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We compute amplitudes for the g*g* — ¢@V* process (two virtual glu-
ons into a quark, an antiquark, and a boson) at the tree level using the
spinor-helicity formalism. The resulting analytic expressions are much
shorter than squared amplitudes obtained using trace methods. Our re-
sults can be used to expedite numerical calculations in phenomenological
studies of the Drell-Yan process in high-energy factorization framework.
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1. Introduction

The Drell-Yan process [1]| is a good probe for an internal structure of
hadrons in proton—proton or proton—antiproton collisions. In this process,
a pair of lepton and antilepton is produced by an electroweak boson —
a virtual photon v* or Z%. The measured dilepton distributions can be used
to determine the Drell-Yan structure functions, see e.g. [1]. On the other
hand, the structure functions can be predicted within QCD description based
on factorization schemes: collinear or high-energy factorization (also referred
to as kr factorization) [2-5]. The necessary input to these descriptions
are parton distribution functions (PDFs), which parameterize the details of
the proton structure. For the collinear factorization, one applies collinear
parton distribution functions, which are functions of the parton energy and
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of the factorization scale. In the case of high-energy factorization, one uses
transverse momentum distributions (TMDs) [6], which depend also on the
parton transverse momentum k.

Recent measurements of the Drell-Yan process in the Z°%-mass peak
region at the LHC [7] exhibit a deviation from theoretical predictions of
perturbative QCD [8-12] at next-to-next-to leading order (NNLO) in the
Lam—Tung combination [13] of the structure functions. One of the proposed
explanations is that the Lam—Tung relation breaking may occur as a result
of the parton transverse momenta |14, 15].

In the high-energy factorization, the TMDs are probed for x < 1, where
x is the fraction of the hadron longitudinal momentum carried by the par-
ton. In this kinematical regime, the proton structure is strongly dominated
by the gluons. Following [15, 16], we adopt the approximation in which the
quark and antiquark components of the proton structure are neglected. We
consider the contribution to the Drell-Yan process which occurs by scatter-
ing of two virtual gluons ¢g*¢* into a quark, an antiquark, and an electroweak
boson V* that decays into a dilepton [71~. The Drell-Yan structure func-
tions depend on the gluon TMDs, so we can use measured data to constrain
them. This requires however an efficient evaluation of the matrix elements
of the g*g* — qqV* process that speeds up the fitting procedure.

We remark that the Drell-Yan process occurs also through the channel
Gvarg™ — qV* [15, 17, 18|, involving a valence quark gy,), which we do not
consider in this paper. It is important when the density of valence quarks
Qval 18 high. This is the case for x ~ 0.1 in the forward-backward region,
in which the V' boson is produced almost collinearly with the incoming
parton. We are most interested in central production, in which = < 1, so
the contribution of valence quarks is small (they have a low parton density).

Direct evaluation of the relevant Feynman diagrams used in [15] leads
to very long and numerically costly expressions. In order to improve the
efficiency, we apply the spinor-helicity formalism. The use of spinors in the
study of scattering amplitudes is by now standard, see e.g. [19, 20]. We use
notation for spinors which is a small adaptation of the one commonly used
in general relativity [21].

Similar scattering processes were considered in [22], where authors stud-
ied also the possibility of multi-gluon production and performed numerical
calculations. The amplitudes were calculated in terms of pure spinor con-
tractions, based on the techniques from [19]. However, explicit formulas for
the amplitudes directly in terms of momenta of the scattering particles were
not provided. Such expressions, presented in a compact analytic form, are
the main result of our work. We also present example calculations, illustrat-
ing the methods we used to obtain our results.
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The g*¢g* — qqV™* process was also studied in [15, 16, 23], where the
amplitudes squared were calculated numerically applying the standard trace
approach within the kp-factorization framework. Such amplitudes can be
also derived within the Color Glass Condensate (CGC) framework [17, 18]
by considering the low gluon density limit.

1.1. Kinematics

We consider production of a virtual electroweak boson in a high-energy
proton—proton collision. We are interested in the process illustrated in fig-
ure 1. The protons momenta P; and P, are near light-like, and in the
center-of-mass system can be expressed in Minkowskian coordinates as

P~ (\/§/2,0,0, \/5/2) R (x/?/z,o,o,—\fS/Q) ENCRY

The collision invariant energy squared is S = (P; + P»)?. We work in the
kr-factorization framework, so partons carry nonzero transverse momenta.
The full momentum k; of the gluon originating from the i proton can be
decomposed as

ki = 2P + ki, 1=1,2. (1.2)

Fig. 1. General form of the diagrams. Big circle represents all possible QCD LO
subdiagrams. P;, P, are the momenta of the incoming protons, k1, ko are momenta
of virtual gluons emitted by the corresponding protons, p3, ps are the momenta
of the quark and antiquark, and ¢ is the momentum of the emitted electroweak
boson.
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Here, x; is the fraction of P; carried by the gluon and k;T is the momentum in
the plane perpendicular to the scattering plane (k;v- Py = kjp- P> = 0). The

gluon polarizations are approximated as' e (k;) = z; P /\/ —k} [2-5, 16].

