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Weakly nonlocal (WNL) Quantum Field Theories (QFTs) may define a
new class of UV-completions in particle physics and gravity, without intro-
ducing any new elementary particle. One problematic issue is how to realize
spontaneous symmetry breaking without introducing an infinite tower of
ghosts in the perturbative spectrum. In this article, a WNL extension of
the Standard Model (SM) is proposed: the Fuzzy Standard Model (FSM).
It is a smooth deformation of the SM based on covariant star-products of
fields. This new formalism realizes electroweak symmetry breaking without
ghosts at tree-level. We give evidence that the FSM exhibits Vainshtein
screening, aka classicalization, in the deep-UV. This could solve the elec-
troweak hierarchy problem if it occurs at the TeV-scale.
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1. Introduction

The electromagnetic and subatomic interactions are well described by the
Standard Model (SM) of particle physics [1], which is a local Quantum Field
Theory (QFT). However, gravity is argued to have some nonlocal features [2],
which may tell us that the fundamental theory of Nature has some weaker
notion of locality than textbook QFT, like String Theory [3].
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During the last decade, there has been a revival of the old program1 of
building Lorentz-invariant weakly nonlocal (WNL) QFTs2 [8]. When ap-
plied to Yang–Mills or gravity theories, one usually uses the Krasnikov–
Terning gauge-covariant nonlocal scheme [9, 10]. Such theories are claimed
to have different perturbative or nonperturbative UV-behaviors, depending
on the choice of the WNL form factors, such as superrenormalizability/UV-
finiteness à la Kuz’min–Tomboulis [11–17], UV/IR duality by worldline in-
version symmetry [18, 19] (to copy stringy modular symmetry [20, 21]), or
UV-obstruction by classicalization [22–38]. Furthermore, inspired by tower
truncation in String Field Theory [39], several groups have investigated effec-
tive toy models with exponential form factors [40], where one tries to “mimic”
the effect of the string scale in gravity [41–43] and particle physics [40, 44–
67], but the actual perturbative control can be questioned [68]. There is also
an extensive literature on applications in black hole physics and cosmology
(cf. reviews [69, 70]). The form factors are usually chosen ghost-free [8, 40],
otherwise one gets trouble with stability or unitarity [71–73], and pertur-
bative analyticity/unitarity has been shown (at least) for UV-finite scalar
models, and expected to hold with gauge theories when the UV-behavior is
under perturbative control [12, 74–83].

However, a well-known difficulty of this program arises when a scalar field
acquires a vacuum expectation value (VEV): an infinite tower of ghosts pops
up above the WNL scale in the physical vacuum [46, 47, 66, 84–86]. This
is a serious issue since, in the Glashow–Weinberg–Salam (GWS) model of
electroweak (EW) interactions [87–89], spontaneous electroweak symmetry
breaking (EWSB) occurs via tachyon condensation, aka the Higgs mecha-
nism [90–92]. Fortunately, 3 different possibilities have been proposed to re-
alize a WNL Higgs mechanism without ghosts: gauge-Higgs unification [47],
tree-duality [93, 94], and a covariant star-product formalism [66].

In this article, we continue to investigate the framework of covariant
star-products between fields, which has been recently proposed by one of
the authors in Ref. [66] for an Abelian Higgs model without fermions. Our
goal is to generalize the formalism to include non-Abelian gauge theories,
fermions, and Yukawa couplings, in order to build a minimal version of the
Fuzzy Standard Model (FSM): a WNL deformation of the SM that is ghost-
free in the physical EW vacuum. We stay mostly agnostic about the precise
choice of the WNL form factors involved in the star-products: it is of course
important to study the UV-behavior with quantum corrections, but here
we restrict ourselves to a tree-level analysis. N.B.: Our conventions are the
same as in Peskin and Schroeder’s textbook [95].

1 For a review of the pre-SM attempts to define nonlocal UV-deformations of QFTs,
cf. [4]. See also the pioneer works by Efimov in Refs. [5–7].

