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With the increasingly serious population aging, people pay more at-
tention to the operation and management of pension. The optimization
of pension investment has attracted the research interest of many scholars.
Firstly, an asset price model is established by using the non-extensive statis-
tical theory, which can well describe the high-peak and fat-tail characteris-
tics of asset returns. Then, under the mean-variance criterion, the optimal
investment model of a defined-contribution pension is constructed. More-
over, the explicit solution to the optimal investment strategy of defined-
contribution pension is obtained by using dynamic programming, Legen-
dre transformation, and duality theory. This conclusion not only broadens
the application of non-extensive statistics in the financial field, but also
provides a new theory for the investment of pension funds.
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1. Introduction

The United Nations report shows that the global population over the
age of 65 has exceeded 10% of the total population, and the number will
reach 16% by 2050. Population aging has become a major factor restrict-
ing economic development. In order to cope with population aging and
promote social and economic development, many countries have established
pension systems. According to the different payment settings during the
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accumulation period and distribution stage of pension, it is generally di-
vided into two types: one is a defined-benefit pension, and the other is a
defined-contribution pension. The payment amount of the defined bene-
fit pension in the payment stage is determined in advance by the pension
manager at the beginning of the pension plan, and the participants do not
need to bear the investment risk of the pension. However, the participants
of defined-contribution pension plan often need to bear many market risks,
such as inflation, interest rate change, and asset price fluctuation. There-
fore, the research on investment management and risk control of defined
contribution pension has important theoretical and practical significance,
and it has attracted the attention of many scholars. Xiao [1] studied the op-
timal investment problem of defined-contribution pension by using Legendre
transformation and duality theory, and obtained the explicit solution of the
optimal investment strategy in two different periods before and after retire-
ment. Gao [2] obtained the optimal investment strategy of the power utility
function and exponential utility function under the assumption that the price
of risky assets obeys the CEV model and the optimization goal is to maxi-
mize the expected utility of pension terminal wealth. Han [3] obtained the
explicit solution of the optimal investment strategy under the CRRA-type
utility function by using the stochastic dynamic programming method and
the index bond hedging inflation risk. Under the mean-variance criterion,
Yao [4] studied the asset allocation of defined-contribution pension, taking
into account factors such as multi-period, random income, and death risk.
Using stochastic control, the Lagrange duality theory and variable transfor-
mation method, the analytical expressions of optimal investment strategy
and effective boundary were obtained. Liang [5] studied the optimal in-
vestment strategy of defined-contribution pension by using the stochastic
programming method and considering the risk of death and random wage
fluctuation, and further analyzed the influence of mortality and wage fluc-
tuation on the optimal investment strategy through numerical simulation.
Wu [6], considering inflation and wage risks, studied the optimal investment
strategy of defined-contribution pension under the mean-variance criterion,
gave the Hamilton–Jacobi–Bellman equation, and obtained the closed form
time consistent investment strategy and the explicit solution of the equilib-
rium effective boundary by using the stochastic control technology. Based
on the loss aversion and VaR constraints, Dong [7] gave the optimal in-
vestment strategy of the defined-contribution pension. Baltas [8] studied
the optimal management of defined-contribution pension in the distribution
stage under the influence of inflation and model uncertainty, and clarified
the impact of robustness and inflation on the optimal investment decision.
Wang [9] studied the optimal asset allocation of defined-contribution pen-
sion. Under the condition that the risk asset follows the O–U process, and
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considering the influence of random income and inflation risk, the Hamilton–
Jacobi–Bellman equation is derived by using the stochastic control method.
Tiro [10] derived the Hamilton–Jacobi–Bellman equation by using dynamic
programming under the random interest rate and inflation risk, and fur-
ther obtained the optimal investment strategy of the defined-contribution
pension. Using state correlation function to describe investors’ risk toler-
ance attitude and stochastic control method, Wang and Chen [11] studied
the equilibrium behavior strategy of defined-contribution pension during the
accumulation stage. The above research results can provide important the-
oretical assistance for investment decision-making of pension plans.

