)

R(3)(4)(2)(3) = −3M

r

(
u3

)2
u4

(
u4u

4 − 1
)−1/2

(1− 2α)1/2 . (41)

Using the known expressions for Ricci’s coefficients of rotation, for all
possible equatorial circular orbits, we obtain

γ(2)(3)(4) = −r−1(1− 3α)|u⊥|u4 , (42)
γ(2)(4)(4) = 0 , γ(3)(4)(4) = const. ̸= 0 . (43)

By the last equation, according to the notation for a(i) under Eq. (17), we
have

ȧ(2) = 0 , ȧ(3) = 0 . (44)

Then it follows from (39)–(41) that for the circular motions, when u1 = 0, the
single nonzero component of the acceleration is a(3). Note that according to
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the choice of the orientation of the spatial local vectors in Eqs. (13)–(17), for
the circular motion, the component a(3) corresponds to the radial direction.
Taking into account (17), (41), and (35), we obtain the expression for the
absolute value |a(3)| of the spinning particle acceleration in the orbit with
r = 3M

|a(3)| = 3−3/2M−1(1 +O(ε)) . (45)

Let us compare (45) with the known classical acceleration in the Newtonian
theory of gravitation

aclass =
M

r2
. (46)

It follows from (45) and (46) for r = 3M that

|a(3)| =
√
3 aclass(1 +O(ε)) . (47)

Note that aclass shows the value of the gravitational interaction in the static
regime, while (45) reveals the property of this interaction in the highly rel-
ativistic region.

The detailed analysis of the circular motions in the small neighborhood
of r = 3M , as well as for other values of r, is presented in [24]. It is
shown that in the region of 2M < r < 3M , there are the highly relativistic
circular orbits with values u⊥ which, similarly to (35), are proportional to
ε−1/2. These orbits are caused by the strong repulsive action of the spin–
gravity coupling, as in the case of the above-considered orbit with r = 3M .
It is remarkable that the absolute values of Riemann’s tensor components
(40) and (41) significantly depend on the velocity and become much greater
for the highly relativistic velocity as compared to the low one. Just this
dependence determines the physical reason for the great deviation of the
spinning particle from the geodesic motion [24, 26].

Our results on the region of existence of highly relativistic circular orbits
for the spinning particle in Schwarzschild’s background complement those
from [35–37]. In these papers, the situations are under consideration when
the influence of spin on circular orbits is reduced to only small corrections
and the velocity of the particle is not highly relativistic.

Note that in [38], the intensity of the electromagnetic radiation of a
charged spinning particle on the highly relativistic circular orbits in Schwarz-
schild’s background is estimated.

4. Equations for equatorial motions with constants of energy
and angular momentum

As above, we use metric (18) and relations (19) with S2 > 0. Due
to symmetry of Schwarzschild’s metric, Eqs. (1)–(3) have the constants of
motion, the energy E, and the angular momentum J [39, 40]



Examples of Strong Action of Highly Relativistic Spin–Gravity . . . 7-A1.11

E = mu4 + g44uµ
DS4µ

ds
+

1

2
Sµ4g44,µ , (48)

J = −mu3 − g33uµ
DS3µ

ds
− 1

2
Sµ3g33,µ . (49)

In the following, it is appropriate to use in Eqs. (1)–(3) the dimensionless
quantities zi associated with the particle’s coordinates and velocity

z1 =
r

M
, z2 = φ , z3 = u1 , z4 = Mu3 . (50)

Then from (1)–(3), using constants of motion (48) and (49), we obtain the
four first-order differential equations for the values zi

ż1 = z3 , ż2 = z4 , (51)

ż3 =
z23
z1

+ (z1 − 3)

(
2z24 +

1

z21

)
− a

ε
z1z4

+
b

εz1

[
z23 +

(
1− 2

z1

)(
1 + z21z

2
4

)]1/2
, (52)

ż4 = −z3z4
z1

+
1 + z21z

2
4

z1z3

(
z4 −

3z4
z1

− a

ε

)
+

1

z1z3ε
(1 + bz4)

[
z23 +

(
1− 2

z1

)(
1 + z21z

2
4

)]1/2
, (53)

here a dot denotes the usual derivatives with respect to the dimensionless
argument x ≡ τ/M . The right-hand sides of Eqs. (52) and (53) contain the
dimensionless parameters a and b which are proportional to the constant of
motion E and J by the definition

a ≡ E

m
, b ≡ J

mM
. (54)

The particle’s spin is present in the value ε from the right-hand sides of
Eqs. (52) and (53), where notation (27) is used.