2 The nomenclature “infinite-derivative QFT” is also widely spread in the modern lit-
erature.
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2. Bosonic fields

2.1. Pure gauge sector

One wants to define covariant star-products3 ⋆• between fields, as well
as their noncovariant avatars ∗•. One introduces entire functions ϑ•(z) and
fuzzy-plaquettes η• = (1/Λ•)

2, with the WNL scales Λ•. They are used to
define ghost-free form factors (entire functions without zeroes in C) that can
be in general written and expanded as

eϑ•(z) =

+∞∑
n=0

c
(n)
• zn , c

(n)
• ∈ R , ϑ•(0) = 0 . (2.1)

Such a form factor is WNL, i.e. in the local limit η• → 0, one retrieves
Dirac distributions δ(z). With the Minkowski metric gµν , one introduces
the tensors ηµν• = η•g

µν in the definitions of the star-products.
The weak hypercharge bosons Bµ — in the gauge representation4 (1,1)0

— are the gauge bosons of the group U(1)Y of coupling g1. The gauge field
strength tensor is Bµν = ∂µBν − ∂νBµ. One defines the star-products5

Bρ(x) ⋆0 Bσ(x) ≡ Bρ(x) ∗0 Bσ(x) (2.2)

≡ Bρ(x) e
ϑ0

(←−
∂µ η

µν
0

−→
∂ν

)
Bσ(x) (2.3)

= e
ϑ0

(
∂
(i)
µ ηµν0 ∂

(j)
ν

)
Bρ (xi) ·Bσ (xj)

∣∣∣∣
xi→xj≡x

(2.4)

=

∫
d4pi d

4pj
(2π)8

e−i(pi+pj)·x+ϑ0(−η0 pi·pj) B̃ρ(pi) · B̃σ(pj) ,

(2.5)

where f̃(p) is the Fourier transform of the function f(x).
3 We use • subscripts to introduce in a generic way symbols that can have different

subscripts.
4 We use the notation (RC , RW )Y for a representation of the SM gauge group SU(3)C×
SU(2)W ×U(1)Y , where the subscripts C, W , and Y refer to color, weak isospin and
weak hypercharge, respectively.

5 This star-product is nonassociative in general, and one needs to keep this property
in mind when dealing with operators involving more than 1 star-product. In prac-
tice, the star-products in this article are just elegant and compact notations for the
WNL form factors in the Lagrangian. They do not enter the definitions of gauge
transformations that are still the standard ones with the (local) pointwise product.
If it were the case, the nonassociativity would be a problem to define a deformation
of the algebra, and a gauge transformation like ψ(x) 7→ eiα(x) ψ(x) under a U(1)
group would be ill-defined. How could we define the series expansion of the expo-
nential without an associative multiplicative law to define an algebra? In the case
of the Groenewold–Moyal product in noncommutative QFT [96], the star-product is
noncommutative but associative, and one can define such a deformed algebra.
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The weak isospin bosons6 Wµ =W a
µ

(
σa

2

)
(resp. of gluonsGµ = Gaµ

(
λa

2

)
)

— in the gauge representations (1,3)0 and (8,1)0, resp. — are the gauge
bosons of the group SU(2)W of coupling g2 (resp. SU(3)C of coupling g3).
The gauge field strength tensors are

Wµν = Wa
µν

σa
2
, Wa

µν = ∂µW
a
ν − ∂νW

a
µ + g2 ϵ

a
bcW

b
µW

c
ν ,

Gµν = Gaµν
λa
2
, Gaµν = ∂µG

a
ν − ∂νG

a
µ + g3 f

a
bcG

b
µG

c
ν . (2.7)

One defines the star-products

Wρ(x) ∗w Wσ(x) ≡Wρ(x) e
ϑw

(←−
∂µ η

µν
w
−→
∂ν

)
Wσ(x) , (2.8)

Wρ(x) ⋆w Wσ(x) ≡Wρ(x) e
ϑw

(←−
∇µ ηµνw

−→
∇ν

)
Wσ(x) (2.9)

= e
ϑw

(
∇(i)
µ ηµνw ∇

(j)
ν

)
Wρ(xi) ·Wσ(xj)

∣∣∣∣
xi→xj≡x

(2.10)

=

[∫
d4pi d

4pj
(2π)8

e−i(pi+pj)·x W̃ρ(pi) · W̃σ(pj)

] [
eϑ(−ηw Pij)

∣∣∣
xi→xj≡x

]
(2.11)

=Wρ ∗w Wσ +O
(
g2
Λ2
w

W 3

)
(2.12)

(idem for Gµ with the replacement of subscript w 7→ c), where the com-
mutators between the covariant derivatives in the adjoint representation ∇µ

satisfy
[
∇(i)
µ ,∇(j)

ν

]
=

[
∇(i)
µ ,Wν(xj)

]
=

[
∇(i)
µ ,Wνρ(xj)

]
= 0 with xi ̸= xj ,

and7 Pij = pi · pj + ipj · ∇(i) + ipi · ∇(j) −∇(i) · ∇(j) acts iteratively on the
constant unit function 1 in the form factor expansion (2.1) to generate the
gauge cloud.