However, most of the above studies were conducted under the assump-
tion that stock prices follow the geometric Brownian motion, which means
that the distribution of asset returns follows a normal distribution. In fact,
a large number of empirical studies have shown that the distribution of as-
set returns has the characteristics of high peak and fat tail, and the prices
of stocks have different long-term correlations. For example, the empirical
analysis results of Lo [12], Beben [13], Conrad [14, 15], McLean [16], Man-
tegna [17], Mandelbrot [18], and Gopikrishnan [19, 20] indicate that stock
returns have obvious long-term correlation and fat-tail characteristics, in
many countries’ financial markets. In order to more accurately approach
the actual stock price changes, many scholars have replaced the geomet-
ric Brownian motion. Xiao [21] and Gu [22] used the fractional Brownian
motion with self-similarity and long-term correlation to describe the price
changes of stocks. Kim [23] and Geman [24] used Lévy processes with peak
and thick-tail characteristics to depict the stock prices. Duffie [25] and
Duan [26] employed processes with jump diffusion. In particular, in 1988,
Tsallis [27] proposed the non-extensive statistical theory. The theory can
regard the financial market as a complex system, define the asset price pro-
cess as an abnormal diffusion process, and then obtain a concise distribution
function form, which can describe the complex system with non-linear, long-
range interaction and long-term memory effect. Soon, the Tsallis statistical
method was widely used in the financial field. For example, Tsallis [28],
Rak [29], Kozaki [30], Queirós [31], and Biró [32] used the Tsallis statisti-
cal theory to study the fluctuation of stock price. Using the non-extensive
statistical theory, respectively, Ryuji [33] studied the variation of foreign ex-
change rate, Borland [34] studied the pricing problem of European options,
and Katz [35] studied the problem of asset default risk assessment. In ad-
dition, Liu [36] employed the non-extensive statistical mechanics to model
stock prices, studied the allocation of funds in stocks, and provided the op-
timal investment strategy within the framework of maximizing the investors’
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expected utility. Trindade [37] applied the Tsallis statistics in the Cover’s
portfolio theory and formulated the non-extensive version of the Cover’s
portfolio using the q-deformed functions and the q-product as key elements.
As is well known, it is difficult to obtain an explicit solution for the opti-
mal investment strategy under the condition of non-Gaussian distribution,
especially in the case of pension investment because it includes two different
time stages before and after retirement, representing the accumulation and
consumption of wealth, respectively.

In this study, to be closer to the actual financial market, the non-
extensive statistical theory is employed to describe the variation of stock
prices. On the other hand, to better depict the trade-off between risk and
return, and avoid inconsistency between the utility function and the risk
preference, the mean-variance criterion method is used to describe the in-
vestment decision-making of pension investors. Furthermore, the explicit
solution of the optimal investment strategy in different periods before and
after retirement is obtained. This conclusion not only expands the applica-
tion of non-extensive statistical theory in the financial field, but also provides
a new means for pension investment decision-making.

This article is organized as follows. In Section 2, the stock price model
based on the Tsallis non-extensive statistical theory is given, which can de-
scribe the high-peak and fat-tail characteristics of asset returns, and accu-
rately approach the actual market. In Section 3, according to the finan-
cial market model established in Section 2, the wealth equation of defined-
contribution pension in two different periods before and after retirement is
derived. In Section 4, under the mean-variance criterion, the optimal in-
vestment model of pension funds is constructed. That is to say, under the
condition that the wealth expectation of pension investors at the end time is
given in advance, the variance of the terminal moment wealth is minimized.
In Section 5, by using stochastic control, the Legendre transformation and
duality theory, the explicit expression of the optimal investment strategy for
the defined-contribution pension plan is solved. In Section 6, the study is
summarized and future research directions are proposed.

