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We propose a very simple toy model of a Z2
2-supersymmetric quantum

system and show, via Klein’s construction, how to understand the system
as being an N = 2 supersymmetric system with an extra Z2

2-grading. That
is, the commutation/anticommutation rules are defined via the standard
boson/fermion rules, but the system still has an underlying Z2

2-grading
that needs to be taken into account.
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1. Introduction

Recently, a novel generalisation of supersymmetry that is inherently
Z2
2-graded (Z2

2 := Z2 × Z2) has been proposed (see [1]), and some classical
and quantum models studied (see [2–8]). The basic degrees of freedom in
these models are a bosonic, exotic bosonic, and two species of fermions. The
novel aspect is that the exotic bosons anticommute with the fermions and
the two species of fermions mutually commute. In this sense, these systems
have exotic relative statistics, to use a term borrowed from the Green–Volkov
parastatistics (see [9] and references therein). Moreover, these systems have
a pair of supersymmetry generators whose commutator, rather than anti-
commutator, is a (possibly vanishing for certain models) central term. At
the time of writing, it is not clear if physical systems can exhibit this kind of
generalised supersymmetry. Low-dimensional systems are certainly a can-
didate as the spin-statistics theorem need not hold. For sure, more models
need to be constructed and studied, and their relation with conventional
models made clear. There are promising results within multiparticle theo-
ries where, in principle, there are observable consequences of the Z2

2-grading
(see [10]). Furthermore, we remark that no experimental evidence today has
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emerged that nature realises supersymmetry at the level of fundamental par-
ticles. Rather speculatively, we consider the construction of simple models
as an important step in experimentally realising Zn

2 -supersymmetry in, say,
trapped ion quantum simulators (see [11] for the case of a supersymmetric
quantum mechanical model and [12] for the case of para-boson oscillators).
We further remark that particles with exotic statistics have been proposed
as a candidate for dark matter (see, for example, [13]).

With the above comments in mind, we construct a Z2
2-graded version of

Nicolai’s supersymmetric oscillator (see [14]), examine some of its elemen-
tary properties, and then use Klein’s construction (see [15]) to render the
commutation/anticommutation rules to the standard ones and the system
supersymmetric. The ‘superised’ system is not completely standard as there
is still an underlying Z2

2-grading: the Hilbert–Fock space is Z2
2-graded and

the supersymmetry generators still carry a Z2
2-grading. The extra grading

is encoded in two Witten parity operators rather than a single one as found
in standard supersymmetry (this was first observed in [8]). It is remarkable
that a very simple mathematical system can exhibit this Z2

2-graded general-
isation of supersymmetry.
Conventions: For notational simplicity, we work in units such that the
mass of the particles m = 1 and Planck’s constant ℏ = 1 (as are any possible
coupling constants). As an ordered set, we define Z2

2 := {(0, 0), (1, 1), (0, 1),
(1, 0)}. The Z2

2-commutator is defined as

[A,B]Z2
2
:= AB − (−1)⟨deg(A)| deg(B)⟩BA ,

where ⟨−|−⟩ is the standard scalar product. For the conjugation operation,
we take the convention that (ab)† = b†a† irrespective of the Z2

2-degree.

2. Quantum Z2
2-oscillators

2.1. The model via creation and annihilation operators

We construct a very simple Z2
2-supersymmetric system over a single

point, thus we have a model of zero-dimensional field theory. This can
be thought of as a spin–lattice model consisting of four independent spin
degrees of freedom on a single lattice point. As the system is inherently
zero-dimensional, we do not have the proper notion of spin. Nonetheless,
we can consider operators that are Z2

2-graded and they satisfy canonical Z2
2-

graded commutation relations. That is, we take a ∗-algebraic approach. In
particular, consider a set of creation and annihilation operators acting on
a Hilbert space H:
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b†, b degree (0, 0) Standard Boson,
e†, e degree (1, 1) Exotic Boso,
f †
1 , f1 degree (0, 1) Fermion Type 1,

f †
2 , f2 degree (1, 0) Fermion Type 2.

