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Using an expanded Brueckner–Hartree–Fock (BHF) framework with a
phenomenological three-body force (3BF), we study the microscopic char-
acteristics and equation of state (EOS) of symmetric nuclear and neutron
matter. Both symmetric nuclear and pure neutron matter are used in the
G-matrix computations, which are carried out by adding the 3BF to the ini-
tial two-body force (2BF) and employing a partial wave expansion. Using
an angle-average and accurate Pauli operator, the single-particle potential
is applied in both its standard and continuous forms. The fourth-order
charge-dependent chiral nucleon–nucleon contact of the N3LO potential
was used for the computations, both with and without the three-nucleon
Urbana interaction included. It was found that the BHF approximation
significantly improves the computations for symmetric nuclear matter at
high density when one uses only the N3LO potential. As a matter of fact,
it is shown that the 3BF is required for reproducing the empirical satura-
tion property of symmetric nuclear matter in a non-relativistic microscopic
framework and significantly alters the EOS of nuclear matter at huge den-
sities above the typical nuclear matter density. A crucial component of
the estimated equation of state of isospin-asymmetric nuclear matter is the
nuclear symmetry energy. It establishes the structure of neutron stars and
finite nuclei.

DOI:10.5506/APhysPolB.55.7-A3

1. Introduction

The equation of state (EOS) of nuclear matter is of great importance in
nuclear physics and astrophysics [1–3]. The investigation of the EOS has
been carried out using various methods [4]. Various approaches have been
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developed to study the short-range correlations and momentum distribution
of nucleons in nuclear matter, such as the Bruckner–Hartree–Fock (BHF)
approach. The BHF approach is one of the standard methods for infinite
nuclear matter and has been used and developed in many studies. It is
based on the solution of the two-nucleon equation in the nuclear medium and
leads to an energy- and density-dependent effective interaction, the so-called
G-matrix. For symmetric nuclear matter (SNM) and pure neutron matter
(PNM), we have performed our calculations within the BHF approach in six
cases. In three cases, we use the angular mean approximation of the Pauli
operator with the continuous choice of the one-particle potential at different
values of the momentum-space cut-off Λ = 450, 500, and 550 MeV, while in
the other three cases, the conventional approximation with the same values
of the momentum-space cut-off is used [5].

The calculations of the BHF approach depend on the choice of the single-
particle potential [6], with the conventional choice assuming a single-particle
energy of zero above the Fermi level [7], while the continuous choice assumes
that the self-consistent BHF potential extends beyond the Fermi level. In
this work, the next-to-next-to-next-to-leading-order (N3LO) potential [8] is
used. The many-body method used to derive the EOS is a rather simple
method, namely the non-relativistic BHF method with a conventional and
continuous single-particle spectrum using the N3LO potential.

The chiral N3LO potential is a non-local potential and cannot be cor-
rectly described by a function of distance alone, but we must use a rela-
tive momentum between the nucleons to describe it. This potential is a
high-precision phenomenological potential, there is a fourth-order nucleon–
nucleon (NN) potential of the chiral perturbation theory. The accuracy in
reproducing the NN data below 290 MeV laboratory energy is comparable
to that of high-precision phenomenological potentials. Since NN potentials
of order three and below are known to be quantitatively insufficient, the
fourth order is necessary and sufficient for a reliable NN potential up to
290 MeV. The chiral N3LO potential consists of one-, two-, and three-pion
exchanges and a series of contact interactions with zero, two, and four deriva-
tives. The chiral N3LO potential proves to be as accurate as the Argonne
V18 potential [9] in describing experimental data.

Since the early days of nuclear physics, it has been known that the EOS
of nuclear matter contains a symmetry energy term. However, due to the
development of radioactive ion-beam facilities, which allow one to study
the structure and reactions of neutron-rich nuclei, in which the symmetry
energy plays an important role, the experimental and theoretical study of
the symmetry energy and its density dependence is becoming an increasingly
interesting topic [10]. Finding the precise shape of the nuclear symmetry
energy’s density dependence is a significant and fascinating topic in both
nuclear and astro-nuclear physics.
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The dynamics of heavy-ion reactions [11], the neutron skin of nuclear
systems, the structure of ground-state nuclei [12, 13], the physics of giant
collective excitations [14], the physics of neutron stars [15], the structure
of ground-state nuclei, the structure of nuclei near the drip line, and many
other significant nuclear properties are all influenced by the symmetry en-
ergy. The symmetry energy, in particular its density dependence, has a
major influence on the properties of neutron stars [16–18], hence its experi-
mental and theoretical determination is very relevant and important. Since
the symmetry energy is not a quantity that can be measured directly in
experiments, it must be indirectly inferred from related observables.

The system’s loss of binding energy upon moving from SNM to PNM
is explained by the symmetry energy. The EOS of SNM and pure neutron
matter were computed in the current work. Afterwards, the symmetry en-
ergy and incompressibility are calculated. The primary goal of this work
is to discuss how the properties of nuclear matter are affected when the
momentum-space cut-off value is revised.