For comparison, we write the geodesic equations for a spinless particle
which is moving in the plane θ = π/2 of Schwarzschild’s metric in terms of
the values zi from (50)

ż1 = z3 , ż2 = z4 ,

ż3 = z24(z1 − 3)− 1

z21
,

ż4 = −2
z3z4
z1

. (55)
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At the fixed initial values of zi, different values of the parameters a and b
in Eqs. (52) and (53) correspond to the motions of different centers of mass
of the spinning particle. It is important to know which numerical values of
these parameters are suitable for describing the motion of the proper center
of mass.

5. Choosing parameters a and b

Because a and b are the constants of motions, their values are the same
for the all time of the particle’s motion, including any small time interval
after the start of motion, when the deviations of the functions zi from their
initial values zi(0) are very small. Then it is appropriate to introduce values

ξ1 ≡
z1 − z1(0)

z1(0)
, ξ2 ≡

z3 − z3(0)

z3(0)
, ξ3 ≡

z4 − z4(0)

z4(0)
, (56)

and to consider Eqs. (51)–(53) in the linear approximation in |ξi| ≪ 1 (we
emphasize that Eqs. (51)–(53) are exact in spin, and here the linear approx-
imation applies only to small displacements of quantities zi relative to their
initial values). In this approximation, we obtain

ξ̇1 = (ξ2 + 1)
z3(0)

z1(0)
, (57)

ξ̇2 = ξ1
z1(0)

z3(0)
F1,Z1 + ξ2F1,Z3 + ξ3

z4(0)

z3(0)
F1,Z4 +

F1(0)

z3(0)
, (58)

ξ̇3 = ξ1
z1(0)

z4(0)
F2,Z1 + ξ2F2,Z3

z3(0)

z4(0)
+ ξ3F2,Z4 +

F2(0)

z4(0)
, (59)

where F1 and F2 are the right-hand sides of Eqs. (52) and (53), respectively,
and F1,Z1 , F1,Z3 , F1,Z4 , F2,Z1 , F2,Z3 , and F2,Z4 are the corresponding partial
derivatives with respect to z1, z3, z4. The values of all these functions in (57)
and (58) are taken for the initial time, i.e. for x = 0.

According to the theory of differential equations, the general solution of
linear Eqs. (57)–(59) is determined by the combination of eλix (i = 1, 2, 3),
where λi are the solutions of the third-order algebraic equation

λ3 + C2λ
2 + C1λ+ C0 = 0 , (60)

where

C2 = −F1,Z3 − F2,Z4 , (61)
C1 = −F1,Z1 − F1,Z4F2,Z3 , (62)
C0 = F2,Z4F1,Z1 − F1,Z4F2,Z1 . (63)
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The motions of the proper center of mass do not have the property of
oscillations with the correspondent frequency, in contrast to motions of the
nonproper centers. The case without these oscillations is realized when one
of the three roots of Eq. (60) is equal to 0 and the two other roots coincide.
Then according to (60), the values Ci have to satisfy the two relations

C0 = 0 , C2
2 − 4C1 = 0 . (64)

From (64), we obtain the two algebraic equations for a and b

k1a
2 + k2b

2 + k3ab+ k4a+ k5b+ k6 = 0 , (65)
p1a

2 + p2b
2 + p3ab+ p4a+ p5b+ p6 = 0 , (66)

where there are expressions for ki and pi

k1 = −z21z
2
4 + 1

ε2z23
, k2 =

1

ε2z21z
2
3

(
1 + z23 − 3z−1

1 − z21z
2
4

)
,

k3 =
Nz4
ε2z23

[
z1z

2
4 + 3z−1

1 − 1 +
(
1− 2z−1

1

) (
1 + z21z

2
4

)]
,

k4 =
z4
εz23

[
4
(
1− z21z

2
4

) (
1− 3z−1

1

)
−
(
6z−1

1 − z23 − z21z
2
4 + 1

)]
+

N

ε2z23

(
1 + z23 − 3z−1

1 − z1z
2
4

)
− z4

ε

+
z4

εz1z23
(z1 − 3)

(
1 + 3z21z

2
4

)
+

N

ε2z23
z1z

2
4(z1 − 2)

