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The time evolution of the distribution function for a particle–hole exci-
tation in a Fermi system was calculated using the direct numerical solution
of a nonlinear diffusion equation in momentum space. A phenomenological
expression for calculating the relaxation time of such an excitation to its
equilibrium value has been proposed. It is shown that the relaxation time
is dependent on both the excitation energy and the mass number.
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1. Introduction

The study of physical phenomena occurring in finite-size Fermi systems
remains an active area of research [1]. Among these, the relaxation processes
of collective and single-particle excitations in atomic nuclei are particularly
important and intriguing. The relaxation processes in many-particle Fermi
systems are conveniently analyzed using quantum kinetic theory methods.
Within this framework, the system is described by the kinetic equation for
the Wigner distribution function in the phase space of coordinates and mo-
menta. The advantage of this approach is that it allows for a relatively
straightforward description of average quantities such as nucleon density,
density flux, pressure, and others in a quantum Fermi system. However,
complications arise due to the presence of the collision integral on the right-
hand side of the kinetic equation. To address these challenges, various sim-
plification methods are employed [2–4].

One of these methods is the so-called diffusion approximation [5]. For
instance, in [6], a schematic model describing the equilibrium state in a finite-
size Fermi system was considered. The master equation for single-particle
states was transformed into a nonlinear diffusion equation, taking the Pauli
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exclusion principle into account. Within this model, an analytical solution
was obtained in the simplified case of constant transport coefficients. This
made it possible to both describe the time evolution of the initial-distribution
function for the Fermi system and derive an expression for the equilibrium
relaxation time of this excitation: τ = 4D/v2, where D is the diffusion
coefficient and v is the drift coefficient. In subsequent studies [7], the authors
presented another, alternative method for solving the nonlinear diffusion
equation in the approximation of constant kinetic coefficients.

In works [8, 9], it was demonstrated that the Landau–Vlasov kinetic
equation with the nine-dimensional collision integral in phase space can be
reduced to a diffusion equation for the Wigner distribution function in mo-
mentum space. Explicit expressions for the diffusion and drift coefficients
were obtained. At low temperatures in a Fermi system, the small transferred
momentum approximation is used to simplify calculations involving particle
scattering near the Fermi surface [2]. However, this assumption alone was
insufficient to obtain a physically accurate result. It was necessary to make
an additional assumption regarding the nature of the interaction between
the scattering particles. Previously, the approximation of isotropic nucleon
scattering probability was considered adequate [2, 4]. However, in this case,
the calculation of kinetic coefficients led to divergent integral expressions.
This divergence was avoided by imposing a short-range condition on the in-
ternucleon potential. Specifically, for a Gaussian potential, it was possible to
obtain convergent expressions for the kinetic coefficients, calculate their nu-
merical values, and determine their temperature dependencies based solely
on phenomenological parameters of the internucleon interaction, such as the
potential depth and its effective range [9].

The diffusion equation can be used to calculate the time evolution of the
distribution function in phase space starting from an initial distribution. In
the approximation of constant kinetic coefficients, as demonstrated by the
authors in [6, 7], this can be done analytically, which is one of the rare cases
where a nonlinear equation can be solved exactly. In works [8, 9], the non-
linear diffusion equation was solved through a direct numerical calculation.
It is evident that the solution in this case exhibits properties similar to the
analytical approach, namely, the gradual spreading of the initial-distribution
function over time until it reaches the equilibrium Fermi distribution, with
a temperature determined by the ratio of the kinetic coefficients. However,
the advantage of this method is that the direct numerical calculation allows
for future solutions in the more general case of momentum-dependent kinetic
coefficients.

In this paper, Section 2 presents the diffusion approximation for the
kinetic equation with the collision integral. In Section 3, a phenomenological
method is proposed for calculating the equilibrium relaxation time τeq for the
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initial-distribution function in a spherical Fermi system, which models an
atomic nucleus in its ground state. Section 4 examines the case of nucleon–
hole-type excitation in an atomic nucleus and uses the proposed formula to
calculate the dependence of τeq on the excitation energy Eex of the nucleon–
hole pair and the mass number A. Conclusions are presented in Section 5.