2. Market model

Suppose there are only two kinds of assets in the financial market, one is
risk-free assets called bonds, and the other is risky assets called stocks. The
price process B(t) of the risk-free bond satisfies{

dB(t) = rB(t)dt ,
B(0) = B0 ,

(1)

where r is a positive risk-free rate. The price process S(t) of the risky stock
satisfies
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dS(t) = µS(t)dt+ σS(t)dΩ(t) ,
S(0) = S0 ,

(2)

where µ is an expected return rate of the risky asset, and satisfies µ > r.
σ is the volatility of the risky asset. Moreover, the random variable Ω(t)
satisfies

dΩ(t) = P (Ω, t)
1−q
2 dW (t) . (3)

The process {W (t)}t≥0 is a standard Brownian motion defined on the
probability space (F , {Ft}t≥0,P). Pq(Ω) is a Tsallis distribution of index q
as follows (see [34]):

P (Ω, t) =
1

z(t)

(
1− β(t)(1− q)Ω2

) 1
1−q , (4)

where

z(t) = ((2− q)(3− q)ct)
1

3−q , (5)

β(t) = c
1−q
3−q ((2− q)(3− q)t)

2
q−3 , (6)

c =
π

q − 1

Γ 2
(

1
q−1 − 1

2

)
Γ 2

(
1

q−1

) .

In the q → 1 limit, Eq. (4) recovers a Gaussian distribution. When q > 1,
the distribution exhibits a fat tail relative to a normal distribution. Hence,
this model generalizes the geometric Brownian motion and can accurately
fit the variation of asset prices.

3. Wealth model of pensions

In this paper, the optimal investment problem of defined-contribution
pension is studied. It is consistent with the research of [1, 2, 4] and [9]. The
optimal investment of pension is divided into two stages, namely, before
retirement and after retirement. It is assumed that the payment method
of pension after retirement is annuity, and the amount is predetermined by
the pension fund manager. In addition, during the annuity payment period
after retirement, this study does not consider the death of the policyholder.
Therefore, the wealth process of pension can be divided into two stages. T
is defined as the retirement time, and N is the payment cycle of the annuity
after retirement.
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3.1. Wealth process of pension before retirement

According to the financial market mentioned above in the article, before
retirement, pension is allowed to invest in a risky asset stock and the other
risk-free asset bond. Let V (t) be the wealth value of the pension at time
t, π(t) and 1 − π(t) the proportion of the investor’s wealth invested in the
risky asset stock and the risk-free asset bond, respectively. Without losing
generality, it is assumed that the pension contribution rate is a positive con-
stant c, and the salary is unit 1. Then the wealth process of pre-retirement
pension satisfies the following stochastic differential equation:{

dV (t) = π(t)V (t)dS(t)S(t) + (1− π(t))V (t)dB(t)
B(t) + cdt ,

V (0) = V0 ,
(7)

where V0 is the initial wealth of the pension. By substituting (1) and (2)
into (7), the wealth process of the pre-retirement pension is{
dV (t)=[π(t)V (t)µ+(1−π(t))V (t)r+c] dt+π(t)V (t)σP (Ω, t)

1−q
2 dW (t) ,

V (0)=V0 .
(8)

3.2. Wealth process of pension after retirement

Suppose that the pension accumulated by T at the time of retirement
is all used to purchase annuities. Let D be the fund paid when purchasing
the N -term annuity. It obviously satisfies D ≤ V (T ). Define D̄ as the
payment amount at time t after retirement, then D̄ = D/āN̄ |, where āN̄ | =

(1− e−δN/δ) and δ is a continuous technical rate.
It is assumed that after retirement, the pension must be used to pay

a certain annuity, and it is allowed to invest in a risk-free asset bond and
other risky asset stock. As described, before retirement, V (t) is defined
as the wealth value of the pension at time t. Let π(t), 1 − π(t) be the
proportion of the investor’s wealth invested in the risky asset stock and the
risk-free asset bond, respectively. Then the wealth process of pension after
retirement satisfies the following stochastic differential equation:{
dV (t)=