+
2z4
εz1z23

[
z1

(
2z21z

2
4 − z23 − 1

)
+ 6

]
,

k5 =
Nz24
εz23

(
1− 2z−1

1

) (
6z−1

1 + z23 + z21z
2
4 − 1

)
−N

ε

(
1 + z23 − 3z−1

1 − z1z
2
4

)
×
[
z24z

−2
3

(
1− 3z−1

1

)
+ z−2

1 − z−2
1 z−2

3

(
1− 3z−1

1

)]
− N

εz31z
2
3

[
z23 +

(
1− 2z−1

1

) (
1 + 2z21z

2
4

)]
×
[
z1

(
2z21z

2
4 − z23 − 1

)
+ 6

]
,

k6 =
4z24
z21z

2
3

(z1 − 3)
[
6 + z1

(
z23 + z21z

2
4 − 1

)]
+
4Nz4(z1 − 3)

εz1z23

(
−1− z23 + 3z−1

1 + z1z
2
4

)



7-A1.14 R. Plyatsko, M. Fenyk

− 1

z21z3

[
z1

(
2z21z

2
4 − z23 − 1

)
+ 6

]
×
[
−z−1

1 z3 + z−2
1 z−1

3 (z1 − 3)
(
1 + 3z21z

2
4

)]
− Nz4
εz21z

2
3

(z1 − 2)
[
6 + z1

(
2z21z

2
4 − z23−

)]
;

p1 = − 4

ε2z23
, p2 =

N2

ε2z21z
2
3

(
1− 2z−1

1

)2
,

p3 = −4Nz4
ε2z23

(
1− 2z−1

1

)
,

p4 =
8z34z1
εz23

(z1 − 3) +
12z4
ε

+
16z4
εz1z23

(z1 − 3) ,

p5 =

[
2Nz3
εz1

+
2N

εz1z3

(
1− 2z−1

1

) (
1 + 2z21z

2
4

)]
×
[
z3
z1

+
z1 − 3

z21z3

(
1 + 3z21z

2
4

)
+

Nz4
εz3

(z1 − 2)

]
−4Nz3

εz1

[
−z3
z1

+
z1 − 3

z21z3

(
1 + 3z21z

2
4

)
+

Nz4
εz3

(z1 − 2)

]
−8N

εz21

[
z23 +

(
1− 2z−1

1

) (
1 + 2z21z

2
4

)]
−4N

εz21

(
1 + z23 −

3

z1
− z1z

2
4

)
−16Nz24

εz1z23
(z1 − 3)

(
1 + z21z

2
4

) (
1− 2z−1

1

)
−4Nz24

εz3
(z1 − 2)

[
z3
z1

+
z1 − 3

z21z3

(
1 + z21z

2
4

)
+

N

εz1z3z4

(
1 + z21z

2
4

) (
1− 2z−1

1

) ]
,

p6 = −7
z44
z23

(z1 − 3)2 − 10
Nz34
εz23

(z1 − 2)(z1 − 3)

+
N2z24
ε2z23

(z1 − 2)2 − 10
z24(z1 − 3)2

z21z
2
3

−10

z21
+

42

z31
− 34

z24
z1

(z1 − 3)− 6(z1 − 2)
Nz4
εz1

−14
Nz4
εz21z

2
3

(z1 − 2)(z1 − 3) + 5
z23
z21

+ (z1 − 3)2z−4
1 z−2

3 + 8z24 , (67)
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where
N =

[
z23 +

(
1− 2z−1

1

) (
1 + z21z

2
4

)]−1/2
.

Note that the values of z1, z3, and z4 in (67) are taken for x = 0.

6. An example of the noncircular motion

Let us consider a case of the spinning particle motion when the initial
values of the particle velocity components are close to the corresponding
values for the circular motion in the region of r > 3M . Then Eq. (22) has
the three real roots for u⊥. The two of them due to (34) are close to (30),
i.e. in the corresponding orbits, the influence of the spin–gravity coupling is
small, whereas another situation takes place with the third root of equation
(22). As in some typical case, we put in Eq. (22) ε = 10−4 and α = 0.05
(the last value corresponds to the circular orbit with r = 20M or in notation
(50) to z1 = 20). Then after the calculation of the pointed out third root of
Eq. (22), we obtain

z4 = 23.6230243983586 . (68)

[The positive sign of the value z4 in (68) is associated with our choosing
S2 > 0.] Note that according to notation (50), there is a relation z1z4 = u⊥.
Then by (68) for r = 20M , we have u2⊥ ≫ 1, i.e. the velocity on the circular
orbit is highly relativistic.