2. Brueckner–Hartree–Fock

We have defined the G-matrix by

G(ω) = V + V
Q

ω −H0 + iη
G(ω) . (1)

This is known as the Bethe–Goldstone equation, where ω is the initial energy,
which is normally the sum of the single-particle energies of the states of the
interacting nucleons

ω = e(k) + e
(
k′
)
, (2)

V is the bare NN potential, η is an infinitesimally small number, H0 is
the unperturbed energy of the intermediate scattering states, and Q is the
Pauli projection operator. It projects out states with two nucleons above
the Fermi level and is given by

Q
(
k, k′

)
= (1−ΘF(k))

(
1−ΘF

(
k′
))

, (3)

where ΘF(k) = 1 for k < kF and zero otherwise, ΘF(k) is the occupa-
tion probability of a free Fermi gas with a Fermi momentum kF. In the
Brueckner–Goldstone expansion, the average binding energy per nucleon is
expanded in a series of terms as following:

E(k)/A =
〈
T̂
〉
+
〈
Ĝ
〉
=

∑
k

k2

2m
+

1

2

∑
k,k′<kF

〈
kk′|G

(
e(k) + e

(
k′
))

|kk′
〉
,

(4)
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where |kk′⟩ refers to antisymmetric two-body states. This first order is called
the Brueckner–Hartree–Fock (BHF) approximation. To fully determine the
average binding energy, one must define the single-particle potential U(k)
that contributes to the single-particle energies that appear in the G-matrix
elements. The structure of expression (4) suggests that the following BHF
single-particle potential should be chosen:

U(k) =
∑
k′<kF

〈
kk′

∣∣G (
e(k) + e

(
k′
)) ∣∣kk′〉 , (5)

so that

E(k)/A =
∑
k<kF

{
k2

2m
+

1

2
U(k)

}

=
4

ρ

1

2

kF∫
0

4πk2

(2π)3

(
k2

2m
+ e(k)

)
dk

= TF +
3

2k3F

kF∫
0

k2dkU(k) , (6)

where TF =
3k2F
10m .

The special choice (5) for U(k) is also favourable because it leads to
the cancellation of a certain higher-order diagram and thus improves the
convergence of the hole line expansion [19]. One still has a self-consistent
problem since the G-matrix itself depends on U(k) through the initial en-
ergy ω defined in equation (2). The lowest-order approximation (4) together
with the choice (5) for the single-particle potential is often referred to as the
lowest-order Brueckner theory.

The single-particle energy e(k) is defined as

e(k) = T + U(k) =
ℏ2k2

2m
+ U(k) , (7)

where T is the kinetic energy. The conventional choice for the single-particle
potential is the BHF potential (Eq. (5)) for hole states (k < kF) and zero
for particle states (k > kF)

U(k) =
∑
k′<kF

〈
kk′

∣∣G (
e(k) + e

(
k′
)) ∣∣kk′〉 , k < kF , (8)

U(k) = 0 , k > kF (9)
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and thus introduces a rather large discontinuity in the spectrum of the in-
dividual particles on the Fermi surface. However, due to the unphysical dis-
continuity at the Fermi surface, this auxiliary potential cannot be directly
related to the average potential of a particle or a hole.

Moreover, many other interesting properties can be derived, such as the
momentum distribution and the effective mass, which are correctly described
with a continuous spectrum at the Fermi surface. This was the main motiva-
tion that led Mahaux and his collaborators [20, 21] to introduce the contin-
uous choice for the single-particle potential, treating particles and holes in
a symmetric way. The use of the continuous potential implies that the ele-
ments of the G-matrix needed for the self-consistent calculation are complex,
and the prescription recommended by Mahaux is

U(k) = Re
∑
k′<kF

〈
kk′

∣∣G (
e(k) + e

(
k′
)) ∣∣kk′〉 ∀ k . (10)

Equations (1) and (7) are the most important equations that we want to
solve self-consistently.

3. Three-body forces corrections

It is commonly known that the BHF technique is unable to accurately
forecast the saturation properties of nuclear matter. Specifically, it has
not been able to replicate both the saturation Fermi momentum (ksatF =
1.36± 0.05 fm−1) and the binding energy per nucleon (e0 = −16± 1 MeV)
at the same time [6]. Results of different BHF computations for nuclear
matter, when plotted on an energy-density plane, always lie roughly on
a band, the Coester band [22], which considerably misses the “empirical
box” for e0 and ksatF . Due to this, using non-relativistic computations that
incorporate contributions from phenomenological three-body forces (3BF)
has grown in popularity.