6 One introduces: (i) the structure constants ϵabc and fabc of the SU(2) and SU(3)
groups, respectively; (ii) the 3 Pauli matrices σa and the 8 Gell-Mann ones λa; (iii)
the covariant derivatives acting on the adjoint representations

∇µWν = (∇µWν)
a σa

2
, (∇µWν)

a =
(
δac ∂µ + g2 ϵ

a
bcW

b
µ

)
W c

ν ,

∇µGν = (∇µGν)
a λa

2
, (∇µGν)

a =
(
δac ∂µ + g3 f

a
bcG

b
µ

)
Gcν . (2.6)

7 To go from Eq. (2.10) to Eq. (2.11), one uses the identity

f(∂) e−ip·x = e−ip·x f(∂ − ip) . (2.13)
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The noncovariant star-product ∗• is thus used as a notation to ignore
the perturbative expansion of the cloud of gauge bosons (gauge cloud for
short) that dresses the covariant star-product ⋆• of fields (cf. Fig. 1). One
can generalize these definitions to any elementary or composite bosonic field
with the same gauge quantum numbers as the gauge fields, i.e. in the ad-
joint representation. Therefore, in this article, one attaches the star-product
definitions to the gauge8 quantum numbers of the fields.

Fig. 1. Feynman diagrams of the vertex between 4 gauge bosons from the gauge
clouds (double wiggly lines) and a gauge boson (left, single wiggly line), a scalar
(middle, dashed line) or a fermion (right, plain line).

The pure gauge sector of the FSM is described by the following Lagrang-
ian that is manifestly gauge-invariant via the Krasnikov–Terning scheme
[9, 10]:

− 1

2
tr [Gµν ⋆c Gµν ]−

1

2
tr [Wµν ⋆w Wµν ]− 1

4
Bµν ⋆0 Bµν

⊇ −1

4
Gaµν ∗c G µν

a − 1

4
Wa

µν ∗w W µν
a − 1

4
Bµν ∗0 Bµν , (2.14)

where the terms that are not displayed in the 2nd line correspond to the gauge
clouds that do not contribute to the tree-level propagators. Since SU(3)C is
not affected by EWSB, one can already extract the gluon propagator in the
Feynman–’t Hooft gauge

Πabµν
G

(
p2
)
=

−i e−ϑc(ηc p2)

p2 + iϵ
δabgµν , (2.15)

which has only the canonical pole at p2 = 0, aka the gluon, like in local
Quantum Chromodynamics (QCD).

2.2. Electroweak symmetry breaking

In the GWS model, EWSB occurs by tachyon condensation of the Higgs
field, where SU(2)W × U(1)Y → U(1)em, i.e. only the gauge symmetry

8 The spin does not enter the definition of these star-products.
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U(1)em of Quantum Electrodynamics (QED) is linearly realized in the phys-
ical EW vacuum. In the same way as for the gauge fields, one introduces
Hermitian symmetric covariant ⋆h and noncovariant ∗h star-products be-
tween a field in the gauge representation of the Higgs tachyon (1,2)+1/2 and
another field in the complex conjugate representation

H(x)† ∗h H(x) ≡ H†(x) e
ϑ
(←−
∂µ η

µν
h

−→
∂ν

)
H(x) , (2.16)

H†(x) ⋆h H(x) ≡ H†(x) e
ϑ
(←−
Dµ ηµνh

−→
Dν

)
H(x) (2.17)

= e
ϑ
(
D̄(i)
µ ηµνh D

(j)
ν

)
H†(xi) ·H(xj)

∣∣∣∣
xi→xj≡x

(2.18)

= H†(x) ∗h H(x) +O
(
g1
Λ2
h

H†HB

)
+O

(
g2
Λ2
h

H†HW

)
,

(2.19)

where the commutator between covariant derivatives in the (anti)-fundamen-
tal representations9 Dµ and D̄µ satisfies

[
D̄(i)
µ ,D(j)

ν

]
= 0 with xi ̸= xj , and

the gauge clouds (cf. Fig. 1) are in the ellipses O(· · · ).
Concerning the VEV v of H(x), one has the following important prop-

erties:

v ∗h H(x) = v ·H(x) and v ⋆h v = v2 +O
(
W 2

)
+O

(
B2

)
, (2.21)

where the 2nd one means that if a term like H(x)† ⋆h H(x) appears in the
Higgs potential, it gives an infinite-tower of higher-derivative corrections to
the Lagrangian quadratic terms of the weak gauge bosons (cf. Fig. 2). This
crucial property spoils the ghost-free factorization of the propagators, thus
one should use only the ⋆0-product in the Higgs potential10.