From (48) and (49) for the numerical values ε = 10−4, z1 = 20 and (68),
we find the values

a = 0.002383148065 , (69)
b = −0.03442184393 (70)

for the spinning particle motion in the corresponding circular orbit.
Now we consider noncircular motions of the spinning particle. For this

purpose, we use the corresponding solutions of Eqs. (51)–(53). As an ex-
ample, below we consider the case when the particle with ε = 10−4 starts
from the position z1(0) = 20, z2(0) = 0, z3(0) = 0.02, and z4(0) that is
equal to (68). It means that these initial values of zi are different from the
corresponding values in the above-considered circular orbit only by the small
nonzero value of z3(0), i.e. of the radial component of the particle velocity.
We find from the solutions of algebraic Eqs. (65) and (66) the appropriate
values of the parameters a and b in Eqs. (52) and (53)

a = 0.002383148074 , (71)
b = −0.03442184377 . (72)

Values (71) and (72) are very close to the corresponding values from (69)
and (70). Figures 1–6 show the dependence of the radial coordinate, the
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angle φ, and the radial and tangential velocities, respectively, on the parti-
cle proper time in comparison with the corresponding solutions of geodesic
Eqs. (55). In addition, Fig. 5 shows the form of the trajectories of the spin-
ning and spinless particles at the same initial conditions and for the same
time interval. According to the graphs in Figs. 1–5, the differences of the cor-
responding values for spinning and spinless particles become significant. In
this example, the effect of the spin–gravity coupling is attractive: in Fig. 5,
the spinless particle goes far away from the Schwarzschild source, whereas
the distance of the spinning particle from this source is constant in this time
interval.
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τ(M)

Fig. 1. Radial coordinate vs. proper time for the spinning (solid line) and the
spinless particle (dotted line) with the same initial values of the coordinates and
velocity.
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Fig. 2. Angle φ vs. proper time for the spinning (solid line) and the spinless particle
(dotted line).
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Fig. 3. Radial velocity vs. proper time for the spinning (solid line) and the spinless
particle (dotted line).
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Fig. 4. Angular velocity vs. proper time for the spinning (solid line) and the spinless
particle (dotted line).
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Fig. 5. Trajectories in the polar coordinates of the spinning (solid line) and the
spinless particle (dotted line).
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7. Acceleration of a spinning particle in Schwarzschild’s
background relative to free falling spinless particle

Let us consider Eqs. (15)–(17) in the case of the spinning particle motion
in the plane θ = φ/2 of Schwarzschild’s metric (18). In these equations, we
use (39)–(41) and the expression

γ(2)(3)(4)) =
(E −mu4)u

4

(u4u4 − 1)|S|
, (73)

where, as above, E and m are the energy and mass of the spinning particle,
respectively; |S| is the absolute value of the particle’s spin.

According to (15) and (39), we have a(1) = 0. The values a(2) and a(3)
can be found as solutions of the two differential Eqs. (16) and (17). Similarly
as in Section 3, where dimensionless quantities (50) are used, here we rewrite
Eqs. (16) and (17) in terms of zi. Then it follows from these equations that

ż5 = f1z6 + f2 , (74)
ż6 = −f1z5 + f3 , (75)

where

f1 = ε−1L−1
[
a
(
1− 2z−1

1

)−1/2
(1 + L)1/2 − 1

]
, (76)

f2 = 3z24z
−1
1

(
1 + L−1

)1/2
, (77)

f3 = −3z3z4z
−1
1

[(
1− 2z−1

1

)
z21z

2
4 + z23

]−1/2
, (78)

L ≡
(
1− 2z−1

1

)
z23 + z21z

2
4 . (79)

The values z5 and z6 in (74) and (75) are equal to a(2) and a(3) in the
dimensionless notation, respectively. The parameter a on the right-hand
side of (76) is determined in (54).

Integration of Eqs. (74) and (75) together with (51)–(53) shows that
on the time interval from 0 to 0.1, the value of a(2) is constant and close
to 0 (this interval is close to that on which the graphs in Figs. 1–6 are
shown). While a(3) on this interval is also practically unchanged, but has
a large numerical value of the order of −104 (the sign “−” means that the
acceleration is directed towards the Schwarzschild source).