3.1. Microscopic three-body force

As we see, non-relativistic calculations based on pure two-body interac-
tions fail to reproduce the correct saturation point for SNM. This known
deficiency is usually corrected by introducing the 3BF. Significant progress
has been made in the theory of 3BF for nucleons, but a complete theory
is not yet available. A realistic model for nuclear 3BF has been presented
by the Urbana group [23]. Explicitly, the 3BF is written as the sum of two
terms

Vijk = V 2π
ijk + V R

ijk . (11)
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The first is an attractive term, V 2π
ijk , which is due to the exchange of two pions

with the excitation of an intermediate resonance, ∆, while the second is a
repulsive phenomenological central term V R

ijk. The contribution of the two-
pion exchange is a cyclic sum over the nucleon indices i, j, k of the products
of anticommutator {,} and commutator [,] terms

V 2π
ijk = A

∑
cyc

(
{Xij , Xjk} {τi · τj , τj · τk}+

1

4
[Xij , Xjk][τi · τj , τj · τk]

)
,

(12)
where

Xij = Y (rij)σi · σj + T (rij)Sij (13)

is the one-pion exchange operator, σ and τ are the Pauli spin and isospin
operators, and

Sij = 3 [(σi · rij)(σj · rij)− σiσj ]

is the tensor operator. Y (r) and T (r) are the Yukawa and tensor functions,
respectively, associated with the one-pion exchange, as in the two-body po-
tential. The repulsive part is assumed to be

V R
ijk = U

∑
cyc

T 2(rij)T
2(rjk) . (14)

The constants A and U in the previous equations can be adjusted to repro-
duce observed nuclear properties [24]. Moreover, the 3BF has been reduced
to a two-body density-dependent force by averaging over the third nucleon
in the medium [25].

These enter at two levels when 3BF are taken into account in BHF
computations. Initially, a conventional G-matrix computation is performed,
adding a density-dependent effective two-body interaction to the bare NN
interaction. Furthermore, in order to prevent double counting of the 3BF
contribution, the total energy must be rectified [26, 27]. This can be ac-
complished at the lowest order by deducting the Hartree–Fock contribution
produced forth by 3BF alone [28]

E3BF

A
=

E2BF

A
− 1

12

3

k3F

kF∫
0

k2dk ,Σ3BF
HF (k) . (15)

We emphasize that, in accordance with the methodology described in
Ref. [26], the Hartree–Fock self-energy Σ3BF

HF originating from the 3BF is
computed from an effective two-nucleon potential at the lowest order.
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3.2. Phenomenological three-body force

There is another method to achieve saturation properties in nuclear mat-
ter. One should supplement the effective interaction or the self-energy of the
BHF calculations with a simple contact interaction (CT), which we have
chosen based on the notation of the Skyrme interaction and which has the
form [29]

∆H =
3

8
t0ρ

2 +
3

48
t3ρ

2+α , (16)

where ρ is the density of matter, t0, t3, and α are parameters. The expo-
nent α controls the behaviour at high density, whereas the parameters t0
and t3 indicate the zero range and the 3-body strength. The contact term
(CT) in the final equation has a Hamiltonian density that is independent
of isospin. With various realistic NN interactions based on different values
of α, the thermodynamic variables in symmetric nuclear matter have been
explored using the BHF technique with CT [30].

3.3. Dirac correction

Ainsworth et al. [31] proposed corrections based on relativistic and other
many-body effects. The lowest-order relativistic correction of the binding
energy per nucleon can be derived from the modification of the self-energy
of the scalar meson in nuclear matter and can be approximated as follows:(

E

A

)
rel

∝
(

ρ

ρ0

)8/3

MeV . (17)

This correction provides the saturating mechanism missing in the conven-
tional Brueckner–Hartree–Fock calculations.

3.4. Chiral three-body forces

Carbone et al. [27] have studied symmetric nuclear matter with chiral
two- and three-nucleon forces in both the BHF and self-consistent Green’s
functions. They proposed corrections due to the effects of chiral three-
nucleon forces for the EOS of nuclear matter. These effects can be largely
explained by the CT and its contribution to the total energy, which is pro-
portional to CE. In the Hartree–Fock approximation this is(

ECE

A

)
chiral

= −5.5 CE

(
ρ

ρ0

)2

. (18)

It is, therefore, expected that negative values of CE [32] lead to more re-
pulsive contributions to the EOS of nuclear matter. Then the saturation
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point is close to the empirical value if its value corresponds to the interval
−0.660 ≤ CE ≤ −0.189, where CE expresses the strength of the CT of the
three-nucleon interaction [33–35].

4. Results and discussion

4.1. The single-particle potential

The results of the single-particle potential calculation, which was done
using Eq. (7), are shown in this section. At every stage of the iteration
process, the quadratic approximation is introduced by fitting the potential
up to a specific maximum momentum, denoted kfit. The single-particle
potential U(k), obtained directly from the G-matrix calculation in Eq. (9), is
fitted with a parabola at each iteration step and serves as the entry potential
for the subsequent iteration. When both potentials under this approach stay
stable, convergence is obtained.

Figure 1 uses the N3LO potential at different values of the momentum-
space cut-off Λ = 450 (first panel), 500 (second panel), and 550 MeV (third
panel), for three different values of densities, to illustrate the dependence
of the single-particle potential on the momentum k up to kfit = 1.5 kF for
SNM. These are ρ = 0.5 ρ0, ρ0, and 2 ρ0 in terms of the Fermi momentum kF,
where ρ0 is the saturation density ρ0 = 0.17 fm−3. As is the case for SNM,
the Fermi momentum kF is connected to the total baryon number density
using the formula ρ = 2k3F/(3π

2). The solid line indicates continuous choice,
while the dashed line indicates traditional choice. We note that above kF,
the single-particle potential resulting in the conventional choice at high mo-
mentum k vanishes. This indicates that for values higher than the Fermi
momentum kF, the potential’s effect vanishes. In contrast, the continuous
choice shows that the potentials are more attractive and that their influence
extends even at high momentum k; this indicates that the potential’s effect
continues for values higher than the Fermi momentum kF. This is in line
with the research presented in Ref. [36], which indicates that the correlation
energy tends to increase when the gap at kF in the single-particle potential
is suppressed.