We denote the momentum of the boson V* as ¢ and the momenta of
outgoing quark and antiquark as ps and p4, respectively.

1.2. The method and results

We use the spinor-helicity formalism to obtain simple analytic formulas
for the Feynman diagrams describing the g*g* — qqV'™* process at the tree
level.

The correctness of our calculations has been checked by comparing nu-
merically with amplitudes squared, summed over polarizations of ¢ and ¢,
obtained using standard trace methods. The numerical treatment was nec-
essary because analytic formulas for traces obtained using the algebra of
~v matrices are so lengthy that it does not seem feasible to analyze them
using symbolic algebra software (let alone pen and paper).

The manuscript is organized as follows. Section 2 explains our conven-
tions for two component spinors and bispinors. In particular, in Subsec-
tions 2.3 and 2.4, we construct polarization spinors satisfying massless or
massive Dirac equation. These choices of spinor bases do not affect physical
observables, such as cross sections, but they do affect the amplitudes®. In
Subsection 2.5, we provide explicit expressions in terms of components for
various spinorial objects, e.g. the dictionary between spinor components and
space-time components of a vector. The main results are shown in Section 3.
We present the Feynman diagrams and the corresponding algebraic expres-
sions, and then decompose the amplitudes according to colors and chiralities.
In Subsection 3.2, we evaluate the resulting expressions using spinors in the
massless case. These amplitudes are less general than our final result, but
due to the significant simplifications, we deemed them worthy of displaying
separately. In Subsection 3.3, we give formulas for amplitudes allowing for
nonzero masses of the quark and antiquark. Even though the amplitudes
are significantly more complicated than in the massless case, they are still
multiple orders of magnitude shorter than outputs of calculations done with
using trace methods. In Subsection 3.4, we present example calculations of
amplitudes for some specific diagrams. We comment on possible directions
for further research in Section 4.

! More precisely, one uses also a Ward identity: the amplitude is orthogonal to Kt
thus contraction with k;T can be replaced by contraction with —x; P;.

2 Simply put, amplitudes are tensors in the space of polarizations and one has to specify
in which basis are theirs components given.
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2. Spinor-helicity formalism
2.1. Spinor indices and bases

We denote (two component) spinor indices with uppercase Latin indices,
with an overdot used for indices in the complex conjugate representation.
Invariant tensors e4p, € i (related to each other by complex conjugation)
are used for raising and lowering of indices

eape’® = 6,9, (2.1a)
(s = eap, (2.1b)
¢4 = By, (2.1c)

and analogously for conjugate spinor indices. The order of indices in the
above formulas matters because €4p, € ;5 are skew-symmetric. Thus, for
example,

¢Mna = —&ant. (2.2)

A pair AA of spinor indices may be traded for one Lorentz index. This is
achieved by contracting with (%) , ;, (#)44
matrices

, which are vectors of spinorial

AA _u\AA
Vi = V(") 4d > vt =, (6")" (2.3)

where & is related to o by raising of spinor indices combined with matrix
transposition. Given two Lorentz vectors, we can contract them directly or
contract their spinor indices. The results differ by a factor of 2

uAAvAA = 2u, vt . (2.4)

Another important property of o and & is that their product, symmetrized
in Lorentz indices, gives Minkowski metric

olg" +o"" =2¢"1 = UAAUAB = v, 085, (2.5)

With the aid of the inner product, we can readily obtain the general

representation of a spinor in terms of components. We choose any pair of
spinors o and ¢ normalized as

oat =1. (2.6)

Then {0, ¢} form a basis of the spinor space. The decomposition of a general
spinor £ in this basis reads

E=¢E%+ ¢, where €0 = ¢4, = —g407, (2.7)
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and the invariant tensors decompose as

EAB = OALB — LAOB, EAB = O04lp — 1405 - (28)
Now, we define a null tetrad of world-vectors as
AA _ A-A LA 4
I27 =0"0 = l+—§0 0440
AA _ AA p_ LA A
24 =17 — l_—2L il
AA _ AA w_ Ll oA _d
m>? = 0”1 — mt = Zo0%or, ;7
mt =44 =  mt= §LAJZA6A. (2.9)

Using the above null basis, we can construct a standard orthonormal basis
for Minkowski space — a Minkowski tetrad {t#, z#, y#, zH}

1
ly=t+z < t:§(l++l_), z==(y—12),

N =

1
m=x+iy, m=z—iy < xzi(m—l—fn), yz;(m—m).
i
(2.10)

In principle, we could start with the null tetrad or Minkowski tetrad, and
construct from them a spinor basis {o,¢}, unique up to an overall sign (the
same for o and ¢).