The numerical values for a(2) and a(3) correspond to the solutions of
exact Eqs. (16) and (17). These values differ from those that take place in
the linear spin approximation. In particular, for the circular orbits by (13),
(27), (40), and (41), we have a(2) = 0 (in addition to a(1) = 0) and

a(3) =
M

r2
3S

mr
|u⊥|u4

(
1− 2Mr−1

)−1/2
. (80)
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It follows from (80) with (27) that for low velocities of a spinning particle,
when |u⊥| ≪ 1 and u4 is close to 1,

|a(3)| ≪ aclass , (81)

where aclass = M/r2 is the known classical acceleration in the Newtonian
theory of gravitation. In the case of the highly relativity motions, when
|u⊥| ≫ 1 and for the circular orbits u4 ≈ |u⊥|(1 − 2Mr−1)−1/2, according
to (80), we have

|a(3)| =
3S

mr
u2⊥aclass . (82)

That is, in contrast to (81), in (82), the small value |S|/mr is multiplied by
the large multiplier |u⊥|. Let us use Eq. (82) for the above-considered case
of the circular orbit with z1 = 20 and ε = 10−4. In notation (50), expression
(82) is

|a(3)| = 3εz1z
2
4 aclass , (83)

where the numerical value of z4 is written in (68). Then by (83), we obtain

|a(3)| ≈ 3.35aclass . (84)

That is, in (84) |a(3)| > aclass, in contrast to (81). Let us compare expressions
(80) and (84) with the corresponding expression for a(3) which follows from
the exact Eq. (17) for the circular orbits. According to (17), we write

a(3) = −
s(1)

m
R(3)(4)(2)(3)

(
1−

s(1)

m
γ(2)(3)(4)

)−1

. (85)

The contribution of the nonlinear spin terms is determined by the value

s(1)

m
γ(2)(3)(4) (86)

on the right-hand side of Eq. (85). Using (86) and (42), we write∣∣∣s(1)
m

γ(2)(3)(4)

∣∣∣ = S

mr

(
1− 3Mr−1

)
|u⊥|u4. (87)

According to (87) and (27), the contribution of the nonlinear spin terms in
the expression for the acceleration component (85) is very small for the low
velocities, when |u⊥| ≪ 1, and become much greater for the high velocities,
when |u⊥| ≫ 1. This property is similar to those described for the linear
spin approximation. In our case of the circular orbit with z1 = 20, ε = 10−4,
and z4 from (68), it follows from (85) that

|a(3)| ≫ aclass , (88)
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in contrast to (84). Note that the MP equations under condition (3) in
Schwarzschild’s field for r = 20M (as well as for other r in the region
r > 3M) have the two circular solutions with different physical meaning.
The first of them describes the above-considered highly relativistic circular
orbit when condition (34) for a spinning test particle is taken into account.
The second is the direct generalization of the known solution of Wyessen-
hoff’s type [31] in the Minkowski spacetime to the case of Schwarzschild’s
spacetime. According to the known interpretation of the physical meaning
of the last solution, it describes the motion of some nonproper center of mass
inside the rotation body with the corresponding dimension greater than r,
and then the test condition is not satisfied.

The oscillatory noncircular solutions can be obtained from Eqs. (51)–
(53) and (74), (75) when the parameters a and b do not satisfy Eqs. (65)
and (66). An example is presented in Fig. 6 where the graph is shown for
the absolute value of the acceleration

a(M) =
√

a2(2)(M) + a2(3)(M) . (89)

This graph corresponds to the initial values of zi which are used in Sections 6
and 7, with the numerical values of a that are equal to a from (71) multiplied
by 1.0001, and b from (72). The letter “k” near the vertical axis of Fig. 6
means multiplier 1000.
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Fig. 6. Absolute value of acceleration vs. proper time for an oscillatory solution.
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8. A case of the highly relativistic spinning particle motions
close to the radial one