The single-particle potential in the BHF approach of pure neutron matter
(PNM) is represented by chiral NN potentials for the three cases of the cut-
off energy Λ of the N3LO interaction, as shown in Fig. 2. The curves show
the results without the 3BF effects for three densities, ρ = 0.5ρ0, ρ0, and
2ρ0 in terms of the Fermi momentum knF, where ρ0 = 0.17 fm−3. For the
auxiliary potential for three different values of knF, the dashed line represents
the conventional choice and the solid line represents the continuous choice.
The formula ρ = (knF)

3/(3π2) is used to relate the Fermi momentum of PNM
knF to the overall baryon number density.
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Fig. 1. The single-particle potential within the BHF approach of SNM using chi-
ral NN potentials for the three instances of the cut-off energy Λ of the N3LO
interaction. The curves show the results without the 3BF effects at three values
of densities: ρ = 0.5ρ0, ρ0, and 2ρ0 in terms of the Fermi momentum kF, where
ρ0 = 0.17 fm−3. The dashed curve represents the results with conventional choice,
whereas the solid line shows the continuous choice for the auxiliary potential at
three different values of kF.

It is evident from figures 1 and 2 that the high-momentum BHF single-
particle potential, which has been shown to be too attractive at high densities
and whose momentum dependence turns out to be too weak to describe the
experimental elliptic flow data in heavy-ion collisions (HIC) at high energies,
cannot be significantly improved by correlations induced by the two-body
force (2BF) alone [37, 38]. To enhance the single-particle potential’s high-
momentum behaviour in the Brueckner theory, the 3BF effect must be taken
into account.

We next compare the single-particle potentials, or the real part of the
on-shell self-energies in SNM (left panel) and PNM (right panel) in Fig. 3
in order to clearly understand the 3BF effects. The N3LO potential with
a momentum-space cut-off of Λ = 500 MeV and an exact treatment of the
Pauli operator is used in these computations as suggested by Schiller et al. [39].
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Fig. 2. The single-particle potential within the BHF approach of PNM using chiral
NN potentials with three different cut-off values. The dashed curve represents the
results with conventional choice, whereas the solid line shows the continuous choice
for the auxiliary potential at three different values of knF.

The results for both approaches are obtained at three distinct densities: 0.09,
0.17, and 0.33 fm−3. It can be seen that the single-particle potential is most
attractive at the BHF level (solid curves) without the inclusion of 3BF. At
low densities below and close to the normal nuclear matter density, the 3BF
effects (red dashed curves) are quite small. The 3BF effects quickly become
significant with the increasing density. In particular, the depth of the poten-
tial, i.e. U0(k = 0), decreases from −60.2 to −59.6 MeV at ρ = 0.09 fm−3,
while at the normal density ρ0, i.e. at ρ = 0.17 fm−3, it starts at −94.9 and
decreases to −90.2 MeV. This difference increases at high density, where the
depth has the value of −146.9 MeV and becomes −116.8 MeV when the 3BF
are included in the BHF approach at density of ρ = 0.33 fm−3. This means
that in the context of the Brueckner theory, the 3BF affects the predicted
single-particle potentials or self-energies in two different ways: First, it af-
fects the self-energies at the BHF and extended BHF levels directly via its
modification of the G-matrix.
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Fig. 3. At momentum-space cut-off values of Λ = 500 MeV, the single-particle
potential as a function of momentum k within the BHF method of SNM (left panel)
and PNM (right panel) employing the chiral N3LO potential with and without
incorporating 3BF. The dashed line displays BHF with the 3BF included and an
exact Pauli operator for the auxiliary potential at three distinct densities ρ, whereas
the solid curve displays the BHF results.

Accordingly, U(k) = UBHF(k) + U3BF(k) represents the entire single-
particle potential, where UBHF(k) denotes the lowest-order BHF single-
particle potential and U3BF(k) represents the contribution caused by the
3BF. Moreover, particularly at high densities, it can play a significant role
as a repulsion to the single-particle potential. Eventually, we can say that
the 3BF effect lowers the momentum dependence of the single-particle po-
tential and offers a small amount of repulsion at high densities through its
modification of the G-matrix at the BHF level. This repulsion is more no-
ticeable at lower momenta.

More specifically, all these single-particle potentials exhibit significant
deviation from a parabolic shape at momenta somewhat above the Fermi
momentum. In analysing the self-energy for particle states using Eq. (10),
it is evident that such a divergence tends to yield more appealing matrix
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elements of G, which results in greater binding energy. This result is con-
sistent with what the earlier studies [40, 41] have shown. In addition, as
expected, the 3BF adds a repulsive contribution to the single-particle poten-
tials. This repulsion in the effective three-body interaction may be induced
by the effects of sub-nucleonic degrees of freedom, like, e.g., the many-body
effects arising from ∆ excitations of the nucleons [23, 42]. Therefore, it
has been demonstrated in Refs. [43, 44] that this strongly repulsive and
momentum-dependent contribution caused by the 3BF is essential to mini-
mizing the discrepancy between the high-momentum and large-density BHF
single-particle potential in symmetric matter and the parametrized potential
for characterizing elliptic flow data [37] and those anticipated by the Dirac
Brueckner–Hartree–Fock approach [45].