We will use classical notation [−,−] and {−,−} for the Z2
2-commutators for

clarity. The commutation rules are the standard CCR and CAR[
b, b†

]
= 1 ,

[
e, e†

]
= 1 ,

{
fi, f

†
i

}
= 1 , (2.1)

with all other Z2
2-commutators vanishing. For example, f1f2 = f2f1 and

efi = − fie. We define the Hamiltonian as

H00 := b†b+ e†e+ f †
1f1 + f †

2f2 . (2.2)

This means that we are considering no interaction between the individual
oscillators. Note that this Hamiltonian is the sum of the number operators
Nb = b†b, Ne = e†e, Nf1 = f †

1f1, and Nf2 = f †
2f2. Thus, this system is

the natural generalisation of Nicolai’s supersymmetric oscillator (see [14]).
The number operators are of degree (0, 0) and satisfy the usual relations
[Na, a

†] = a† and [Na, a] = −a, where a ∈ {b, e, f1, f2}. This system exhibits
Z2
2-supersymmetry as first defined by Bruce [1] and Bruce and Duplij [8].

We naturally take observables to be degree (0, 0) self-adjoint operators.

Theorem 2.1. The following self-adjoint Z2
2-graded operators

Q01 := f †
1b+ b†f1 + f †

2e+ e†f2 , (2.3a)

Q10 := f †
2b+ b†f2 + f †

1e+ e†f1 , (2.3b)

satisfy the Z2×Z2-graded, N = (1, 1) supertranslation algebra (with vanish-
ing central term), i.e.,

{Q01, Q01} = {Q10, Q10} = 2H00 , [Q10, Q01] = 0 . (2.4)

Proof. This follows from a series of direct computations. First, using the
commutation rule for e and e†

Q2
01 = f †

1bb
†f1 + b†f1f

†
1b+ f †

2ee
†f2 + e†f2f

†
2e

+
(
f †
1f

†
2 − f †

2f
†
1

)
be+

(
f2f

†
1 − f †

1f2

)
be† +

(
f1f

†
2 − f †

2f1

)
b†e

+(f2f1 − f1f2) b
†e† ,
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then, using the commutation rules for f1, f2 and their conjugates, the second
line vanishes

= f †
1bb

†f1 + b†f1f
†
1b+ f †

2ee
†f2 + e†f2f

†
2e ,

next, using the non-trivial commutation relations, we obtain

= bb†
(
1− f1f

†
1

)
+
(
1+ bb†

)
f1f

†
1 + ee†

(
1− f2f

†
2

)
+
(
1+ ee†

)
f2f

†
2

= b†b+ e†e+ f †
1f1 + f †

2f2 = H00 .

The statement that Q2
10 = H00 follows from the above proof upon inter-

changing 1↔ 2 for the fermions.
Moving on to the mixed commutator, writing out only the terms that

do not obviously commute, we have

[Q01, Q10] = f †
2bb

†f1 − b†f1f
†
2b+ f †

2be
†f2 − e†f2f

†
2b

+b†f2f
†
1b− f †

1bb
†f2 + b†f2f

†
2e− f †

2eb
†f2

+f †
1eb

†f1 − b†f1f
†
1e+ f †

1ee
†f2 − e†f2f

†
1e

+e†f1f
†
1b− f †

1be
†f1 + e†f1f

†
2e− f †

2ee
†f1 ,

using the (anti)commutation rules, we obtain

= f1f
†
2 − be† − f2f

†
1 + eb† − eb† + f2f

†
1 + be† − f1f

†
2 = 0 .

The fact that H00 is central, so [H00, Q01] = [H00, Q10] = 0, follows from
the Jacobi identity and the antisymmetry of the graded commutators.

Remark 2.2. In general, we have a central term [Q10, Q01] = 2iZ11, where
Z11 is of Z2

2-degree (1, 1). Note that we have a commutator here and not
an anticommutator as would be the case for standard supersymmetry. The
vanishing of Z11 is completely expected as all the oscillators are indepen-
dent of each other. Adding interactions requires the presence of coupling
constants that carry a non-zero Z2

2-degree (see [5–7]).

Observations:

1. The Hamiltonian (2.2) is the sum of two bosonic and two fermionic
harmonic oscillators (ℏ = ω = 1). Thus, in the basis |nb, ne, nf1 , nf2⟩,
the energy is given by E = nb+ne+nf1+nf2 = n. See Proposition 2.3
for the degeneracy of these states. The first four excited states are
given in Table 1.
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Table 1. The first few energy levels of the Z2
2-oscillator (2.2) in the ‘particle number’

basis.