2.2. Dirac bispinors
A Dirac bispinor is a pair of two spinors
A — —
Y= [774 , v=[n &, (2.11)

where 1) is the Dirac conjugate of 1. It is clear from the above definition

that the identity 1199 = 1)1 holds. We work with a chiral representation
of gamma matrices

0 ot -1 0
= [5u 0} , v5 = [0 l] . (2.12)
We will also use the eigenprojections of s
1+
Py = T% . (2.13)

For any Lorentz vector n, we define the matrix

~ 0 n,ot 0 ny,
n=mn"= [nugu MO } = [nAA o |- (2.14)
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2.8. Spinor bracket notation

We will now construct a convenient basis of bispinors satisfying the mass-
less Dirac equation.

We choose a reference spinor pd % 0 and define a future-directed null
vector I by 144 = pA54. For every null, future directed, real Lorentz vector n
with n - [ # 0, we introduce the angle and square bra and ket spinors

n 0 YRy
|n]=[9(0)f‘], Wz[e(n)A], [l = [0(m)* 0], (nl=1[0 6(n),],

(2.15)
where 0(n)s = \/ﬁnAAﬁA. Then |n], |n), resp. [n|, (n| form bases of
solutions of B

nYy =0, resp. Yn=0. (2.16)
The normalization factor \/ﬁ is needed for the normalization of the cur-
-
rent -
YyHp = 2nk . (2.17)

We remark that the factor

21‘ ] makes our solutions singular when n is
n

colinear with [. This is just a singularity of the chosen basis and depends
on the choice of the reference spinor.
The spinors defined in (2.15) are eigenvectors of 5

Vs|n] = —|n], Y5 [n) =In) , [nlys = —[n|, (n[vs = (n| ,
(2.18)
thus the basis vectors defined in (2.15) correspond to particles of fixed chi-
rality (and hence also helicity). Spinors of different helicity are orthogonal,
e.g. we have (nj | na] = 0 and (since v* flips chirality) [n1|v*|ns] = 0.

2.4. Massive Dirac bispinors

For a Lorentz vector p with p?> = m? > 0, we define the brackets as

0(p)a —é(p)a
lp] = [A] , lp) = [A] ,

o(p) 0(p)
bl = [0()* —op)i] . @l =[e@?* 0. (219
where .
am 2A2E gy, o, (2.20)
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This reduces to the definition in (2.15) for m — 0, thus the notation is
consistent.
The constructed spinors satisfy the Dirac equation

(P—m)lpl = (p—m)lp) =0=[p|(p —m) = (p| (p—m) . (2.21)

Unlike in the massless case, spinor brackets have no singularities because

p-1 # 0 for all vectors p with p> > 0. Another difference is that the

direction of their spin depends on the reference spinor. More precisely, we
. . o 1 ~ 7

have eigenequations for the spinor operator S, = @75[ Dyl ]

Splpl = =Ipl,  Splp) =1Ip), [pSp = —I[pl, (ISp = (p|. (2.22)

We describe a particle with momentum p (a future-directed vector) with
kets [p) or |p|, depending on the value of the spin. For an antiparticle, we
use instead the spinors |—p) , |—p] (note that definitions in (2.19) and (2.20)
make sense both for future and past-directed vectors).

We will now prove useful symmetries of spinor brackets, which allow to
reduce the number of amplitudes that we will need to compute by a factor 2.
Let us consider the charge conjugation C which acts on bispinors in the
following way:

‘fA] [m]
C¢=C|:_' =il - 2.23
U TS (2:23)
The operator C is antilinear, C> = 1 and it anticommutes with gamma
matrices v* and 5. Now, we can define another operator
Q= C, (2.24)
which satisfies
QP =-1, QO '=-%, QFQ=9" (225
We also have, for any bispinors 1, 1
QU Qb = 11y . (2.26)

It can be also directly shown that for bispinor brackets, we have the following
identities:
Qlpl=1p),  Qlp) = —Ipl. (2.27)
With the help of the above identities, we will derive useful symmetries.
Let us begin with the contraction with I" being any composition of the
gamma matrices

[p3 | T'|py) = |p3)I |ps) = Qlps|'Qlps] = Qlps] QI |p4]

= |ps]l|pa] = (p3 | " 4], (2.28)
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and similarly

[p3 | I | py) = —Qlp3]I'Q |pa) = —Q|p3] QI |pa) = —|p3]L |pa) = — (p3|1(lp§g)-

These symmetries hold for both the massless and massive case.