One can then build the following Lagrangian for the kinetic and potential
terms of the Higgs tachyon (v, λh > 0):

LH = DµH
† ⋆h DµH − V

(
H,H†

)
, (2.22)

V (H,H†) = −µ2H† ·H + λh

(
H† ·H

)
⋆0

(
H† ·H

)
, (2.23)

9 The action of these covariant derivatives reads

DµH =
(
∂µ − ig2Wµ − i

g1
2
Bµ

)
·H , D̄µH† = (DµH)† . (2.20)

10 This point is corrected in the arXiv version (v7) of Ref. [66]. Of course, one can
only use ⋆0 between gauge-singlet composite fields, like H† · H, to not spoil gauge-
invariance. This fixes completely the WNL deformation of the quartic Higgs potential.
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with a WNL quartic self-coupling11. Then, one performs the replacement
(⋆h 7→ ∗h) in Eqs. (2.22) and (2.23), i.e. one drops the gauge cloud from the
covariant star-products of Higgs tachyons. Indeed, this gauge cloud does not
contribute to the tree-level propagators after EWSB by using the properties
(2.21).

Fig. 2. Feynman diagrams in unitary gauge, where the blob is a WNL vertex,
crosses are insertions of Higgs VEVs, and single (doubly) wiggly lines are gauge
bosons from outside (inside) the gauge clouds. Left: the covariant derivatives in
the quadratic term in Higgs tachyons (2.25) imply an interaction between a gauge
boson with 2 insertions of Higgs VEVs, giving a WNL contribution to the mass term
of the gauge boson. Right: when the Higgs potential involves a gauge cloud, one
gets a tower of local interactions between a gauge boson with 2 insertions of Higgs
VEVs, giving a new WNL contribution to the quadratic terms in gauge bosons.

Now, consider the polar representation of the Higgs tachyon around its
VEV as

H = ei
πa(x)
v

σa HU , HU (x) =
1√
2

(
0

v + h(x)

)
, v =

√
µ2

λ
, (2.24)

where h(x) is the radial mode, aka the Higgs H-boson. In order to study
the physical spectrum, one chooses the unitary gauge, where the pion fields
πa(x) are eaten by the Wµ and Bµ gauge bosons, such that H(x) ≡ HU (x).
One can then extract the vector boson masses from the quadratic term in
Higgs tachyons with covariant derivatives

DµH
†
U ∗h DµHU =

1

2

[(
0 v

)
·
(g2
2
W a
µσa +

g1
2
Bµ

)]
∗h

[(g2
2
W b
µσb +

g1
2
Bµ

)
·
(
0
v

)]
=

v2

8

[
g22

(
W 1
µ ∗hWµ

1 +W 2
µ ∗hWµ

2

)
+

(
−g2W 3

µ + g1Bµ
)
∗h (−g2Wµ

3 + g1B
µ)
]
. (2.25)

11 One could also introduce a local quartic coupling ∝
(
H† ·H

)2, but it is shown in
Ref. [66] (v7) that its coefficient must vanish to get a ghost-free (Higgs) H-boson
propagator at tree-level.
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These mass terms mix the W 3
µ and Bµ fields, and one must ensure that they

combine with the kinetic terms (2.14) to give propagators with ghost-free
factorization like for the photon,

Πµν
A

(
p2
)
=

−i e−ϑ0(η0 p2)

p2 + iϵ
gµν , (2.26)

and for the weak bosons of mass MV ,

Πµν
V

(
p2
)
=

−i e−ϑw(ηw p2)

p2 −M2
V + iϵ

(
gµν − pµpν

M2
V

)
. (2.27)

For this to happen, one can see from Eq. (2.25) that the involved noncovari-
ant star-products must be the same

∗w ≡ ∗0 ≡ ∗h ⇒ ηw = η0 = ηh , ϑw(z) = ϑ0(z) = ϑh(z) , (2.28)

otherwise, the WNL form factors do not factorize between the kinetic and
mass terms, and the ghost-free condition is spoiled. Physically, since the
longitudinal polarizations of the weak bosons come from the Higgs field, it
is thus not surprising that a ghost-free factorization of the propagator in
unitary gauge requires the same WNL form factors to occur.