[
π(t)V (t)µ+(1−π(t))V (t)r−D̄

]
dt+π(t)V (t)σP (Ω, t)

1−q
2 dW (t) ,

V (0)=V0 .
(9)

4. Mean-variance optimal investment problem

In this section, the optimal investment of defined-contribution pension
under the mean-variance criterion is considered. That is to say, minimize
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the risk (variance) of investors’ terminal wealth under the condition of maxi-
mizing the return (expectation) of investors’ terminal wealth. Therefore, we
can consider minimizing the variance of pension investors’ terminal wealth
under the condition that the expected value of pension investors’ terminal
wealth is given in advance.

4.1. Optimal investment model of pension before retirement

Definition 1. If the investment strategy π(t) is the solution of the stochastic
differential equation (8), then the investment strategy π(t) is said to be
feasible. Note that the set of all feasible solutions is L2

F(0, T ;R), then π(t) ∈
L2
F(0, T ;R).

Therefore, under the mean-variance criterion, we can write the optimal
investment problem of pre-retirement pension asmin VarV (T ) = E[V (T )− C]2 ,

s.t. E[V (T )] = C ,
π(t) ∈ L2

F(0, T ;R) ,
(10)

where the expected return C is a positive constant.
According to the Sharpe theory in the financial field, the return of assets

is in direct proportion to the risks they face. It can be obtained that in-
vestors’ income from investing pensions in high-risk stocks is higher than that
from investing all their funds in risk-free bonds. Moreover, when π(t) = 0,
the corresponding wealth process equation (8) becomes{

dV (t) = [V (t)r + c] dt ,
V (0) = V0 .

(11)

The solution is V (T ) = (c+rV0) erT−c
r . Thus, naturally, E[V (T )] = C ≥

((c+ rV0) e
rT − c)/r.

4.2. Optimal investment model of pension after retirement

According to the above analysis on the optimal investment of pre-retire-
ment pension, similarly, we can easily obtain the mathematical description of
the optimal investment of pension after retirement under the mean-variance
criterion as 

min VarV (T ) = E
[
V (T +N)− C̃

]2
,

s.t. E[V (T )] = C̃ ,
π(t) ∈ L2

F(T, T +N ;R) ,

(12)

where the expected return C̃ is a positive constant.
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5. Model solution

To obtain the optimal investment strategy of pre-retirement pension un-
der the mean-variance criterion, that is, the solution of Eq. (10), we intro-
duce a Lagrange multiplier 2λ ∈ R (the coefficient 2 is introduced to simplify
the calculation). Then, Eq. (10) becomesmin J(π(t), λ) = E

[
(V (T )− C)2 + 2λ(V (T )− C)

]
,

s.t. E[V (T )] = C ,
π(t) ∈ L2

F(0, T ;R) .
(13)

After calculation, it can be written asmin J(π(t), λ) = E[V (T )− (C − λ)]2 − λ2 ,
s.t. E[V (T )] = C ,

π(t) ∈ L2
F(0, T ;R) .

(14)

Let η = C − λ. Substituting it into Eq. (14), we havemin J(π(t), η) = E[V (T )− η]2 − (C − η)2 ,
s.t. E[V (T )] = C ,

π(t) ∈ L2
F(0, T ;R) .

(15)

According to the Lagrange duality theorem (see [13]), there is an equivalent
relationship between model (10) and model (15) as follows:

minVarV (T ) = maxminJ(π(t), λ) = maxminJ(π(t), η) . (16)

Obviously, when η = C − λ is a constant, Eq. (15) is equivalent to the
following equation:min J(π(t), η) = E[V (T )− η]2 ,

s.t. E[V (T )] = C ,
π(t) ∈ L2

F(0, T ;R) .
(17)