Since @ anticommutes with s, it exchanges the projections QP o1
= Pr. Therefore, if we now define I'y to be a composition of the gamma
matrices and one of the projections Py, the symmetries (2.28) and (2.29)
translates to

P3| It | pa) = Q|ps) [+ Qlpa] = Qlp3| QI |pa] = (ps | [+ | p4] (2.30)

and

(D3 | It | pa] = —Q|ps] QI |pa) = — (p3| 15 |p4) - (2.31)

2.5. Component expressions

We will work with null tetrad defined as in Subsection 2.1. Vectors can
be written with components with respect to chosen basis as

nt =ntlt +n " +ntmh 4 ntmt = (n™ n= nt b)Y, (232

where

nt =nl+n?, nt =n' +in?, nt =n' —in?. (2.33)

The correspondence with spinor components is

. 00 01 + 1
AA _ [T n _(n n
n —(nm nn>—(nL n) (2:34)

The Minkowski metric in the null basis has the form

0 1 0 0 0 1 0 0
111 0 0 0 1 0 0 0
_ ury
(guu) - 2 0 O 0 _1 I (g ) - 2 0 0 0 _1
0 0 -1 0 0 0 -1 0
o (2.35)
We note that for real vectors nt = nl, but for complex vectors, we have
1_ =1
n-=n

- e —y 1]
it =t oAt r‘zi)“z(oﬁ n- nt nL) : (2.36)
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We choose the basis spinors to be

oa= (1) u=(3) . ot=ten=(g). A== (7).

(2.37)
thus the symplectic form in the matrix form is
EAB = 0ALB — LAOB = (_01 é) = A8 = A8 — A8 (2.38)
With this choice of spinor basis, we define the bispinor basis
0 0]
0 1 0 0
m=1%]=1s| - m=la] =19
0 0]
~1 [0]
L 0 0 0
M—[g‘]— ol r¢>=M=O :
0 1]
= [o* o=0 00 0, G- al=0 0 0 1,
U =1[* 0o=[0 1 0 0], (=[0 z4]=[0 0 -1 0].
(2.39)

From this basis, one can check by explicit calculation that for the basis
vectors (2.9), we have the completeness relation

o= MW+, B =20, (2.400)
L= WM+, ey =2, (2.40b)
mo= [+, ) =2m”, (2.40¢)
mo= U+ L ) = 2mt (2.40d)

Using the bispinor basis, we can write also the completeness relations in
eigenspaces of chirality

o 1:|:’)/5

Py 5

Pe=I0 (-, Po= MW - W (241)

Let us choose the reference spinor p? to be 4. Then we have | = [_

and 2(p-1) = pT. The Weyl spinors 0(p) 4 used to construct solutions of the
Dirac equation take the form

b(p)a = AL = ! <p+0A+plLA)= ! <_ﬁl>. (2.42)

Virtl Vet VIpt\ P
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Therefore, the corresponding bispinor brackets are

1 —
b= e (P11 + -1+ m 1)

1
P = (p 11+ 9" 1) = ml]) - (2.43)

3. Amplitudes

3.1. Deriwation of the amplitudes

The amplitude for the g*g* — qqV™* scattering at the tree level is given by
diagrams presented in figure 2. Some care is needed to define the amplitude
involving off-shell gluons in a gauge-invariant way, e.g. by embedding as a
subprocess in an on-shell process of scattering of two fast quarks [15, 16, 22].
This leads to a replacement of the ordinary QCD three-gluon vertex with the
so-called Lipatov vertex [24] (defined in (3.11) below), which, apart from the
standard ggg interaction in QCD, takes into account an exchange of gluon
between the two quarks and gluon radiation.