Now, one can perform a rotation in the basis of the physical vector bosons

W±µ =
1√
2

(
W 1
µ ∓W 2

µ

)
,

(
Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3
µ

Bµ

)
. (2.29)

The weak mixing angle θw and the U(1)em gauge coupling ge are defined as
usual

tan θw =
g1
g2
, ge = g2 sin θw . (2.30)

The quadratic Lagrangian of the physical vector bosons reads

−1

4
Aµν ∗w Aµν − 1

2
W+
µν ∗w W−µν − 1

4
Zµν ∗w Zµν

+
M2
A

2
Aµ ∗w Aµ +M2

W W+
µ ∗w W−µ +

M2
Z

2
Zµ ∗w Zµ , (2.31)

with MA = 0 , MW = g2
v

2
, and MZ =

MW

cos θw
, (2.32)

with the field strength tensors

Aµν = ∂µAν − ∂νAµ , W±µν = ∂µW
±
ν − ∂νW

±
µ , Zµν = ∂µZν − ∂νZµ .

(2.33)
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From this quadratic Lagrangian, one gets the propagators for the pho-
ton Aµ, and the weak bosons Vµ = Zµ or W±µ , in Feynman and unitary
gauges, respectively, Eqs. (2.26) and (2.27). Concerning the H-boson h(x),
its quadratic Lagrangian is

1

2
∂µh ∗w ∂µh−

M2
H

2
h ∗w h , (2.34)

with MH =
√
2µ =

√
2λhv , (2.35)

and one gets the ghost-free propagator

ΠH

(
p2
)
=

i e−ϑw(ηw p
2)

p2 −M2
H + iϵ

. (2.36)

This analysis shows that there is no ghost at tree-level in the bosonic
sector of the proposed FSM. As discussed in detail in Ref. [66], the main
difference with the usual string-inspired models of the literature [46, 47, 66,
86] is that both the kinetic term and the potential of the Higgs field are
smeared via the star-products. Instead, in string-inspired models, only the
fields in either the quadratic or the self-interaction terms are smeared, but
not in both.

A crucial observation for the phenomenology of the FSM is that the
tree-level expressions of the particle masses after EWSB are the same as
in the SM in terms of the Lagrangian parameters. This means that the
difference between the perturbative spectra of the 2 models arises only at
loop-level. This is in contrast with what happens when tachyon condensation
is realized in the string-inspired formalism with smeared fields [46, 47, 66],
e.g. Ref. [60] modifies the tree-level predictions of the weak boson masses
via a contribution of a WNL scale, while the model is not ghost-free for the
same reasons explained in Refs. [47, 66].

Because fuzziness does not change the SM tree-level predictions for the
perturbative mass spectrum, the parameter

ρ =
M2
W

M2
Z cos2 θw

(2.37)

is equal to 1 in both the SM and the FSM at tree-level, which is not triv-
ial when one modifies how EWSB occurs. This issue is related to the SM
approximate global SO(4) symmetry of the Higgs potential, which is spon-
taneously broken by EWSB to the SO(3) custodial symmetry [97] that im-
plies ρ = 1 at tree-level. In the SM, these global symmetries become exact
when the Yukawa couplings and g1 → 0. In the FSM, the Higgs potential
(2.23) still involves only the SO(4) invariant combination H† · H, and the
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star-product ⋆0 does not break it. The sources of SO(3) breaking are still
the same operators as in the SM but with a WNL deformation. After a
truncated expansion of the form factors (2.1), this means from a SMEFT
perspective [98] that the additional contributions from WNL to the SO(3)
breaking come from operators that scale as ηn• gSM, where gSM is some SM
coupling that breaks the custodial symmetry, η• is some fuzzy-plaquette,
and n ∈ N∗ depends on ϑ•(z). Therefore, the WNL contributions are ex-
pected to be subdominant with respect to the SM ones. A detailed analysis
of the constraints on the fuzzy-plaquettes coming from EW precision tests
would be interesting for future work.

3. Fermionic fields

3.1. Dirac and Weyl fermions

Since the fundamental building blocks of the SM fermions are Weyl
spinors, where different chiralities12 belong to different representations of
the EW gauge group, it is tempting to define different star-products for
different chiralities, where the kinetic terms would be

i

2

(
Ψ̄L ⋆L /∂ΨL + Ψ̄R ⋆R /∂ΨR

)
+ H.c. , (3.1)

with /∂ = γµ∂µ. Nevertheless, mass terms mix chiralities, which imposes the
same expression for the noncovariant star-products

−Mψ

(
Ψ̄L ∗ψ ΨR + Ψ̄R ∗ψ ΨL

)
⇒ ∗ψ ≡ ∗L ≡ ∗R , (3.2)

in order to get a ghost-free propagator for a Dirac fermion of the form

Πψ(p) =
i e−ϑψ(ηψ p

2)

γ · p−Mψ + iϵ
. (3.3)

In the same way as for the bosons, one defines the covariant ⋆ψ and non-
covariant ∗ψ star-products between 2 elementary and/or composite fermion
fields (in the complex conjugate gauge representation of each other) by per-
forming the following substitutions in Eqs. (2.16)–(2.19): H 7→ Ψ , H† 7→
Ψ̄ = Ψ †γ0, the subscript h 7→ ψ, and the covariant derivative Dµ acting on
the appropriate fermion representation.