Similarly, under the mean-variance criterion, the optimal investment prob-
lem of pension after retirement, that is, model (12) can be equivalently
transformed into the following equation:min J (π(t), η̃ ) = E [V (T +N)− η̃ ]2 ,

s.t. E[V (T ) +N ] = C̃ ,
π(t) ∈ L2

F(T, T +N ;R) ,

(18)

where η̃ = C̃ − λ. It is not difficult to see that the optimal investment
problems (17) and (18) of the defined-contribution pension under the mean-
variance criterion before and after retirement have the same structure. There-
fore, we can generalize the objective function in Eqs. (17) and (18) as follows:

U(v) = (v − ητ )2 . (19)
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When ητ = η, it means before retirement. When ητ = η̃, it means after
retirement. Thus, Eqs. (17) and (18) are equivalent to Eqs. (20) and (21)
below {

min J(π(t), η) = E[U(V (T ))] ,
s.t. π(t) ∈ L2

F(0, T ;R) ,
(20)

{
min J (π(t), η̃ ) = E[U(V (T +N))] ,
s.t. π(t) ∈ L2

F(T, T +N ;R) .
(21)

In the following, we will use stochastic control theory to transform equa-
tions (20) and (21) of the optimization problem into the corresponding
Hamilton–Jacobi–Bellman equation to obtain a non-linear quadratic par-
tial differential equation. Then, the non-linear quadratic partial differential
equation is changed into a linear quadratic partial differential equation by
using Legendre transformation and duality theory to obtain the explicit ex-
pression of its solution.

5.1. Solve before retirement

Theorem 1. Under the mean-variance criterion, the optimal investment
strategy of the defined-contribution pension before retirement is

π∗
t =

µ− r

σ2P (1−q)

[
−1 +

a(t)

v

]
, (22)

where a(t) = (η + c/r) e−r(T−t) − c/r.

Proof. First, we define the value function (23) of the optimization problem
before retirement (20)

H(t, s, v) =inf E{U(V (T ))|S(t) = s, V (t) = v} , 0 < t < T , (23)

where H(T, s, v) = U(v). Therefore, the corresponding Hamilton–Jacobi–
Bellman equation is

Ht + µsHs + (rv + c)Hv +
1

2
σ2P (1−q)s2Hss

+min

[
πt(µ− r)vHv + πtσ

2P (1−q)svHsv +
1

2
π2
t σ

2P (1−q)v2Hvv

]
= 0 , (24)

where Ht, Hs, Hv, Hsv, Hss and Hvv are the first-order and second-order par-
tial derivatives of time, stock price and pension wealth, respectively. Solve
the partial derivative of the above equation with respect to the investment
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strategy πt and make it equal to zero, then the optimal investment strategy
can be obtained

π∗
t = −(µ− r)Hv + σ2P (1−q)sHsv

σ2P (1−q)vHvv
. (25)

By substituting the optimal investment strategy (25) into (24), a partial
differential equation of the value function can be obtained

Ht + µsHs + (rv + c)Hv +
1

2
σ2P (1−q)s2Hss

−
(
(µ− r)Hv + σ2P (1−q)sHsv

)2
2σ2P (1−q)Hvv

= 0 . (26)

Then, the value function can be obtained by solving the partial differential
equation (26). Finally, the specific expression of the optimal investment
strategy can be solved by substituting the value function into Eq. (25). In
the following, we will focus on solving the partial differential Eq. (26).

Definition 2. Let Rn → R be a convex function, and z > 0. Then, define
Legendre transform as

L(z) = max(f(x)− zx) . (27)

L(z) is called the Legendre dual function (see [1]). According to Definition 2,
by applying Legendre transformation to the value function H(t, s, v), we can
get

H̃(t, s, z) = sup {H(t, s, v)− zv|0 < v} , 0 < z , 0 < t < T , (28)

where z and v are dual variables (see [1]). Equation (28) above is equivalent
to the following equation:

g(t, s, z) = inf
{
v|H(t, s, v) ≥ zv + H̃(t, s, z)

}
, 0 < t < T . (29)