LXK
X XK K
P

Fig. 2. Eight Feynman diagrams describing the g*¢g* — gqV'* scattering at the tree
level. The bold dot represents the Lipatov vertex.
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We take the vertex of interaction with the boson V* to be
't = vy* + aysy# . (3.1)

For example, if V* = v* (excited photon), then v = ef and a = 0. We need
the more general vertex to treat the W and Z bosons. We denote colors of
the ingoing gluons by a, b. The ¢ pair is taken to have colors i, j, and spins
03,04. The contributions to the amplitude from the eight diagrams take the
following forms:

A = —ig” (T“Tb>
1 — ..
(vf —m3) (v3 —m3) ij
XUgy (p3) I (01 +my) P1 (V2 + my) Povg, (p4)
= —ig? (T“T”) Al (3.2)
1)
AL = —ig” (7°1")
2 (v3—m3) (v3 —m3) ij
Xy (p3) Py (T3 + ms) T (32 + ma) Pave, (pa)
= —ig? (T°T") Af, (3.3)
ij
Al = —ig” (T“Tb)
3 ..
(v3 —m3) (v —m3) ij
X Ugy (p3)P1 (U3 + m3) P (Vg + m3) IMvg, (pa)
= —ig? (T“Tb) Al (3.4)
ij
Al = —ig” (T’T“)
4 ..
(vi —mj) (v8 —m3) ij
X TUgy (p3) " (V1 + my) P (Vs + my) Pivg, (pa)
= —ig? (TbT“> Al (3.5)
ij
s —ig” (777)
5 ..
(v§ —m3) (v3 —m3) ij

Xy (P3) Pa (T 4 mg) T (U5 + ma) Prog, (pa)
= —ig? (TbT“) AL (3.6)
ij
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Aﬂ — _Zg2 (TbTa>
" (vi—m3) (vf —m3) is
XUgy (p3) P2 (V6 +m3) P (Vg + m3) [Mvg, (pa)
= —ig? (TbT“> Al (3.7)
ij
g9 b _
A = aberpe g TM (01 4+ ma) VeV (pa
T (k1 + k2)2 (v% — mi) Jo s (p3) " (01 ) Vet Vo, (P4)
= g* [T AL (3.8)
92 b =5
AL = e AT Vog (V4 + m3) I,
8 (kl T k2)2 (UZ _ mg) f ij 3(]93) e ( 4 3) 4(194)
= g TG AL, (3.9)
where v; are momenta flowing in internal lines
v = p3+gq, vy = kg — pa, v3 =p3 — ki,
vy = —ps—q, vs = k1 —pa, ve = p3 — ka, (3.10)

and the form of V/; results from the contraction of the Lipatov vertex with
the approximated gluon polarizations:

S P - P
VE = Z(ko— k) + (2P - k k3 ) P
off 2(2 1)+< 2 1+P1.k2 1) 1

PP
—(2P1-k2+P;kfk%> Py
S k2 k32
= ok — k)" + (:c15+ 1) Pl - <x2S+ 2) Py, (3.11)
X9 T

We have factorized the amplitudes A% into color factors and color-inde-
pendent amplitudes AY. The full amplitude can be decomposed into parts
symmetric and antisymmetric in the color indices a, b

8

A=Al = AL+ AL (3.12)
n=1
where
1
Al = —ig? (Naabaij +d“bCTfj> AL,

Al = g? T AR (3.13)
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and

6
1 1
A= DD AL AR = (A A AL - A - AL AR A AL
=1

(3.14)
In the amplitude squared, averaged over colors of the ingoing gluons, and
summed over colors of the outgoing ¢g, the symmetric and antisymmetric
parts do not interfere

MW = 2 Z AM AV
,7,a,b
1
= - AHAV+ .A'u.A
(N2 _1)? Zb S N2 EEEEE Zb ¥
i.4,a, iga
4 2 4
g (N —2) . g*N . , 3}
= on (vE - A T gy Ty ARAR = MET MY (315)

We can further decompose each amplitude into right R* and left L* part
Al =(v+a)RE + (v—a)Lt, (3.16)

where in RY we replace I'* by Py~* and in LY we replace I'* by P_~*".
In the brackets notation, we put for fermions

ui(p)=1Ip), u-=Ipl, ur@=Ipl, a-(p)=, 3.17)

and for antifermions

v-(p)=1[-p), vilp)=I|-pl, o-(p)=[-p, U+(p)=(-pl,

(3.18)
with brackets defined as in Section 2. In the massless case, the indices +
refer to helicity (so they agree with chirality for the quark and are opposite
to chirality for the antiquark). For massive particles, :I:% is minus the spin in
the rest frame of p projected onto the spatial direction of [_. Equivalently,
they are eigenvectors of the spin operator S, as described in (2.22) (where
we have to keep in mind that for antiparticles, the physical spin is opposite
to the spin operator from Dirac’s theory).