2. Diffusion approximation

Let us consider the kinetic equation with the collision integral on the
right-hand side

∂f(r,p, t)

∂t
+ L̂f(r,p, t) = St{f} , (1)

where f(r,p, t) ≡ f(p) is the Wigner distribution function in phase space,
St{f} is the collision integral, and the operator L̂ is given by the expression

L̂ =
1

m
p · ∇r − (∇rU) · ∇p , (2)

where m is the particle mass. In the general case, the single-particle poten-
tial U includes both the self-consistent and external fields. For the collision
integral, we use the expression obtained in the diffusion approximation [8, 9]

St{f} = −∇pν

[
Kp(p)f(p) (1− f(p))

pν
m

+ f(p)2∇pνDp(p)
]

+∇2
pν [f(p)Dp(p)] , (3)

where the quantities Dp(p) and Kp(p) define the diffusion and drift coeffi-
cients in momentum space.

We study a Fermi system that models a spherical atomic nucleus in its
ground state. To do this, we consider the following sequence of approxima-
tions. Let us assume infinite, uniformly distributed nuclear matter in coor-
dinate space. Then, in the kinetic equation (1), we set f(r,p, t) = f(p, t),
and thus, L̂f(r,p, t) = 0. In this nuclear matter, we isolate a spherical
region with radius R. The distribution function of such a system will ex-
hibit spherical symmetry in momentum space, i.e., f(p) = f(p). For the
expressions Dp(p) and Kp(p) in the collision integral (3), we apply the ap-
proximation of constant kinetic coefficients [6–10], namely: Dp(p) = Dp,0

and Kp(p) = Kp,0. Taking into account the aforementioned approxima-
tions, the kinetic equation (1) transforms into a nonlinear diffusion equation
in momentum space

∂f(p)

∂t
= −Kp,0

m

[
p(1− 2f(p))

∂f(p)

∂p
+ 3f(p)(1− f(p))

]
+Dp,0

[
∂2f(p)

∂p2
+

2

p

∂f(p)

∂p

]
. (4)
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The diffusion equation (4) must be supplemented with an initial condi-
tion. As such, we choose a step-distribution function

f(p, t = 0) = fin,0(p) = Θ (pF − p) , (5)

where pF is the Fermi momentum, which is determined from the condition
of particle number conservation

4πgV

(2πℏ)3

pF∫
0

dp p2 = A . (6)

Here, g = 4 is the degeneracy factor for nucleons, and V = 4πR3/3 is the
volume of the nucleus, where its radius R is related to the mass number A
by the relation R = r0A

1/3. In the subsequent calculations, we use the
value for the coefficient r0 = 1.2 fm. After integrating over momentum and
substituting the expression for the nucleus volume, we obtain the expression
for the Fermi momentum

pF =

(
9π

8

)1/3 ℏ
r0

, (7)

where ℏ is the Planck constant. Substituting the numerical values of ℏ and
the coefficient r0 into equation (7), we obtain the numerical value of the
Fermi momentum: pF ≈ 8.4 × 10−22 MeV·fm−1·s. This value of the Fermi
momentum pF corresponds to the Fermi energy: EF = p2F/2m ≈ 33.7 MeV,
where m is the nucleon mass.

When performing numerical calculations, we use the values of the ki-
netic coefficients obtained in our work [10]. In the approximation of con-
stant coefficients, their values are calculated at momenta equal to the Fermi
momentum, such that Dp,0 = Dp(pF) and Kp,0 = 3Kp(pF). The value
of the diffusion coefficient Dp,0 ≈ 3.4 × 10−22 MeV2·fm−2·s describes the
experimental data well and is consistent with the estimates of other au-
thors [6, 7, 11]. For the numerical value of the drift coefficient, we use
Kp,0 ≈ −8.3 × 10−23 MeV·fm−2·s, which satisfies the relation between the
equilibrium temperature Teq and the kinetic coefficients (see relation (10)).

In Fig. 1, the time dependence of the distribution function f(p, t) calcu-
lated using the diffusion equation (4) is shown. The momentum dependence
is presented in units of the Fermi momentum p/pF, so the Fermi surface cor-
responds to a unit value of the relative momentum. As seen from the figure,
the obtained distribution function f(p, t) gradually broadens over time and
evolves toward the equilibrium Fermi distribution

feq(p) =

(
1 + exp

p2/2m− EF,eq

Teq

)−1

, (8)
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Fig. 1. Time evolution of the distribution function f(p, t) obtained using the dif-
fusion equation (4). The blue line represents the initial-distribution function (5),
while the red curve represents the equilibrium Fermi-distribution function (8).

where EF,eq is the Fermi energy, which differs from the Fermi energy EF for
the step distribution and is determined from the condition

4πgV

(2πℏ)3

∞∫
0

dp p2feq(p) = A . (9)

Here, Teq is the equilibrium temperature, which, according to [6, 7, 12], is
determined by the ratio of kinetic coefficients

Teq = −Dp,0

Kp,0
. (10)

At the given values of the kinetic coefficients, the equilibrium tempera-
ture is Teq ≈ 4 MeV. For this equilibrium temperature, from equation (9),
we numerically find the Fermi energy for the equilibrium distribution (8):
EF,eq ≈ 33.3 MeV. As we can see, the obtained value EF,eq < EF, which is
due to the diffuseness of the equilibrium distribution function.