Energy States
Boson Exotic Fermion 1 Fermion 2
(0, 0) (1, 1) (0, 1) (1, 0)

0 |0, 0, 0, 0⟩ — — —
1 |1, 0, 0, 0⟩ |0, 1, 0, 0⟩ |0, 0, 1, 0⟩ |0, 0, 0, 1⟩
2 |2, 0, 0, 0⟩ |1, 1, 0, 0⟩ |1, 0, 1, 0⟩ |1, 0, 0, 1⟩

|0, 2, 0, 0⟩ |0, 0, 1, 1⟩ |0, 1, 0, 1⟩ |0, 1, 1, 0⟩
3 |3, 0, 0, 0⟩ |2, 1, 0, 0⟩ |2, 0, 1, 0⟩ |2, 0, 0, 1⟩

|1, 2, 0, 0⟩ |1, 0, 1, 1⟩ |1, 1, 0, 1⟩ |1, 1, 1, 0⟩
|0, 1, 1, 1⟩ |0, 3, 0, 0⟩ |0, 2, 1, 0⟩ |0, 2, 0, 1⟩

4 |4, 0, 0, 0⟩ |3, 1, 0, 0⟩ |3, 0, 1, 0⟩ |3, 0, 0, 1⟩
|2, 2, 0, 0⟩ |2, 0, 1, 1⟩ |2, 1, 0, 1⟩ |2, 1, 1, 0⟩
|1, 1, 1, 1⟩ |1, 3, 0, 0⟩ |1, 2, 1, 0⟩ |1, 2, 0, 1⟩
|0, 4, 0, 0⟩ |0, 2, 1, 1⟩ |0, 3, 0, 1⟩ |0, 3, 1, 0⟩

2. Clearly, H00|0, 0, 0, 0⟩ = 0 and the zero-energy ground state is a sin-
glet. We use the shorthand |0⟩ := |0, 0, 0, 0⟩ for this ground state. The
ground state being a zero energy state implies, as standard, Q01|0⟩ = 0
and Q10|0⟩ = 0, meaning that Z2

2-supersymmetry is unbroken. This is
exactly the same situation as of the standard supersymmetric oscilla-
tor. The ground state is bosonic.

3. There is a version of R-symmetry which shifts the Z2
2-degree and is

given by

b 7→ exp(iλ) e , e 7→ exp(−iλ) b ,
f1 7→ exp(iλ) f2 , f2 7→ exp(−iλ) f1 ,

together with the conjugates, and here λ ∈ R. Note that the Hamil-
tonian H00 is invariant and that

Q01 ←→ Q10 .

Proposition 2.3. The nth energy level for n ≥ 1 of the Hamiltonian (2.2)
is 4n-fold degenerate.
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Proof. For any fixed n ≥ 1, a state is labelled |nb, ne, nf1 , nf2⟩ where nb, ne ∈
N and nf1 , nf2 ∈ {0, 1}, subject to the constraint nb + ne + nf1 + nf2 = n.
The fermionic labels are 00, 01, 10, and 11 and thus the proof reduces to
arranging pairs of integers that sum to n, n− 1 (counted twice), and n− 2.
This problem is equivalent to the number of ways one can place a single
stick between n balls, and then n−1 balls (counted twice), and finally n−2
balls. For the n-case, we have

|OO · · ·OO = (0, n) ,

O|O · · ·OO = (1, n− 1) ,

...
OO · · ·O|O = (n− 1, 1) ,

OO · · ·OO| = (n, 0) .

Thus, the number of pairs of numbers that sum to n is n+1. Then it is clear
that the number of states for a given n is just n+ 1+ 2n+ n− 1 = 4n.