Both g(t, s, z) and H̃(t, s, z) are dual functions of H(t, s, v) and have the
following relation:

H̃(t, s, z) = H(t, s, g)− zg , g(t, s, z) = v , Hv = z . (30)
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At the terminal time, let Ũ(z) = sup {U(v)−zv|0 < v}, G(z) = sup {v|U(v) ≥
zv + Ũ(z)}. So obviously, there is G(z) = (U

′
)−1(z). Since H(T, s, v) =

U(v), at the terminal time T , we can obtain g(T, s, z) = inf {v|U(v) ≥
zv + H̃(T, s, z)}, H̃(T, s, z) = sup {U(v) − zv}, and g(T, s, z) = (U

′
)−1(z).

By solving the derivatives of variables t, s, and z for (30), the derivative
relationship between the value function H and its dual function H̃ can be
obtained as follows:

Hv = z , Ht = H̃t , Hs = H̃s ,

Hss = H̃ss −
H̃2

sz

H̃zz

, Hsv = − H̃sz

H̃zz

, Hvv = − 1

H̃zz

. (31)

Substituting (31) into (26) and solving the derivative of variable z combined
with v = g = −H̃z, we can get the partial differential equation about g

gt + rsgs − rg − c+
1

2
σ2P (1−q)s2gss +

(
(µ− r)2

σ2P (1−q)
− r

)
zgz

+
(µ− r)2

2σ2P (1−q)
z2gzz − (µ− r)szgsz = 0 . (32)

Therefore, the dual function g is used to express the optimal investment
strategy (24), which is

π∗
t =

−(µ− r)zgz + σ2P (1−q)sgs

σ2P (1−q)g
. (33)

Using g(T, s, z) = (U
′
)−1(z) and (19), we have

g(T, s, z) =
1

2
z + η . (34)

Suppose that the form of a solution of the partial differential equation (32)
is

g(t, s, z) = zh(t, s) + a(t) . (35)

Moreover, the boundary condition a(T ) = η, h(T, s) = 1
2 is satisfied. Sub-

stituting Eq. (35) into Eq. (32), we can get[
ht+(2r−µ)shs+

1

2
σ2P (1−q)s2hss+

(µ−r)2

σ2P (1−q)
h−2rh

]
z+a

′
(t)−ra(t)−c = 0 .

(36)
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Thus, two equations (37) and (38) are obtained

ht + (2r − µ)shs +
1

2
σ2P (1−q)s2hss +

(µ− r)2

σ2P (1−q)
h− 2rh = 0 , (37)

a
′
(t)− ra(t)− c = 0 . (38)

Using the boundary condition a(T ) = η, we can obtain the solution of
Eq. (38) as follows:

a(t) = (η + c/r) e−r(T−t) − c/r . (39)

Let x = ln s, τ = T − t, then V (x, τ) = h(s, t) = h(t, s) and ht =
∂V
∂τ

dτ
dt =

−Vτ , hs = ∂V
∂x

dx
ds = 1

sVx, hss = − 1
s2
Vx + 1

s2
Vxx. Substituting into (37), we

have

−∂V

∂τ
+

1

2
σ2P (1−q) 1

s2
(Vxx−Vx)+(2r−µ)Vx+

[
(µ− r)2

σ2P (1−q)
− 2r

]
V = 0 (40)

with the boundary condition V (x, 0) = 1
2 . Suppose that the form of function

V (x, τ) is
V (x, τ) = W (x, τ) eατ+βx . (41)

By taking the derivative of Eq. (41) and making it equal to zero, we can get

−eατ+βx[Wτ + αW ] +
1

2
σ2P (1−q) eατ+βx

[
Wxx + 2βWx + β2W

]
+

[
2r − µ− 1

2
σ2P (1−q)

]
eατ+βx[Wx + βW ]

+

[
(µ− r)2

σ2P (1−q)
− 2r

]
W eατ+βx = 0 . (42)