3. Relaxation time

Let us consider the deviation of the distribution function from its equi-
librium value

δf(p, t) = f(p, t)− feq(p) . (11)

It is clear that at the initial moment, t = 0, the distribution function is in
its initial state

f(p, t = 0) = fin(p) . (12)
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We then denote the initial deviation from the equilibrium distribution as

δf(p, t = 0) ≡ δfin(p) = fin(p)− feq(p) . (13)

Let us introduce the root-mean-square deviation

∆(t) =

√∫
dp [δf(p, t)]2 . (14)

Its initial value will be

∆(t = 0) ≡ ∆0 =

√∫
dp [δfin(p)]

2 . (15)

In the future, it will be more convenient to consider not the function ∆(t)
itself, but the quantity normalized to its initial value, ∆(t)/∆0. Clearly, at
time t = 0, the ratio ∆(t)/∆0 equals one, indicating that the deviation of
the distribution function from its equilibrium value is at its maximum.

In Fig. 2, the calculated dependence of the ratio ∆(t)/∆0 on time (red
curve), according to expressions (11)–(15) is shown for the previously ob-
tained time evolution of the distribution function, depicted in Fig. 1. As can
be seen from the figure, over time, ∆(t)/∆0 decreases and asymptotically
approaches zero. This dependence is nonexponential in nature.
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Fig. 2. The dependence of the ratio ∆(t)/∆0 on time t. The red curve represents
the numerical calculation, while the blue curve corresponds to the exponential
dependence (17) with a relaxation time τeq ≈ 7.3× 10−24 s.

Let us assume that the relaxation of the deviation of the distribution
function from its equilibrium value is described by an exponential depen-
dence

δf(p, t) = δfin(p) exp (−t/τeq) , (16)
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where τeq is the relaxation time. Substituting (16) into expression (14), we
obtain

∆(t) = ∆0 exp (−t/τeq) . (17)

Integrating both sides of expression (17) with respect to time yields

∞∫
0

∆(t)dt = ∆0

∞∫
0

exp (−t/τeq) dt . (18)

By performing the integration on the right-hand side of (18), we obtain

τeq =

∞∫
0

∆(t)

∆0
dt . (19)

Substituting the exponential dependence (17) into this expression gives a triv-
ial identity. However, in the case of a nonexponential time dependence of
∆(t), we obtain a value of τeq that characterizes the relaxation time in this
scenario.

Thus, by substituting expressions (14) and (15) into (19), one can obtain
the relaxation time for an arbitrary time dependence of the root-mean-square
deviation of the distribution function from its equilibrium value. In this
case, the area under the curve ∆(t)/∆0 will be equal to the area under the
exponential dependence exp(−t/τeq) and will correspond to the relaxation
time τeq calculated using formula (19). In Fig. 2, the exponential dependence
exp(−t/τeq) with a relaxation time τeq ≈ 7.3× 10−24 s, obtained using (19)
and expressions (14) and (15) for the evolution of the distribution function
depicted in Fig. 1, is shown in blue. As can be seen from the figure, the
areas enclosed by the blue and red curves are equal.

4. Particle–hole-type excitation

Let us consider the case of a particle–hole-type excitation, which is de-
scribed by an initial-distribution function of the form

fin(p) =
[
1−Θ(p− p′1) + Θ(p− p′2)

]
[1−Θ(pF − p)]

+ [1−Θ(p− p2)] Θ(p− p1)Θ(pF − p) . (20)

The distribution (20) indicates that the particle is localized beyond the Fermi
surface with momentum p1 > pF, while the hole is accordingly located below
the surface with p′1 < pF. The width of the interval in momentum space,
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describing the particle, ∆p = p2 − p1, is determined from the following
condition

4πgV

(2πℏ)3

∞∫
pF

dp p2fin(p) = 1 , (21)

and the width of the interval describing the hole, ∆p′ = p′2−p′1, is determined
accordingly from the condition

4πgV

(2πℏ)3

pF∫
0

dp p2fin(p) = A− 1 . (22)

Note that these two conditions automatically satisfy the conservation of the
total particle number. It is also worth mentioning that the Fermi momentum
in this case is not equal to the Fermi momentum for the step distribution (5).
However, their difference is very small, so we will neglect it.