The single-particle potential values in SNM at low momenta are more
attractive than those in pure neutron matter, as can be shown by comparing
figures 1, 2, and 3. This is because the absence of the 3S1–3D1 increases the
attraction. However, at high momenta, the SNM’s single-particle potential
values are more repulsive than those of PNM. The values of the potential
depth, which translate into the value of U(k) at k = 0 for both SNM and
PNM, are listed in Table 1. We observe that when density increases, the
potential depth falls. Furthermore, compared to the exact Pauli operator, it
is more repulsive in the angle average approximation. This is due to the fact
that, in the exact Pauli operator, the effective interaction between nucleons
is more attractive than in the angle average approximation [6]. The values
of the single-particle potential get more repulsive at high momentum and
more attractive at low momentum as the density increases. Furthermore,
the curves converge from each other when the values for the continuous
choice and the conventional one differ less, whereas the curves diverge when
the values for the angle average estimate and the exact Pauli operator differ
more.

4.2. The nuclear matter binding energy (E/A)

Figure 4 displays the outcomes of our non-relativistic BHF computations
using an N3LO potential and varying momentum-space cut-off values of
Λ = 450, 500, and 550 MeV. The E/A of SNM is shown in the left panel,
while the E/A of PNM is shown in the right panel as a function of the
Fermi momentum kF in fm−1. Conventional choice is represented by the
dashed line; continuous choice is represented by the solid line. The empirical
saturation one is indicated by the large square box.

One observes from the figure that the binding energy per nucleon first
decreases with increasing kF, until it reaches the minimum (saturation) point
then it increases with increasing kF. The continuous choice leads to an
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Table 1. The values of the single-particle potential, depth, at k = 0, determined by
the BHF approach using an N3LO potential with variable momentum cut-off. For
the single-particle potential at three different density values in the case of symmetric
and pure nuclear matter, these values are calculated both by convention and by
continuous choice. In addition, the depths in the case of BHF with and without
the inclusion of 3BF are calculated for symmetric and pure nuclear matter with an
exact treatment of the Pauli operator.

N3LO U0 at k = 0 for SNM (conv. choice)
cut-off ρ = 0.5ρ0 ρ = ρ0 ρ = 2.0ρ0

Λ = 450 −55.6155 −89.2249 −145.7923

Λ = 500 −56.5818 −91.0449 −146.9366

Λ = 550 −56.4083 −90.5053 −144.6329

U0 at k = 0 for SNM (cont. choice)
Λ = 450 −61.4997 −94.7601 −149.801

Λ = 500 −61.4333 −95.4183 −150.6668

Λ = 550 −61.0362 −94.5299 −147.7915

U0 at k = 0 for PNM (conv. choice)
Λ = 450 −32.1465 −55.7878 −91.0035

Λ = 500 −31.8367 −54.256 −84.305

Λ = 550 −31.781 −54.089 −82.6307

U0 at k = 0 for PNM (cont. choice)
Λ = 450 −32.4785 −56.2524 −91.5634

Λ = 500 −32.2888 −55.0108 −85.4816

Λ = 550 −32.1429 −54.5824 −83.3349

N3LO (BHF) U0 at k = 0 for SNM (exact Pauli)
Λ = 500 −60.1684 −94.9291 −146.8735

N3LO BHF+3BF U0 at k = 0 for SNM (exact Pauli)
Λ = 500 −59.6098 −90.1675 −116.79225

N3LO (BHF) U0 at k = 0 for PNM (exact Pauli)
Λ = 500 −31.4133 −54.5048 −85.3181

N3LO BHF+3BF U0 at k = 0 for PNM (exact Pauli)
Λ = 500 −29.3735 −46.0399 −51.3033
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Fig. 4. The binding energy per nucleon (E/A) calculated for SNM as a function
of the Fermi momentum within the BHF approach using the chiral N3LO poten-
tial with three values of momentum-space cut-off values of Λ. The dashed line
represents the results with conventional choice, whereas the solid one with the con-
tinuous choice for the auxiliary potential. The large square indicates the empirical
saturation area.

enhancement of correlation effects in the medium and tends to predict larger
binding energies for nuclear matter than the conventional choice. What
we observe in the present calculation is that in the continuous choice, the
energy per particle becomes more and more repulsive with increasing the
Fermi momentum kF. As predicted, the two-body BHF calculation exhibits
excessive attraction and it is impossible to obtain saturation up to very high
density, especially when chiral N3LO potentials with variable momentum-
space cut-off values of Λ = 450, 500, and 550 MeV are used. As a result, the
non-relativistic BHF is unable to produce the saturation property’s density
or magnitude close to the empirical estimations (shown as rectangles) using
just 2BF.
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Plotting the energy per particle E/A against the Fermi momentum kF for
PNM using various potentials is shown in the right panel of Fig. 4. The solid
line represents the continuous choice, while the dashed line represents the
conventional choice. The figure shows that, in accordance with most many-
body computations, the EOS of the PNM is unbound, with the energy per
nucleon increasing roughly monotonically with the increasing Fermi momen-
tum. We find that the differences between the two techniques are negligible
because the (T = 0) 3S1–3D1 coupled states mostly reflect the strength
of the tensor force, which is the main cause of the differences between the
potentials. That partial wave, however, is not present in PNM (T = 1).