We have a pair of the Witten parity operators1 defined as

K1 = cos (π (Ne +Nf1)) , K2 = cos (π (Ne +Nf2)) , (2.5)

which are both clearly Z2
2-degree (0, 0) and self-adjoint, thus they correspond

to observables. By construction, we have

Ki |nb, ne, nf1 , nf2⟩ = (−1)ne+nfi |nb, ne, nf1 , nf2⟩ . (2.6)

It is immediately clear that

[K1,K2] = 0 , [K1, H00] = [K2, H00] = 0 , K2
1 = K2

2 = 1 . (2.7)

In particular, the above implies that we can have simultaneous eigenfunc-
tions of the Hamiltonian and the two Witten parity operators (2.5). We can
then pick a basis for the states |n, ε1, ε2⟩, where εi ∈ {+1,−1}. That is, the
space of states H has a decomposition into four sectors depending on the
sign of the Witten parity operators, i.e., H = H++ ⊕H−− ⊕H+− ⊕H−+.
These sectors correspond to bosons, exotic bosons, fermions of type 1, and
fermions of type 2. It is then convenient to relabel these sectors via the
corresponding Z2

2-degree, i.e., H = H00 ⊕H11 ⊕H01 ⊕H10. Moreover, the
Witten parity operators imply the superselection rule that only states that

1 Also known as Klein operators, chirality operators or fermion number operators,
though this last name is not appropriate in the current situation.
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are homogeneous in Z2
2-degree are physically realisable (see, for example,

[16]). It is straightforward to observe that

Q01K1 = −K1Q01 , Q10K1 = +K1Q10 ,

Q01K2 = +K1Q01 , Q10K2 = −K2Q10 , (2.8)

and thus

Q01H00 ⊂ H01 , Q10H00 ⊂ H10 ,

Q01H11 ⊂ H10 , Q10H11 ⊂ H01 ,

Q01H01 ⊂ H00 , Q10H01 ⊂ H10 ,

Q01H10 ⊂ H11 , Q10H01 ⊂ H11 .

The system really is Z2
2-supersymmetric, i.e., states from one sector are

mapped to other sectors using Q01 and Q10. It is important to note that
applying Q10Q01 (or equivalent in this case Q01Q10) does not return one to
the starting sector as it would in the standard supersymmetry. For example,
Q10Q01H00 ⊂ H11.

2.2. Klein operators and ‘superisation’

We now proceed to apply Klein’s construction (see [15]) to redefine the
operators we work with to render the system super, i.e., with the standard
commutation/anticommutation rules for the creation and annihilation op-
erators defined by a Z2-grading. The natural choice here is to use the total
degree of the assigned Z2

2-degree. Moreover, we want the construction to
lead to two standard supersymmetries.

Remark 2.4. Quesne showed that the algebra of Z2
2-graded supersymmet-

ric quantum mechanics is realisable in terms of a single bosonic degree of
freedom using the Calogero–Vasiliev algebras i.e., there is a minimal bosoni-
sation of the theory (see [17]). We will content ourselves with a ‘superisation’
in this note.

We have to choose one of the Witten operators (2.5) to be our Klein
operator. We pick K1 for no particular reason other than our choice of
ordering with the elements of Z2

2. We then define a new set of fermionic
creation and annihilation operators as

a1 = f1K1 , a†1 = K1f
†
1 , (2.9a)

a2 = f2K1 , a†2 = K1f
†
2 . (2.9b)
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Proposition 2.5. The set of operators {b, b†, e, e†, a1, a†1, a2, a
†
2} satisfy the

standard commutation/anticommutation rules for a pair of bosonic and a pair
of fermionic creation and annihilation operators where the supercommuta-
tion rules are defined by the total degree of the operators.

Proof. This follows from the properties of the Witten parity operators. We
do not need to check all expressions, just those that involve a1 and a2 (and
their conjugates). Moreover, we need not consider any expression involving b
(and its conjugate). For example, {e, f1}K1 = ef1K1 + f1eK1 = ef1K1 −
f1K1e = [e, a1] = 0. Similarly, K1[f2, f1]K1 = K1f2f1K1 − K1f1f2K1 =
f2f1K1 + f1K1f2K1 = {a2, a1} = 0. Finally, just to further illustrate the
point, K1{f1, f †

1}K1 = K1f1f
†
1K1 +K1f

†
1f1K1 = f1K1K1f

†
1 +K1f

†
1f1K1 =

{a1, a†1} = 1. All other commutators and anticommutators can similarly be
deduced. The claim that these are now all supercommutators using the total
degree follows directly.

Furthermore, we define the following self-adjoint operators:

H := b†b+ e†e+ a†1a1 + a†2a2 = H00 , (2.10a)

Q1 := iK1Q01 = ia†1b− ib†a1 + ia†2e− ie†a2 , (2.10b)

Q2 := K1Q10 = a†2b+ b†a2 + a†1e+ e†a1 . (2.10c)

Note that the Hamiltonian is unchanged, but now has the interpretation of
the sum of the Hamiltonians for a pair of distinguishable bosons and a pair
of distinguishable fermions.