Now, one introduces the 3 generations of SM fermion fields: the left-
handed quarks QiL =

(
uiL, d

i
L

)T ∈ (3,2)+1/6, the right-handed d-type quarks

12 One considers the Dirac γ-matrices in the chiral representation. We work in the
4-component formalism where, for a spinor Ψ , the chiral decomposition Ψ = ΨL +ΨR

is given in terms of the chiral projectors PL/R by ΨL/R = PL/R Ψ .
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diR ∈ (3,1)−1/3, the right-handed u-type quarks uiR ∈ (3,1)+2/3, the left-

handed leptons LiL =
(
νiL, e

i
L

)T ∈ (1,2)−1/2, and the right-handed e-type
leptons eiR ∈ (1,1)−1. The gauge-invariant kinetic terms for these fermions
are

i δij
2

[
Q̄iL ⋆q

(
/DQjL

)
+ d̄iR ⋆q

(
/DdjR

)
+ ūiR ⋆q

(
/DujR

)
+L̄iL ⋆ℓ

(
/DLjL

)
+ ēiR ⋆ℓ

(
/DejR

) ]
+ H.c. , (3.4)

where one has a star-product ⋆q for quarks and another one ⋆ℓ for leptons.
We comment on the choice of the same star-products for quarks and leptons
in different generations in the following section.

3.2. Yukawa couplings and flavor mixing

In order to write gauge-invariant Yukawa terms, with the covariant star-
products between chiral fermions in different representations of the EW
gauge group, one can use the composite fields made of 1 chiral fermion and
1 Higgs tachyon (built with the usual pointwise product). For 1 generation,
the Yukawa operators (with positive couplings) would be13

L(1)
Y = −λd

(
Q̄L ·H

)
⋆q dR − λu

(
Q̄L · H̄

)
⋆q uR

−λe
(
L̄L ·H

)
⋆ℓ eR + H.c. , H̄ = iσ2 ·H∗ , (3.5)

⊇ −md d̄L ∗q dR −mu ūL ∗q uR −me ēL ∗ℓ eR + H.c. , (3.6)

with md =
λdv√
2
, mu =

λuv√
2
, me =

λev√
2
, (3.7)

where the mass terms of the 2nd line are extracted from the quadratic terms
involving the noncovariant star-products (like for the boson fields). Again,
the tree-level spectrum is ghost-free and is the same as in the SM with
1 generation.

The generalization to 3 generations with complex Yukawa couplings is
straightforward

L(3)
Y = −λijd

(
Q̄iL ·H

)
⋆q d

j
R − λiju

(
Q̄iL · H̄

)
⋆q u

j
R − λije

(
L̄iL ·H

)
⋆ℓ e

j
R + H.c.

(3.8)
We stress that it is necessary to use the same covariant star-products between
different generations that belong to the same gauge representation. Indeed,

13 We do not address the issue of neutrino masses in this article.
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the WNL form factors in the quadratic terms need to factorize to keep ghost-
free propagators (3.3). It follows that both the covariant and noncovariant
star-products are linear in flavor space, so the flavor rotations

Quarks: diL/R 7→ Dij
L/R d

j
L/R , uiL/R 7→ U ijL/R u

j
L/R , (3.9)

Leptons: eiL/R 7→ EijL/R e
j
L/R , νiL 7→ N ij

L νjL (3.10)

can go through the star-products without complications. By using the usual
field redefinition procedure, e.g. Ref. [1], it is thus straightforward to show
that the FSM has the same qualitative features as the SM concerning fla-
vor mixing, which are encoded in the Cabibbo–Kobayashi–Maskawa (CKM)
matrix [99, 100]: there is only 1 physical CP-violating phase coming from
the Yukawa couplings (with 3 fermion generations) and no flavor-changing
neutral currents (FCNC’s) via the Glashow–Iliopoulos–Maiani (GIM) mech-
anism14 [101].

In the limit of vanishing Yukawa couplings, this minimal FSM exhibits
the same flavor symmetry group as the SM

U(3)Q ×U(3)u ×U(3)d ×U(3)L ×U(3)e . (3.11)

Since the star-products introduce a WNL deformation of the local Yukawa
operators, the breaking effects are also controlled by the same numerical
values of the Yukawa couplings, with subleading contributions coming from
higher-dimensional operators suppressed by the WNL scales, similarly to
the discussion on the SO(3) custodial symmetry in Section 2.2. Therefore,
the FSM offers a framework where the contributions to the breaking of
flavor symmetries are naturally suppressed, for the same reason they are
suppressed in the SM. A corollary is that the baryon and lepton numbers
are also perturbatively conserved due to an accidental U(1)B×U(1)L global
symmetry of the Lagrangian.