4.3. Inclusion of 3BF in the BHF approach and its effect in EOS

It is generally known that the empirical saturation point of SNM can-
not be reproduced using two-body nuclear interactions alone, even in the
most advanced non-relativistic quantum many-body techniques. Actually,
the saturation points found with the BHF approximation are limited to a
small region known as the Coester band [22, 46], and they either have an
excessively high saturation density in comparison to the empirical values.
For the N3LO potential, the saturation density in the BHF approximation
is ρ0 = 0.48 fm−3 at e0 = −27.7 MeV. This value is very different from
the empirical value, which has E/Aexp = −16 MeV and ρ0 = 0.17 fm−3.
This can be fixed by using Chiral 3BF, Dirac correction, CT, or three-body
forces.

Using the chiral N3LO interaction and the BHF approach discussed in
the previous two sections, we present and discuss the results of our calcula-
tions for the equation of state, i.e., the energy per particle E/A as a function
of the Fermi momentum kF for SNM. After precisely handling the Pauli op-
erator and energy denominator, the partial waves of the Bethe–Goldstone
Eq. (1) can be expanded. We have taken into account partial wave contri-
butions in all of the computations done in this study, up to a total two-body
angular momentum of Jmax = 8. The energy per particle of SNM for the
interaction model under consideration is displayed in Fig. 5. The dashed
lines in each panel denote calculations where the contribution of the 3BFs
to the energy per nucleon was included, whereas the solid lines in each panel
relate to calculations made using the two-body potential without any 3BF.

As Fig. 5 illustrates, the 3BF yield nuclear saturation points included at
e0 = −16.86 MeV are very close to the empirical estimates ρ0 = 0.2 fm−3.
At the highest concentrations, the 3BF contribution may, nevertheless, be
more than the 2BF contribution. The results of the EOSs employing the
relativistic correction are more stiff than those obtained using BHF+3BF.
Saturation points obtained by applying BHF+CT as the Skyrme force at
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Fig. 5. The energy per particle (E/A) of SNM versus the Fermi momentum kF,
within different models described in the text using the N3LO potential. The em-
pirical saturation point is given by the large blue square. All results are com-
pared with BnB DBHF (green) and N3LO+3NF (blue) EOS achieved by Sammar-
ruca et al. [48].

value γ = 0.5 agree with the empirical value. The saturation threshold for
chiral 3BF is thus quite near to the empirical values ρ0 = 0.21 fm−3 at
e0 = −16.41 MeV with value of CE = −0.65. Up to a density of roughly
0.3 fm−3, the comparison shows a good agreement; however, at greater densi-
ties, both the variational and relativistic calculations point to a stiffer trend.
With the possible exception of the relativistic one, which, at higher densi-
ties, seems excessively repulsive. According to the analysis, the EOS must
be somewhat soft at low densities. This has important implications for the
stiffness of the resulting β-stable equation of state, in particular, for astro-
physical applications such as the study of neutron stars structure [17, 47].
Table 2 contains the findings of the saturation point evaluations for both
interaction models and all current SNM approaches.
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Table 2. A summary of the key properties of nuclear matter that the equation of
state at saturation points can be used to derive. The saturation density and energy
are denoted by ρ0 in fm−3 and −e0 in MeV, respectively, and the incompressibility,
symmetry energy, and slope parameter in MeV are denoted by K0, Esym, and L.
The experimental values are displayed in the last column. Every result is computed
using the BHF method, both with and without the 3BF, CT, Dirac correction, and
chiral 3BF.

BHF 3BF Skyrme Dirac Chiral Exp. ∼ [61]
ρ0 0.48 0.20 0.17 0.174 0.21 0.14–0.17
−e0 27.7 16.86 16.20 16.02 16.41 15–16
K0 282.4 305.9 193.9 257.7 206.1 220–260
Esym 60.5 33.27 30.77 34.64 35.67 28.5–34.9
L 121.8 64.55 45.28 74.55 63.85 30–87

Such calculations were performed early for the N3LO potential by Sam-
marruca et al. [48]. They have taken into consideration two very different
approaches to the analysis of nucleonic matter: one based on chiral effec-
tive three-nucleon forces at NNLO and a N3LO potential, the other based
on a meson-theoretic potential and the DBHF approximation. The nuclear
EOS is among the predictions that they have taken into account. The re-
sults of their approaches are shown in Fig. 5 with BnB DBHF (green) and
N3LO+3NF (blue) EOS. The results they obtained demonstrate that the
DBHF approach is a great phenomenology that can include significant many-
body effects, which are essential for nuclear saturation. In both cases, a sin-
gle nucleon interacting with the Fermi sea produces the effective 3NF. This
indicates the complementarity of the two approaches to explaining nuclear
forces. On the other hand, the proposed 3BF in the current computation
significantly improves the expected saturation qualities and makes a repul-
sive contribution to the EOS of nuclear matter, but it is not as effective as
chiral effective three-nucleon forces or DBHF, particularly at high densities.
However, using equations (16) and (17), similar results can be obtained if
Dirac or contact term corrections are included in BHF.