3.2. Results in the massless case

In the massless case we encounter a huge simplification, so there is a
good reason to consider it separately. Firstly, amplitudes with fermions of
the same chirality vanish

A =0=A8_ . (3.19)
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The nonzero amplitudes are given as

Ay . =(@+a)R),,, and A}

n

=(w-—a)lt __. (3.20)

n,——

Below, we give formulas only for R, . Other amplitudes may be recon-
structed from the following symmetry:

" =R, (3.21)

n,——

which is the consequence of the symmetries (2.30) and (2.31).
We obtained the following results for Ry, , :

)
n

AA ial1 5 02 5 00, 01, A0, iA
Rity = (ps|v" 5P| —pid =— Py v Py UL,
R vivs\/p3 Py
A S U3 402 5 25 90, 10, A1, 0A
R2’++ = <p3 ‘ Pl 57 72P2 | _p4] = - p20p3ov3 US )
R V33N /P3Py
AA 5 U35 Ut ja 25 i0,,01, A0, 0A
Ryf, = (p3| Pi—5Pa—7"" | —pa] = — P3 U3 Vg Pa
v v v3vi\ /P3Py
AA ial1 5 Us 5 25 01,10, A0, 0A
Rity = (p3[v™" S PPl —pa = — Py U5 P3 V1
s vivd\ /P3Py
AA 5 U6 _iaUs 3 25 00, 01, A0, 1A
Riyy = (3| a5y 5P —pa] = — P5'pg v s
i N
AiA 5 V65 U4 ja 25 50, 10 A1 0A
R = (p3|Pa5Pr—="" [ —pa] = — p3 vg vy Pyt
Y6 v vgvi\/ P3Py
. P
74+ (k1 + k)2 (p3 |~ % off | —P4]
2 . . .
= - +p?0p23 (Vett) gz P
vy (k1 + k2)2\/173 Dy
. 1 ~ Ta
RAA - _ Vg —~A4| _
8,4+ (k1 + k2)2 (ps | efva’Y | —p4]
2

A (3.22)

) n +U2143 (VefF)BBp?,Bopg
vy (k1 + k2)?\/p3 Py
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These results take the simplest forms in terms of the spinor notation,
but as an example, we give two formulas written in Lorentz vector notation

25 |py 1 _ _
Rlll,++ = 73232 %UzL (pg_’uf‘ p?%“l 103%’1L p;% )Ma (3.23)
U103 | P3
4
Ri = — MY (Veg),, , (3.24)

vi (k1 + k2)\/p3 Py

where My is the following matrix:

+ +,+ o+, L, L 4+t L 4 T+
Pspyvy P3PiVi P3PyVUi P3Pyl
1.+ 1 1. 1,.— 1, +,,— 1
P3Py V1 P3PyVy P3P4Vy P3Py
1,4+, + 1. 1.1 1,4+, L

P3Py vy P3PyVT P3P4Vi P3P

PIPivE  PipIvi  p3pivi  Papiv

ME = (3.25)

We remark that the simple structure of amplitudes written in terms of
spinors is reflected in the fact that M7 is a matrix of rank at most 2.

3.3. General results

In the massive case, we have 8 expressions to compute for each diagram:
left and right amplitudes with two possible values of spin for the quark and
for antiquark. In contrast to the massless case none of these expressions van-
ish identically, but we can still reduce the number of independent amplitudes
by a factor of two using the symmetries

Ry = Lhoo, Ly =Ry, .
Ry, = —-Ly,. , L, =-R,., (3.26)
which, similarly like in the massless case, are reflection of symmetries (2.30)
and (2.31). Therefore, for each diagram, we write only R, ., L}, ./, R |,
and Lj, , .
The first diagram

. 29 p(')opAo L
AA 4 P3 01 1A 2 A
B = " omdy (B—md) [ 13 [t o]
1 4 2 4 p3 Dy
i 2S5 mampd i 81 A
A4 3M4P4 {vfﬂ + vgléA} LA, (3.27)

ST T 0 ) gt
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R L 25 m4p20p§10 [U%O A %A}
7+7 - ’
(U% - m?l) (U% - m?l) A /pg'pi'
AA 25 map® T o r Al A
L = — [v2 + m3o }L . (3.28)

T T )