Further, we obtain {
α = −2r + (µ−r)2

σ2P (1−q) ,

β = 0 .
(43)

Using Poisson formula, we have

W (x, τ) =

+∞∫
−∞

1

2

e2σ
2P (1−q)τ

√
2πσP

(1−q)
2

dξ =
1

2
. (44)

Then, we get

h(s, t) = V (x, τ) =
1

2
e

[
−2r+

(µ−r)2

σ2P (1−q)

]
(T−t)

. (45)
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Substituting Eq. (45) into Eq. (35), we have

g(t, s, z) =
1

2
z e

[
−2r+

(µ−r)2

σ2P (1−q)

]
(T−t)

+ a(t) . (46)

Finally, substituting (46) and (30) into (33), we can obtain

π∗
t =

−(µ− r)zh(t, s) + 0

vσ2P (1−q)

=
−(µ− r)[g − a(t)]

vσ2P (1−q)

=
−(µ− r)[v − a(t)]

vσ2P (1−q)

=
µ− r

σ2P (1−q)

[
−1 +

a(t)

v

]
. (47)

5.2. Solve after retirement

Theorem 2. Under the mean-variance criterion, the optimal investment
strategy of the defined-contribution pension after retirement is

π∗
t =

µ− r

σ2P (1−q)

[
−1 +

a(t)

v

]
, (48)

where a(t) = (η̃ − D̃/r) e−r(T+N−t) − D̃/r.

Proof. Similar to the solution method before retirement, we define the value
function (49) of the optimization problem (21) after retirement as follows:

H(t, s, v) = inf E{U(V (T +N))|S(t) = s, V (t) = v} , T ⩽ t ⩽ T +N .
(49)

Then, its corresponding Hamilton–Jacobi–Bellman formula is

Ht + µsHs +
(
rv − D̃

)
Hv +

1

2
σ2P (1−q)s2Hss

+min

[
πt(µ− r)vHv + πtσ

2P (1−q)svHsv +
1

2
π2
t σ

2P (1−q)v2Hvv

]
= 0 , (50)

where Ht, Hs, Hv, Hsv, Hss, and Hvv are the first-order and second-order par-
tial derivatives of time, stock price and pension wealth, respectively. Taking
the derivative of investment strategy πt and making it equal to zero, we can
obtain the optimal investment strategy

π∗
t = −(µ− r)Hv + σ2P (1−q)sHsv

σ2P (1−q)vHvv
. (51)
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Substituting the optimal investment strategy (51) into (50), a partial differ-
ential equation of the value function is derived

Ht + µsHs +
(
rv − D̃

)
Hv +

1

2
σ2P (1−q)s2Hss

+

(
(µ− r)Hv + σ2P (1−q)sHsv

)2
2σ2P (1−q)Hvv

= 0 . (52)

Then substituting (31) into (52) and combining v = g = −H̃z, we can obtain
the partial differential equation (53) of the function g

gt + rsgs − rg + D̃ +
1

2
σ2P (1−q)s2gss +

(
(µ− r)2

σ2P (1−q)
− r

)
zgz

+
(µ− r)2

2σ2P (1−q)
z2gzz − (µ− r)szgsz = 0 . (53)

Therefore, the dual function g is used to express the optimal investment
strategy (51), which is

π∗
t =

−(µ− r)zgz + σ2P (1−q)sgs

σ2P (1−q)g
. (54)

In the following, it is only necessary to solve the function g through (53)
and substitute it into (54) to obtain the optimal investment strategy for the
defined-contribution pension. Similar to the solution before retirement, we
suppose that the solution of Eq. (53) is

g(t, s, z) = zh(t, s) + a(t) (55)

with the boundary condition a(T +N) = η̃, h(T +N, s) = 1
2 . Substituting

Eq. (55) into Eq. (53), we can get[
ht+(2r−µ)shs+

1

2
σ2P (1−q)s2hss

(µ−r)2

σ2P (1−q)
h−2rh

]
z+a

′
(t)−ra(t)+D̃ = 0 .