For a number of reasons, the EOS of neutron matter close to nuclear
densities is significant. Since various channels have a significant role in
the NN interaction in this regime — as previously mentioned — the EOS
examines various frames for the nuclear Hamiltonian directly. The EOS
dominates the maximum mass of neutron stars at very high densities, but
the pressure in the region ∼ 1–2ρ0 determines their radius, which may be
measured and utilized to constrain the EOS [49].
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However, multiple ab initio calculations in neutron matter have shown
the importance of 3BF, which lead to extra net repulsion and increase neu-
tron matter’s binding energy by several MeV at ρ0. Figure 6 presents a
comparison of the BHF (solid curve) with other ab initio calculations for
the PNM, including both NN and 3BF. The dot-dashed BHF+Dirac curve,
the dot-double-dashed BHF+3BF curve, the dashed BHF+CT curve, and
the dash-double-dotted BHF+chiral curve are these methods. The most
noticeable difference between Fig. 6 and BHF alone, as seen by the solid
curve, is the repulsion between three-nucleon interactions in neutron mat-
ter. Furthermore, Dirac and chiral 3BF both strongly generate this repulsion
in comparison to BHF with CT.
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Fig. 6. The energy per particle (E/A) of pure neutron matter versus the Fermi
momentum knF, within different models described in the text using the N3LO po-
tential.

4.4. Symmetry energy Esym and slope parameter L

Combining the EOS of PNM and SNM gives us insights into the isospin
effects [50], specifically with the symmetry energy Esym. As a second deriva-
tive of energy per nucleon E/A with regard to the asymmetry parameter α,
the symmetry energy of nuclear matter is described as follows:

Esym(ρ) =
1

2

[
∂2E/A(ρ, α)

∂α2

]
α=0

. (19)

The simple α2-law, Esym α2 = E/A(ρ, α) − E/A(ρ, 0), is satisfied by
the binding energy per nucleon E/A, as demonstrated by numerous studies
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[51, 52]. This holds true not only for α ≪ 1, as assumed in the empiri-
cal nuclear mass formula [53], but also during the whole asymmetry range,
with a linear behaviour. Two significant results follow from the α2-law of
the EOS of asymmetric nuclear matter (ANM) at any isospin asymmetry.
Firstly, it shows that the symmetry energy and the EOS of SNM provide the
whole EOS of ASM at any isospin asymmetry. Second, it suggests that the
symmetry energy explicitly determines the difference between the chemical
potentials of the neutron and proton in a β-stable neutron star: According
to µn−µp = 4αEsym [52], the symmetry energy is essential for determining
the make-up of neutron stars. By using the difference between the binding
energies of SNM E/A(ρ, α = 0) and PNM E/A(ρ, α = 1), we may compute
the symmetry energy Esym, i.e.,

Esym(ρ) = E/A(ρ, α = 1)− E/A(ρ, α = 0) , (20)

however, using it at an extremely high density is not advised. Figure 7
illustrates the symmetry energy as a function of density ρ, in accordance with
Eq. (20). Table 2 lists its values at saturation points for BHF, BHF+3BF,
BHF+CT, BHF+chiral, and BHF+Dirac calculations, which are 60.5, 33.27,
30.77, 34.64, and 35.67 MeV, respectively. Table 2 illustrates how these
values are in close vicinity to the empirical value range. This gap can be
traced back to the contribution of correlations resulting from relativistic,
chiral, or 3BF at all densities in SNM and PNM. When compared to BHF
calculations, this leads to higher binding energies (see figures 5 and 6).
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Fig. 7. The symmetry energy obtained as a function of the density ρ.
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The minimum of e0(ρ) = E/A(ρ, α = 0) at a density approximately equal
to the average central density of nuclei, ρ0, is a reflection of the saturating
nature of the nuclear force. Next, we will expand the symmetry energy
about the saturation point

Esym(ρ) ≈ Esym(ρ0) + L
ρ− ρ0
3ρ0

+
Ksym

2

(ρ− ρ0)
2

(3ρ0)2
, (21)

which helps identify several useful parameters. L is referred to as the slope
parameter, as it is a measure of the slope of the symmetry energy at satu-
ration

L = 3ρ0

(
∂Esym(ρ)

∂ρ

)
ρ0

. (22)

Furthermore, it is obvious from Eqs. (20) and (22) that L is a measure of
the slope of the NM EOS at saturation density, since the SNM EOS has a
vanishing slope at that point.