The second diagram

28 Pgo i0, A1 Al 0A
Rz++:_ 2 2\ (2 _ 2 [p3 +m0]7}2 ;
(Us m3) (Uz m4) 1/p§_p4
i 25 mammyp 0
L3t = — e o gl oflod A (3.29)
(“3 - m3) (”2 - m4) 1/p§_p2—
. 28 m 00 .
RyS = s = [péovg‘ f+ mgaA} A,
(”3 - m3) (”2 - m4) 1/p§—pz
AA 25 m3pd T ia o oA] A0
44— _ [ — plo } . (3.30)

ST T )

The third diagram
RAa 29 3
34++ T T
(U?2> - m%) (Ui - m?ﬂ) A /pg_pjl'
[p10U01U4A0 +mj <(p3 —03) 1074 o )} w9t

LA‘A 2S mamy

A (U§ - mg) (Ui - m%) 1/p§rpj{

X [(mg +p§0vg1) A — (p3 — 03)101)2‘4} i, (3.31)
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AA 28 my

RAA  — _
T ) )

X [<m3 + Péovgl> ot + m3(ps — U3)IOZA} A,

pAa _ 25 mpl”
34— =
(U?Z) B m%) (Uz - m%) A /p;pi
X [<m3 + plov()l) — (ps — vg)mvgﬂ . (3.32)

The fourth diagram

Ria 25 p3°
44+ T 72 o (2 .2
(Ul m4) (U5 m4) 1/p§_pi
(= Aol = i+ %)
L . 25 ms3my
44++ = T3 2\ (.2 2
v —m?3) (vi —m /
( 1 4) ( 5 4) p;pi
% K p01,010) 4 (pa +U5)011)fm} LA, (3.33)
RAA B 2S m4p§40
44— -
) () fotpr
X K pl%gl) A+ mg(p4 + v5)10fu?A] ,
1AA 28 ms
44— = 2 _ 2 2 _ 2
(Ul m4) (U5 m4) 1/p§_pi

X [( 2 piovgl) 140 (p 4—1—2}5)10[’4} A (3.34)

The fifth diagram

RAA - _ 25 Py’ 2,4 _ 01,147, Ao
St T 2 2 (02 2 oo LAY TPaUs | Y
(vﬁ - m3) (UE) - m4) p;pi_
AA 2S5 m3m4pg0 [ +p21 A:| A (335)

L =
T W) ()
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R

il

- _ 25 mapy’ [ 1 pi0 A} A0
W2 —md) (Z—m3) [ 1. by o | Vg
6 3 5 4 p3 Dy
= _ 3P [mZGA — piovél] A (3.36)

(U% - m%) (7)52) - m?l) 1/p;pzr

The sixth diagram

25 rs'py”

— io, A1 A
Rﬁ_H_—— 3 73 |:1)6 +m3o],

T W) (=) forpr

(UG - m3) (U4 - m%) A /p;—pi_

25 mamypy’ [UiA - U6100A} A (3.37)

L,

Réﬁ_ N 225’ i i myp§’ [vflvéo—i—mgoA] A
’ vg —m3z) (v —m [Tt
( 6 3) ( 4 3) D3 P4
29 00, A0 .
L6 A= T 2 2\ (1,2 2 Hopi [UEISOOA_%}A} . (3.38)
B =) \fosar
The seventh diagram
pin 2 p4°
Tt (v —m3) (k1 + k2)? /P:Jgrpi
0B 04
< [P (Vi) gy 0P + 3 (Ver) ™|
pAA 2 M3M4EBC
RN C T TR SN s
< [t (Ver)*® = (Ver) 9l o2, (3.39)
. 2 m4pA0€ . . .
AA 3 A co BA
R = g 20 (oA (V) — (Ver) )
(vl m4) ( 1 + 2) p;pi_
i 2 m
AA 3
L77+_ —

(U% — mi) (k1 + k2)? ’pgpi

x [=0 (Ve i 980+ 03 (Vo)) 2. (3.40)
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The eighth diagram

T T ) kP

X [va (Vo) g3 P5° +m3 (Veﬁ“)AO} ,

RAA 2 o

L?ﬁ_f_ _ 2 M3MAE 5
T AR
< [of (Vo)™ + (Ver) P 50 74 (3.41)
RAA _ 2 my

T T R

X [va (Vet) p g P50 + m2 (‘/eﬁ‘)AO:| A
. Ao |
L?’ﬁ_ - (v — m2)2(k1 + k2)? m3p4+€fc
1—m3 \/]9374
x [of 4 (Ver) 0 + (Vo) 157 (3.42)

3.4. Calculations

In order to illustrate our calculation methods, we will now compute the
amplitude R’i 4 for both the massless and massive case.