4. Classicalization via fuzziness?

In order to illustrate the effect of fuzziness on the UV-behavior of scat-
tering amplitudes, we focus on a toy model made of the pure Higgs sector of
the FSM, i.e. one takes the limit of vanishing gauge and Yukawa interactions

14 This result holds because we have defined a minimal WNL deformation of the (local)
SM Yukawa operators: only 1 WNL operator is associated with a local counterpart.
There is thus the same number of Yukawa couplings in the FSM as in the SM. If we
also defined star-products between noncomplex conjugate gauge representations, we
would get operators like

(
L̄iL ⋆ℓh H

)
⋆ℓ e

j
R, thus more Yukawa couplings than in the

SM with their associated issues (other physical phases, FCNCs).
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for the H-boson, and we perform the academic exercise of computing the
tree-level scattering amplitude M22 of the process

H (p1) +H (p2) → H (p3) +H (p4) . (4.1)

We introduce the Mandelstam variables s = (p1 + p2)
2, t = (p1 − p3)

2, and
u = (p1 − p4)

2 with s+ t+ u = 4M2
H .

The quadratic terms for the H-boson Lagrangian are given in Eq. (2.35),
and the self-interaction terms read

−λhv h ∗w h2 −
λh
4
h2 ∗w h2 . (4.2)

The propagator is given in Eq. (2.36), and the Feynman rules for the cubic
and quartic self-interactions are

− iλhv
∑
σ∈S3

eϑw[−ηw pσ(1)·(pσ(2)+pσ(3))] , (4.3)

− iλh
4

∑
σ∈S4

eϑw[−ηw(pσ(1)+pσ(2))·(pσ(3)+pσ(4))] , (4.4)

respectively, where Sn is the set of permutations σ of n ∈ N∗ elements, and
all momenta are chosen in-going the vertices.

At tree-level, the cubic self-coupling generates 3 diagrams (the stu-
channels), and the quartic one gives 1 contact diagram. The scattering
amplitude can be expressed as M22(s, t) = Mc(s) +Mc(t) +Mc(u), with

Mc

(
q2
)

= −2λh e
−2ϑw(ηwM2

H)−ϑw(ηwq
2)

×

2λhv
2
(
2 eϑw(ηwM

2
H) + eϑw(ηwq

2)
)2

q2 −M2
H

+ e2ϑ(ηwq
2)

 . (4.5)

To be concrete, one can choose exponential form factors with ϑw(z) = (−z)p,
and p ∈ N∗, where the propagator (2.36) is UV-damped for Euclidean mo-
menta p2E ≫ Λ2

w. For p = 1, in the hard scattering limit (s→ +∞, t→ −∞,
and s/t fixed)

M22(s, t) ∼ −16λ2hv
2 e

ηws

s
, (4.6)

so the amplitude blows up exponentially in the deep-UV15. Therefore, per-
turbative unitarity is lost for

√
s ≫ Λw, but not necessarily at the nonper-

turbative level.
15 This is known in string-inspired models [38, 40, 57, 75–83] for odd p. However, in our

case, due to the competition between the form factors in propagators and vertices,
taking an even p does not improve the situation.
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To understand what could save unitarity at the nonperturbative level,
one performs the following field redefinition:

Φ(x) = e
ηw
2
□H(x) (4.7)

in the Lagrangian of the Higgs tachyon (2.22)–(2.23). Then, one truncates
the low-energy expansion of the form factors (2.1) and, in the end, one
canonically normalizes the Φ-kinetic term. The local effective Lagrangian is

∂µΦ
† · ∂µΦ+ µ′2 Φ† · Φ− λ′2h

(
Φ† · Φ

)2

−2λhηw

(
Φ† · Φ

)
·
(
∂µΦ

† · ∂µΦ
)
+O

(
η2w

)
, (4.8)

with µ′2 = µ2
(
1− ηwµ

2
)
> 0 and λ′2h = λh

(
1− 2ηwµ

2
)
> 0. The last term

is a particular nonrenormalizable operator of the type
(
Φ†Φ

)
J(s), with an

energy source J = ∂µΦ
†∂µΦ growing with s. Such an operator has been

proposed to restore unitarity via nonperturbative effects in Ref. [24], offer-
ing a non-Wilsonian UV-completion, i.e. without introducing new degrees of
freedom. In this scenario, for

√
s ≫ Λw, the 2 → 2 hard scattering is actu-

ally exponentially suppressed by the formation of a classical Φ-configuration
(classicalon) that decays preferentially into N ≫ 1 soft-quanta (cf. Fig. 3),
and restores unitarity16.