(56)
Thus, two equations (57) and (58) are obtained

ht + (2r − µ)shs +
1

2
σ2P (1−q)s2hss +

(µ− r)2

σ2P (1−q)
h− 2rh = 0 , (57)

a
′
(t)− ra(t) + D̃ = 0 . (58)

Using the boundary condition a(T + N) = η̃, the solution of Eq. (58) can
be derived

a(t) =
(
η̃ − D̃/r

)
e−r(T+N−t) + D̃/r . (59)
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The solution of Eq. (57) is the same as that before retirement, and it is easy
to get

h(t, s) =
1

2
e

[
−2r+

(µ−r)2

σ2P (1−q)

]
(T+N−t)

. (60)

Substituting Eq. (60) into Eq. (55), we have

g(t, s, z) =
1

2
z e

[
−2r+

(µ−r)2

σ2P (1−q)

]
(T+N−t)

+ a(t) . (61)

Then substituting (61) into (54) and combining v = g, we can get

π∗
t =

−(µ− r)zh(t, s) + 0

vσ2P (1−q)

=
−(µ− r)[g − a(t)]

vσ2P (1−q)

=
−(µ− r)[v − a(t)]

vσ2P (1−q)

=
µ− r

σ2P (1−q)

[
−1 +

a(t)

v

]
, (62)

where a(t) = (η̃ − D̃/r) e−r(T+N−t) − D̃/r.

6. Numerical results

To test the model, we select the daily closing prices of the Shanghai Com-
posite Index as experimental datasets. The time period is from 01/04/2022
to 02/08/2024.

In Table 1, the kurtosis coefficient of the daily returns of the Shanghai
Composite Index is 5.1204 which is very different from that of the Gaussian
distribution. Moreover, the value of the J–B test is 95.8563 and the test
probability is 0.0010 (the significance level is set as 0.05), which means the
J–B test rejects the null hypothesis that the distribution of the daily returns
of the Shanghai Composite Index is normal.

Table 1. The statistical characteristics of daily returns of the Shanghai Composite
Index.

Mean Standard deviation Kurtosis J–B P

0.00016 0.0099 5.1204 95.8563 0.0010
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In Fig. 1, the histogram of the daily returns shows that the return dis-
tribution has the characteristics of excess kurtosis. Furthermore, the Tsallis
distribution (q = 1.45) can more accurately fit the empirical density distri-
bution of the daily returns than the Gaussian distribution.
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Fig. 1. Comparison of fitting of the empirical distribution of the daily returns for the
empirical distribution, Gaussian distribution, and Tsallis distribution (q = 1.45).
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Fig. 2. The optimal investment strategy versus the wealth (r = 0.04, µ = 0.08,
σ = 0.2, v0 = 1, c = 0.1, q = 1.45, T = 20, t = 1, λ = 1).
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In Fig. 2, the optimal investment strategy is shown as a function of
wealth. In order to control risks, the investor usually reduces the proportion
of investment in risky assets as his wealth increases. However, at the same
level of wealth, a higher value of parameter q corresponds to a higher pro-
portion of investment in risky assets, which means that the investor needs
to take greater risks to achieve the expected return when the market is more
volatile.

7. Summary

As a powerful tool for dealing with long-range interactions and non-
linear complex systems, the Tsallis non-extensive statistical theory has been
applied to physics, finance, and management since its birth. To accurately
describe the movement of asset prices, this paper employs the Tsallis non-
extensive statistical theory. Moreover, on this basis, the optimal investment
problem of defined-contribution pension is considered. Under the mean-
variance criterion, the explicit solution of the optimal investment strategy
is obtained. This provides a reference for the further application of the
Tsallis non-extensive statistical theory in the field of finance. In the future,
the price model can be extended to study the investment problem under
the utility maximization criterion. In addition, replacing the constant stock
return and constant stock volatility in the model with variable stock return
and variable stock volatility is also worth further study.
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