The time evolution of the distribution function for the initial particle–
hole-type distribution (20) is illustrated in Fig. 3. As can be seen from
the figure, similar to the previous case, the initial-distribution function be-
comes blurred and eventually approaches the equilibrium distribution (8).
According to the calculations in Appendix A, the widths of the intervals
in momentum space, which describe the particle and the hole, are inversely
proportional to the mass number and the square of the momentum: ∆p ≈
p3F/(3Ap

2
1) and ∆p′ ≈ p′3F/(3Ap

′2
1 ). Therefore, as shown in the figure, the

relative width of the dip associated with the hole, ∆p′/pF, is greater than

Fig. 3. The illustration of the time evolution of the distribution function f(p, t) for
the initial distribution describing the particle–hole-type excitation (20) is shown
by the blue line. The red line represents the equilibrium Fermi-distribution func-
tion (8) at temperature of Teq = 4 MeV.
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the relative width of the peak associated with the particle, ∆p/pF, since
the widths in both cases are inversely proportional to the squares of the
momenta of the hole and the particle. It should be noted that, due to the
smallness of the relative widths ∆p/pF and ∆p′/pF for heavy and medium
nuclei, A = 10 was chosen for clarity in calculating the evolution of the
distribution function. Additionally, to separate the peak and dip from the
Fermi surface background, arbitrary energy values for the particle and hole,
equidistant from the Fermi surface, were chosen.

The excitation energy of the particle–hole pair, Eex, is the difference
between the energies of the nucleon, E1, and the hole, E′

1. In this study, the
energy of the hole was chosen arbitrarily, but with consideration of its small
deviation from the Fermi energy. Specifically, we chose E′

1 = EF − 2 MeV
arbitrarily.

The average binding energy per nucleon in atomic nuclei is approximately
B/A ≈ 8 MeV. Therefore, it makes sense to consider excitation energies, Eex,
where the excited nucleon remains bound within the nucleus, i.e., Eex−2 ≤
B/A. Given this constraint, we will focus on the excitation of the nucleon–
hole pair within the range of 2 ≤ Eex ≤ 10 MeV.

Figure 4 shows the dependence of the relaxation time, τeq, calculated
according to expression (19), for the particle–hole-type distribution as a
function of the excitation energy, Eex, for nuclei with different mass numbers.
As seen in the figure, for all nuclei, the relaxation time, τeq, decreases non-
linearly with increasing excitation energy, Eex.
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Fig. 4. The relaxation time τeq as a function of the nucleon excitation energy, Eex,
for nuclei with different mass numbers. The nucleon is excited from the EF−2 MeV
level.
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It should also be noted that at all excitation energies, the value of τeq
increases with the mass number, A. This dependence is illustrated in Fig. 5,
where the relaxation time, τeq, is plotted as a function of the mass number
for different values of the particle–hole excitation energy, Eex. As seen in the
figure, the relaxation time increases with the mass number at all excitation
energies.
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Fig. 5. The relaxation time τeq as a function of the mass number A at different
values of the particle–hole excitation energy, Eex. A nucleon is excited from the
EF − 2 MeV level.

Finally, it is worth noting that the numerical calculations performed are
technically resource-intensive, requiring substantial computational power to
achieve satisfactory accuracy in the obtained results.

5. Conclusions

In this work, within the framework of the diffusion approximation in
kinetic theory, a nonlinear diffusion equation for the distribution function
was derived for the case of constant diffusion and drift coefficients. Through
direct numerical calculations, the time evolution of the distribution function
was obtained for both an initial step-like distribution and a case of particle–
hole excitation in a Fermi system, modeling the ground state of spherically
symmetric atomic nuclei. It was demonstrated that in both cases, the ini-
tial distribution gradually blurs over time, evolving towards the equilibrium
Fermi distribution, whose temperature, as is known, is determined by the
ratio of the diffusion and drift coefficients.

We proposed a phenomenological method for calculating the relaxation
time of an arbitrary initial excitation to its equilibrium value. The relax-
ation time is determined by the area under the equivalent exponential time
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dependence, normalized to the initial value of the root-mean-square devia-
tion of the distribution function. Using this method, the relaxation time for
the step-like initial distribution was calculated as τeq ≈ 7.3× 10−24 s.