The parameter Ksym characterizes the curvature of the symmetry energy
at saturation density

Ksym = 9ρ20

(
∂2Esym(ρ)

∂ρ2

)
ρ0

. (23)

Note that a similar expansion of the energy per particle in SNM identifies
the quantity

K0 = 9ρ20

(
∂2e0(ρ)

∂ρ2

)
ρ0

(24)

as a measure of the curvature of the EOS in SNM.
Using the standard thermodynamic relation,

P (ρ) = ρ2
∂e

∂ρ
, (25)

where P is the pressure and e is the energy per particle, we define the
symmetry pressure as

Psym(ρ) = ρ2
∂(en − e0)

∂ρ
= PNM(ρ)− PSNM(ρ) . (26)

Since the pressure in SNM disappears at saturation, the symmetry pressure
is effectively the pressure in NM if the derivative is evaluated at or very near
ρ0. Then

PNM(ρ0) =

(
ρ2

∂en(ρ)

∂ρ

)
ρ0

, (27)
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where en = E/A(ρ, α = 1). It is evident from equations (22) and (27) that
the slope parameter L represents the pressure in NM around saturation
density

PNM(ρ0) = ρ0
L

3
, (28)

demonstrating that, for normal density, the pressure in NM is proportional
to the slope of the symmetry energy. The development and dimensions of
the neutron skin are thus determined by the value of L, which is a measure
of the pressure gradient forcing extra neutrons outward from the nucleus’s
neutron-enriched core to the outside region [54].

A few of our estimates for the slope parameter L using the current meth-
ods are displayed in Table 2. Chiral predictions typically have a softer
aspect, as was already noted. Reference [55] provides a comparison with
other phenomenological interactions, including Argonne V18 and the UIX
3NF [56]. Values for Esym(ρ0) and L are reported to be (31.7 ± 1.1) MeV
and (59.8± 4.1) MeV, respectively, in a more recent analysis [57].

4.5. Pressure P and incompressibility K0

Equation (25) defines the pressure of nuclear matter in terms of energy
per nucleon. The pressure produced from the BHF, BHF+3BF, BHF+CT,
BHF+Dirac, and BHF+chiral techniques based on EOS for symmetric mat-
ter is displayed in figure 8. The region enclosed by the closed lines suggests
that EOS agrees with the elliptic flow measurements of SNM that were pub-
lished in Ref. [58]. Two distinct parametrisations for the symmetry energy
are considered in the analysis for the case of neutron matter. The two pres-
sure contours shown in figure 9 represent the density dependence for Esym(ρ)
proposed by Prakash et al. [59], which are the weakest (lower contour with
continuous line) and the strongest (upper contour with dotted line). It is
plausible to conclude that, in comparison to Dirac calculations, which pro-
duce high pressure, BHF+CT and BHF+chiral predictions produce an ac-
ceptable level of repulsion; in contrast, BHF+3BF results produce a weakly
repulsive EOS.

The incompressibility K of the EOS is another significant property that
comes up when discussing a range of phenomena, including supernova explo-
sions and heavy-ion collisions. It gauges the EOS’s stiffness, which is often
expressed as the pressure’s saturation point slope, as provided by Eq. (24).
It has been determined that the experimental value of the incompressibil-
ity at saturation density ρ0 is 230 ± 40 MeV [60]. Table 2 summarizes the
incompressibility values and other bulk parameters derived for SNM at the
saturation density.
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5. Conclusion

At the end of this study, it was investigated how sensitive the Brueckner–
Hartree–Fock approximation is to an angle-averaged and exact treatment of
the Pauli propagator in the Bethe–Goldstone equation for the many-particle
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system of symmetric nuclear and PNM. In particle states involving three-
body forces, one finds that the exact treatment of the Pauli operator in
combination with a one-particle spectrum based on the real part of the
self-energy leads to results: First, the 3BF correlations provide a repulsive
contribution to the neutron and proton single-particle potentials and mainly
change the single-particle properties at low momenta around and below the
Fermi surfaces. Second, a result for the binding energy per nucleon that is
not negligibly larger than the results obtained with standard approximation
schemes.

Furthermore, we would like to note that the EOS is very sensitive to any
change in the momentum space cut-off, especially at high densities. We find
that the EOS of SNM exhibits a greater dependence on the momentum-space
cut-off when compared to that of PNM. In the case of utilizing the angular
mean approximation with its two options, increasing the momentum-space
cut-off results in a gain; the EOS takes its proper shape and saturates at
550 MeV momentum-space cut-off. It is consistent with other research, nev-
ertheless, the benefits of this gain are not very significant near the empirical
saturation point. The evaluated model still lacks the proper binding energy
per nucleon and symmetry energy values at saturation; hence, adjustments
to the 3BF or Dirac contribution must be made to account for this problem.

The current methods utilizing chiral NN interactions predict a mono-
tonically increasing symmetry energy as a function of density. The 3BF
influence is quite weak on symmetry energy at the sub-saturation level. The
relativistic and chiral components in both the BHF+Dirac and BHF+chiral
approaches bend up the symmetry energy curve at suprasaturation densi-
ties, which causes a stiffening of the density dependence of symmetry energy.
When it comes to symmetry energy, the BHF framework has far larger repul-
sive impact at high densities than the BHF+CT and BHF+3BF frameworks.
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