Fig. 3. Sketch of the scattering process: H +H → Higgsion → H +H + · · · +H.
The Higgsion is represented as a shaded blob, and the H-bosons as dashed lines.

Such UV/IR mixing17, dubbed classicalization [22–38] is a generalization
of the well-known Vainshtein screening in massive gravity [103] and some
scalar-tensor theories [104]. In Ref. [25], operators like(

Φ† · Φ
)
·
(
∂µΦ

† · ∂µΦ
)

(4.9)

16 We stress that such non-Wilsonian UV-completion does not rely on the perturbative
renormalization program or the existence of an interacting UV-fixed point at the
nonperturbative level. Deep-UV processes are converted to deep-IR ones via the
production of many soft quanta.

17 This should not be confused with the infamous UV/IR mixing in noncommutative
QFT (due to the existence of nonplanar diagrams) that spoils the consistency of
gauge theories [102].
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were studied as a source of classicalization in the Higgs sector (cf. Fig. 4),
in order to solve the electroweak hierarchy problem, with the production of
TeV-scale classicalons of the Higgs field, aka Higgsions, whose phenomenol-
ogy was studied in Ref. [28]. The remarkable feature is the necessity of a

Fig. 4. Sketch of UV/IR mixing by classicalization of the Higgs sector proposed
in Ref. [24]. In a hard scattering experiment with

√
s ≪ Λw = 1/ℓw, one probes

shorter distances by increasing
√
s as in a local QFT. Higgs bosons are produced

via perturbative processes, like at the LHC. However, for
√
s≫ Λw, the Vainshtein

radius is RV ≫ ℓw, and one enters a semiclassical regime where N ∼
√
sRV soft

Higgs bosons are produced via the decay of Higgs field classicalons (Higgsions). The
radius RV of these objects freezes at the Compton wavelength of the Higgs boson
ℓH = 1/MH . Therefore, one probes distances larger than ℓw, instead of a local
QFT. In the strongly coupled regime

√
s ∼ Λw, the entire form factor of the WNL

Lagrangian should be important. Bound states are expected to form (we call them
fuzzyons) that ensure the transition between the Higgs quanta and the Higgsions
in the physical spectrum. The little hierarchy ℓH ≫ ℓw is crucial for the Vainshtein
screening to restore unitarity; otherwise, one cannot enter the semiclassical regime
of classicalon production that is driven by the leading classicalizing operator.



8-A2.16 P. Chattopadhyay, F. Nortier

little hierarchy Λw ≫ MH , otherwise, the Vainshtein screening cannot de-
velop. Given the lack of evidence for new physics at the LHC to stabilize
the EW scale, this is an attractive feature of this scenario. The reader can
refer to the original article [24] for all the details. Of course, we have just
discussed the Higgs self-interactions in this article, and it is important to
study if its other interactions also lead to classicalization.

Classicalization is already known to be a nonlocal phenomenon [32, 38],
and its link with other WNL theories has already been suggested in Refs. [33,
36]. The “transition regime”

√
s ∼ Λw is poorly understood because it

is deeply quantum and nonperturbative. Instead of the deep-UV regime√
s≫ Λw, which is completely determined by the leading classicalizing op-

erator with 2 derivatives [24], the whole tower of higher-derivative operators
(from the form factor expansion (2.1)) is expected to be important to de-
scribe the UV/IR mixing transition. It could be possible that WNL plays
an important role in this transition regime, where the specific choice of the
form factors could be crucial.

5. Conclusion and outlook

In this article, we propose a minimal version of the FSM: a WNL exten-
sion of the SM based on the covariant star-product formalism introduced in
Ref. [66]. We generalize the previous article by including non-Abelian gauge
symmetries and fermions. This realizes EWSB without introducing ghosts
in the physical EW vacuum, which is the main drawback of the previous
string-inspired attempts [46, 47, 66, 86]. This minimal FSM has the same
approximate global symmetries as the SM. By studying only the Higgs self-
interactions, we provide evidence that WNL triggers classicalization in the
deep-UV, which deserves to be more deeply investigated in future works.

The authors thank Hermès Bélusca-Maïto, Luc Darmé, Aldo Deandrea,
Gia Dvali, Anish Ghoshal, and Nils Marion for useful discussions.
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