We also calculated the dependence of the relaxation time on the particle–
hole excitation energy in a spherically symmetric Fermi system, where the
arbitrarily chosen hole energy is close to the Fermi energy (in our case, the
difference is 2 MeV). The calculations showed that as the excitation energy
increases, the relaxation time decreases in a nonlinear manner. This trend
holds for all values of the mass number. Additionally, it was demonstrated
that as the mass number increases, the relaxation time also increases across
different values of the particle–hole excitation energy.

Theoretical studies revealed several issues that require further investi-
gation. In particular, the relaxation time, τeq, obtained using this method
was approximately an order of magnitude smaller than expected. It can
be hypothesized that the reason for this discrepancy may lie in the method
used to determine the relaxation time. Another possible explanation is that
the momentum-integrated quantity ∆(t)/∆0 likely reaches equilibrium much
faster than the distribution function at the Fermi momentum itself does.
This occurs because, in a large fraction of momentum space, the initial dis-
tribution is already equal to the equilibrium distribution due to the Pauli
principle. Additionally, further clarification is needed regarding the energy
imbalance for the initial particle–hole distribution, as it leads to the equi-
librium temperature, Teq, being independent of the excitation energy, Eex.

The author expresses gratitude to the Armed Forces of Ukraine for ensur-
ing safety during the conduct of this research. The author sincerely thanks
A.I. Sanzhur for useful and creative discussions.

Appendix A

Conditions for widths in momentum space for a particle and a hole

Let us examine conditions (21) and (22) in more detail. We denote the
corresponding integrals as I1 and I2. Then, expressions (21) and (22) will
take the form of

4πgV

(2πℏ)3
I1 = A− 1 , (A.1)

4πgV

(2πℏ)3
I2 = 1 . (A.2)
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For the distribution function (20), the integral I1 can be expressed as
follows:

I1 =

pF∫
0

dp p2fin(p) =

p′1∫
0

dp p2 +

pF∫
p′2

dp p2 =
1

3

(
p′31 + p3F − p′32

)
. (A.3)

Let us express the momentum p′2 through the initial momentum p′1 and the
width of the interval of the hole in momentum space ∆p′, then p′2 = p′1+∆p′.
Thus,

p′32 =
(
p′1 +∆p′

)3
= p′31 + 3p′21 ∆p′ + 3p′1∆p′2 +∆p′3 . (A.4)

After substituting this expression into (A.3), we will have

I1 =
p3F
3

(
1− 3x′21 ∆x′ − 3x′1∆x′2 −∆x′3

)
, (A.5)

where the notation x′1 = p′1/pF, ∆x′ = ∆p′/pF is introduced.
Similarly, we will write the integral I2

I2 =

∞∫
pF

dp p2fin(p) =

p2∫
p1

dp p2 =
1

3

(
p32 − p31

)
. (A.6)

Let us express the momentum p2 through the initial momentum p1 and the
width of the particle interval in momentum space ∆p, then p2 = p1 + ∆p.
Thus,

p32 = (p1 +∆p)3 = p31 + 3p21∆p+ 3p1∆p2 +∆p3 . (A.7)

After substituting this expression into (A.6), we will have

I2 =
p3F
3

(
3x21∆x+ 3x1∆x2 +∆x3

)
, (A.8)

where the notation x1 = p1/pF, ∆x = ∆p/pF is introduced.
After substituting the obtained expressions for integrals (A.5) and (A.8)

into expressions (A.1) and (A.2), we obtain the following conditions:

4πgV

(2πℏ)3
p3F
3

(
1− 3x′21 ∆x′ − 3x′1∆x′2 −∆x′3

)
= A− 1 , (A.9)

4πgV

(2πℏ)3
p3F
3

(
3x21∆x+ 3x1∆x2 +∆x3

)
= 1 . (A.10)
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Since ∆x′ ≪ 1 and ∆x ≪ 1, it makes sense in expressions (A.9) and
(A.10) to consider only the contribution from the linear terms

4πgV

(2πℏ)3
p3F
3

(
1− 3x′21 ∆x′

)
≈ A− 1 , (A.11)

4πgV

(2πℏ)3
p3F
3

3x21∆x ≈ 1 . (A.12)

We will consider that with sufficient accuracy, the Fermi momentum pF
can be determined using expression (6) for the step distribution

4πgV

(2πℏ)3
pF
3

≈ A . (A.13)

Therefore, taking into account the law of conservation of particle number
(A.13), conditions (A.11) and (A.12) will be written in their final form as

∆x′ ≈ 1/
(
3Ax′21

)
, (A.14)

∆x ≈ 1/
(
3Ax21

)
. (A.15)
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