Theorem 2.6. The above operators (2.10a), (2.10b), and (2.10c) satisfy the
N = 2 supertranslation algebra (with vanishing central charge)

{Q1, Q1} = {Q2, Q2} = 2H , {Q2, Q1} = 0 ,

and all other commutators vanishing.

Proof. Note that we are now dealing with commutators/anticommutators
defined by the total degree of the operators. Direct computation using the
properties of the Witten operators and Theorem 2.1 gives

{Q1, Q1} = 2iK1Q01iK1Q01 = 2Q01Q01 = 2H00 = 2H ,

{Q2, Q2} = 2K1Q10K1Q10 = 2Q10Q10 = 2H00 = 2H ,

{Q2, Q1} = i(K1Q10K1Q01 +K1Q01K1Q10) = i(Q10Q01 −Q01Q10) = 0 .

Checking that the Hamiltonian is central is similarly straightforward

[H,Q1] = iK1[H00, Q01] = 0 , [H,Q2] = K1[H00, Q10] = 0 .
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Remark 2.7. This construction is not completely canonical, there is the
other obvious choice of using K2 and the obvious amendments to the above
constructions. This would be no more than exchanging the labelling of
fermions of type 1 and type 2.

The Lie superalgebra formed by H, Q1, and Q2 should be considered
as a Z2

2-graded Lie superalgebra, i.e., a Lie superalgebra with an additional
compatible Z2

2-grading. Specifically, H is even and carries Z2
2-degree (0, 0),

Q1 is odd and carries Z2
2-degree (0, 1), and Q2 is odd and carries Z2

2-degree
(1, 0). Of course, these operators still act on the Hilbert–Fock space H =
H00 ⊕ H11 ⊕ H01 ⊕ H10, and the Z2

2-grading still needs to be taken into
account. The Witten parity operators encode the Z2

2-grading and one can
easily deduce the following:

{K1, Q1} = 0 , [K1, Q2] = 0 ,

[K2, Q1] = 0 , {K2, Q2} = 0 . (2.11)

Just as before, we have

Q1H00 ⊂ H01 , Q2H00 ⊂ H10 ,

Q1H11 ⊂ H10 , Q2H11 ⊂ H01 ,

Q1H01 ⊂ H00 , Q2H01 ⊂ H10 ,

Q1H10 ⊂ H11 , Q2H01 ⊂ H11 .

Via this construction, the relative statistics of the creation/annihilation op-
erators are now standard. Moreover, the system exhibits supersymmetry,
but now with an extra internal quantum number — the Z2

2-grading that is
encoded in the two Witten parity operators. These observations sit comfort-
ably with the results of [9]. In particular, systems with para-fermions can,
under some technical conditions, be reformulated to have standard statis-
tics, but now the observable algebra is selected by a non-Abelian gauge
group. This supersymmetric system is not entirely standard. Supersymme-
try generators usually anticommute with the Witten parity operator, but in
the current situation, we have both commutators and anticommutators, see
(2.11). Generalising supersymmetry to include internal degrees of freedom
— and we view the extra Z2

2-grading in this light — has a long history dating
back to the late 1970s (see [18] and references therein).

3. Concluding remarks

In this short note, we have constructed a simple Z2
2-supersymmetric

model based on creation and annihilation operators. We have shown that
via Klein’s construction the system can be rendered supersymmetric.
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One issue here is that the model does not have a central charge and it
is desirable to amend this. The lack of central charge is due to the four
oscillators not interacting with each other. It has already been noticed that
interacting models, classical at least, seem to require coupling constants that
carry non-zero Z2

2-grading. The physical interpretation of such constants is
not exactly clear, nor is the role of exotic bosons in nature.

Moreover, building simple models with Zn
2 -supersymmetry for n > 2

is a challenge as the number of elements of Zn
2 grows exponentially as n

increases. This increase in the number of degrees of freedom has hindered
model-building (for work in this direction, see [2]).

The author thanks Steven Duplij and Francesco Toppan for their friend-
ship and discussions. Cordial thanks are extended to the referee for their
careful reading of the manuscript and helpful comments.
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