In order to do that, we can use the fact that P, = \/§l+, Py, =+/SI_,
the eigenequations (2.18) and the completeness relation (2.40)

2.2
U103

1 A
—o R = 5(p3| Piy" 01l sl | —pa]

25 2
= 5P 19D (1) 1+ 11 1) 2 1) [+ W1 (41 | —pa]
= S s BN [ 15 101 | i) (3.3

With the help of (2.40) and (2.43), we evaluate

118200 = —vg, [ |=pad = —/pi - (3.44)
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Next we will insert the identity between 4* and v using the completeness
relation (2.41) to obtain

vi\/pf
(3.43) =

5 (s [V [T [0 1) = (ps [V [T o1 1) . (3.45)

Then again from (2.40), we get [ |91 |1) = —vi, [t |01|1) = v], and also
we decompose (ps| with (2.43). These procedures lead to
(a5) = 2|7 (ot (B3 (1 17111+ pE (L 17 11])
2 pg'
+or (s 1y 1]+ e 17 14)]

p _ _
= —1)2 pi (U1 p3 V] ng Uf‘pé‘ v] p;)r)“ . (3.46)
3

We can also calculate the amplitude using the abstract index notation
in the spinor form

[oF ot
viv3\ /P3Py iar _ VPsPa

55 T+ = T 5g (p3 | Py 401 Pioa Py | —pa]

= [0 (p3)13] [EABOEAB 8] vlgc (vl())BC] oC5C 00060}

y [Qg (02())017] LDOZD LDOZD] —(pa )D:|

= ~(p3), 5" P (01) 00 (02) o VT (Pi) i

= —(p3a) (vl)“‘o(vz)m(m)n=—p2°v81p§‘° 4 (3.47)

For the massive case it is a little bit more complicated. If we want to get the
result in bracket notation in vector form, we should multiply all the terms
and then use the completeness relation in each term.

In the spinor abstract index notation, the complication of the massive
cases comes from the fact that now not all the matrices are antidiagonal and
the bispinors contain more terms. Let us again consider the first amplitude
as an example
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.

P3Py AA D (7 D

5g (p3 | Py (01 + my) P (V2 + my) Py | —pa4]

0 01 [madz¢ (V1) ¢ 0 0C O
_ B N i BC , ¢
= [ma®  (p3),p] LABgAB 0] [ VBC m45BC ¢ 0
y m4{5CD (v2)ep 0 wptp| [~(pa)pi
'UCD m4(50 | PP 0 mat?
= —pp3 oo} 4+ mdo?] . (3.48)

To obtain the final result, one has to perform the matrix multiplication and
then contract and raise some spinor indices.

3.5. Comparison with the trace method

For the purpose of this subsection only, we denote the spinorial matrix
appearing in the amplitude A} by A%

Al = Toy (p3) A vo, (Pa) - (3.49)

In an analogous way, we define the matrices f, A
The amplitudes squared (3.15) summed also over spins of ¢ can be
computed as traces. For the symmetric part

2 _
> MY = 2N(]X[22)) Tr [(ﬁg +mg) AL (By — ma) mg”} : (3.50)

03,04

and for the antisymmetric

g'N

S M = 71) Tr[(ﬁs +ms) WL (By — ma) mk] . (3.51)
03,04

Using the trace formulas (3.50) and (3.51), we checked numerically the he-

licity structure functions of the form

eg)*/\/llswel(f/) , ELT)*M’XVGST/) , (3.52)

where r,1’ € {4, —,0} are basis polarizations of V* defined in a chosen
reference frame. Up to negligible numerical errors, they agree with results
obtained by directly evaluating amplitudes using our analytic formulas. The
numerical checks were performed using the Wolfram Mathematica [25]. The
used code is available upon request.
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4. Outlook

We presented compact analytic forms of the g*¢* — gqV™* scattering am-
plitudes. Evaluation of these scattering amplitudes is needed as a subroutine
in programs evaluating numerically the Drell-Yan structure functions, and
it is inefficient if performed using trace methods [15]. Our result can be used
to speed up numerical calculations in such studies, and it could be used in
event generators [26]. The calculation method we have used can be applied
to other processes treated in the kp-factorization framework at the leading
order. Spinor helicity methods can also be applied in NLO calculations,
e.g. to obtain the real radiative corrections. One loop amplitudes involving
an off-shell gluon have been considered in [27], which also uses the spinor
helicity formalism.

We would like to thank Leszek Motyka for introducing us to the topic
of the Drell-Yan process, discussions, and reading of the manuscript. This
research was supported by the National Science Centre (NCN), Poland, grant
No. 2017/27/B/ST2/02755.
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