In Section 6, we considered the highly relativistic motions of a spinning
particle with its initial tangential and radial velocities which satisfy the
relations u2⊥ ≫ 1 and u2∥ ≪ 1 (in notation (50) u⊥ ≡ z1z4, u∥ ≡ z3). Let us
consider an example of the highly relativistic motions with the initial value
of u2∥ ≫ 1, for different initial values of u⊥. First of all, we recall that when
a spinning particle starts with zero tangential velocity in Schwarzschild’s
background then its motion is exactly radial geodesic. That is, for the radial
motion, there is not any influence of the spin–gravity coupling. When the
initial value of the tangential velocity is nonzero, then the spinning particle
motion deviates from the geodesic. To estimate the deviation depending on
the tangential velocity, we compare corresponding solutions of Eqs. (51)–(53)
and geodesic Eqs. (55). For the cases when the deviation from the geodesic
is not very large, to describe the non-oscillatory motions of Eqs. (51)–(53), it
is possible to use the values of the parameters a and b which follow directly
from (48) and (49) (with notation (50)) in the corresponding approximation.
Namely, we take into account the expressions for a and b which contain linear
and quadratic spin corrections to the corresponding geodesic terms

a = R− z−1
1 z4ε− 3z−1

1 z24ε
2 , (90)

b = z21z4 −Rε− 3z−1
1 z4

(
1 + z21z

2
4

)
ε2 , (91)

where
R =

[
z23 +

(
1− 2z−1

1

) (
1 + z21z

2
4

)]1/2
. (92)

For illustration, let us consider the motions when a particle with ε = 2×10−2

starts from the position z1(0) = 20, z2(0) = 0, and z3(0) = −103. Note that
for z4(0) = 0, i.e. for radial motion, all graphs zi(τ) coincide with the corre-
sponding geodesic graphs. When z4(0) is different from zero but relatively
small, for example, equal to 1 or 2, the deviation of the graphs for the spin-
ning particle from the geodesic graphs is insignificant and imperceptible on
all graphs. As the value z4(0) increases, the deviation increases and be-
comes clearly visible. This is illustrated by the example for z4(0) = 30 in
Figs. 7–10.
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Fig. 7. Radial coordinate vs. proper time for the spinning (solid line) and the
spinless particle (dotted line) with the same initial values of the coordinates and
velocity.
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Fig. 8. Angle φ vs. proper time for the spinning (solid line) and the spinless particle
(dotted line).

� ����� ���� ����� ����

C����

C���

�

���

����

����

����

τ(M)

Fig. 9. Radial velocity vs. proper time for the spinning (solid line) and the spinless
particle (dotted line).
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Fig. 10. Angular velocity vs. proper time for the spinning (solid line) and the
spinless particle (dotted line).

According to Fig. 7, the spinning particle first approaches Schwarzschild’s
source to a value of r approximately equal to 9M , and then moves away from
it. In the process of motion, the components of its radial and tangential
velocity are noticeably different from the corresponding components of the
velocity of geodesic motion, which are shown in Figs. 9 and 10. That is,
both Figs. 1–6 and 7–10 clearly show the determining influence of the high
tangential velocity on the deviation of the motion of the spinning particle
from the geodesic one.

9. Conclusions

The Mathisson–Papapetrou Eqs. (1)–(3) give possibilities to study the
influence of the spin–gravity coupling on the spinning particle that moves in
the gravitational field with any high velocity, up to its values which are very
close to the speed of light. There is a significant difference in the scale of this
influence for particles that are highly or weak relativistic by their velocities
relative to the source of the gravitational field. In this paper, we used both
Eqs. (1)–(3) and their consequences in terms of the local tetrads values (15)–
(17) which describe the frame of reference accompanying the particle. The
solutions of these equations in the case of equatorial motions of a particle
in Schwarzschild’s background, when its spin is orthogonal to the motion
plane are considered. An important point of the study was the selection of
solutions that describe the motions of the particle’s proper center of mass.

Figures 1–5 show some typical cases of the world lines and trajectories of
the spinning particle when its initial absolute value of the radial 4-velocity
is much less than the corresponding value of the tangential velocity. The
latter is equal to the value in the circular orbit with r = 20M . It is significant
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that the absolute value of the acceleration, associated with a certain force
characteristic of the spin–gravity coupling, is high. This force acts on the
particle as an additional attraction.

Regarding the planned experiments to record spin–gravity effects, it is
important to consider that these effects are very small if the velocity of the
spinning particle is small compared to the speed of light, whereas for the
highly relativistic particles, the effects can be much stronger and manifest
in the corresponding observations. In this context, it is appropriate to carry
out an analysis of the propagation of the extremely energetic cosmic ray,
which is discussed in recent article [42].

In further study of the highly relativistic spin–gravity coupling, it is
appropriate to analyze solutions of Eqs. (1)–(3) under the Schwarzschild
horizon surface.
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