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Advanced facilities like GSI-FAIR in Germany or RIKEN in Japan are
dedicated to the research of nuclei far from the stability line. In this pa-
per, we study the fragmentation of relativistic projectiles as a production
method for these nuclei, with particular emphasis on the role of secondary
reactions.
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1. Introduction

The knowledge of cross sections in the fragmentation of relativistic nuclei
is crucial for the production and study of exotic nuclei in modern labora-
tories (e.g. GSI-FAIR, RIKEN, MSU). In this paper, we discuss two-step
reactions. In the first step, a nucleus is produced as a result of relativis-
tic fragmentation. Subsequently, this nucleus, still possessing relativistic
energy, can undergo further fragmentation, leading to the formation of an
exotic nucleus. The estimation of the cross section in the secondary reaction
of a specific exotic nucleus is the primary objective of this study.

(1-A3.1)
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2. Cross section in a secondary projectile fragmentation reaction

Cross section is one of the most important properties of a nuclear reac-
tion. It is a measure of the effective area that in a specific reaction is seen
by a projectile nucleus when collides with a target nucleus. Therefore, here
are presented key points for calculating the cross section for a single and
secondary projectile fragmentation reaction.

One of the main variables is the target thickness, denoted by ρ and
expressed in g/cm2. Let us consider a fixed hypothetical surface S positioned
at the front of the target, in the direction of the incoming beam. The number
of atoms, N , located behind this surface, divided by the surface area, is
denoted by R

R ≡ N

S
=

ρNA

M
, (1)

where NA is Avogadro’s number, and M is the molar mass of the target,
expressed in grams. Although the number of atoms per unit area, R, is typ-
ically a large value, it is usually multiplied by a cross section of the order of
millibarns. The cross-section σ(P, ϕ) for a specific reaction (P + target → ϕ)
is calculated directly using the EPAX code [1–3].

Let us assume that the first reaction occurs at a relative distance 0 <
x1 < 1 from the front of a target. The term “relative distance” refers to
the distance divided by the width of the target. Then the probability that
the fragment X1 with mass number AX1 and atomic number ZX1 will be
produced in a layer dx1 located around x1 is expressed as

dP1 = R× S
σ (P,X1) dx1

S
= R× σ (P,X1) dx1 . (2)

Here, P refers to the projectile and σ(P,X1) is the cross section for the
reaction (AP, ZP) + (At, Zt) → (AX1 , ZX1), where t refers to the target.
The probability is a ratio of two surfaces: cross section σ(P,X1) multiplied
by the number of atoms behind the surface S in the relative distance dx1,
and the surface S. The probability dP1 does not depend on the surface S.

If the created fragment X1 reacts again, we get the second reaction
(AX1 , ZX1) + (At, Zt) → (AX2 , ZX2) with the cross section σ(X1, X2), thus
producing fragment X2. Let us assume, that the second reaction takes place
at a relative distance x2 fulfilling the simple relation 0 < x1 < x2 < 1 in a
thin layer dx2. The probability of such reaction occurring and fragment X2

being produced is a sum of products (or integral) of two probabilities dP1

and dP2



Secondary Reactions in Relativistic Fragmentation of Nuclei 1-A3.3

P (X1, X2) =

1∫
0

 1∫
x1

R2σ(P,X1)σ(X1, X2)dx2

 dx1

= R2σ (P,X1)σ(X1, X2)/2 , (3)

where
∫ 1
0 (

∫ 1
x1

dx2)dx1 = 1/2 and the expression under integral does not
depend on x1 or x2. Note that P (X1, X2) ̸= P (X2, X1).

In a similar way, we calculate three-step reactions where a fragment
denoted as X1 is produced near x1 in a layer dx1, a fragment X2 near x2 in
a layer dx2, and a final fragment X3 near x3 in a layer dx3. Of course, relative
distances fulfill 0 < x1 < x2 < x3 < 1. The probability is a product of dP1,
dP2, and dP3, and as independent events could be summed or integrated

P (X1, X2, X3)

=

1∫
0

 1∫
x1

 1∫
x2

R3σ (P,X1)σ (X1, X2)σ (X2, X3) dx3

 dx2

dx1

= R3σ(P,X1)σ(X1, X2)σ(X2, X3)/6 , (4)

where
∫ 1
0 (

∫ 1
x1
(
∫ 1
x2

dx3)dx2)dx1 = 1/6 and expression under integral does not
depend on x1, x2 or x3.

The final expression, for the probabilities P (ϕ)P for primary and P (ϕ)S
for secondary reactions to produce the desired fragment ϕ are given by for-
mulas

P (ϕ)P = R× σ(P, ϕ)−R2σ(P, ϕ)
∑
i

σ(ϕ,Xi)/2 , (5)

P (ϕ)S = P (ϕ)P +R2
∑
i

σ(P,Xi)σ(Xi, ϕ)/2

−R3
∑
i,j

σ(P,Xi)σ(Xi, ϕ)σ(ϕ,Xj)/6 , (6)

where sums are over fragments. The first term in (5) describes the proba-
bility of creating the desired fragment directly from the projectile.

The second term expresses the probability that the fragment will be lost
by reacting again with the target before exiting it. The sum goes over all
nuclei with atomic masses smaller than that of the fragment ϕ.
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The term proportional to R2 in (6) calculates the probability that the
fragment Xi as a projectile will produce the next fragment ϕ as a result of
secondary reaction. Here, we sum over the fragments Xi with masses larger
than the fragment ϕ, but still smaller than the starting projectile.

The final term describes the probability of absorption of a fragment ϕ
produced through secondary reactions.

Thus, the effective cross section that a fragment ϕ will be produced from
fragmentation of the projectile P for secondary nuclear reactions equals

σ′(P, ϕ) =
P (ϕ)S
R

, (7)

and depends on a density of a target through R as defined in Eq. (1). Sim-
ilarly, we calculate the cross section for primary reaction.

Let us estimate the order of probability P (ϕ) that a fragment, denoted
as ϕ, will be produced from the projectile P in a fragmentation reaction for
reasonable target thickness and discussed reactions. By integrating equa-
tion (2), we obtain

P (ϕ) = σ(P, ϕ)× ρ×NA/M , (8)

where ρ is the target thickness expressed in g/cm2 and M the molar mass
of target in g. The number of atoms in one mole known as the Avogadro
number NA is approximately equal to 6.022× 1023.

In the present paper, the cross section is expressed in millibarns mb, a
unit of area where 1 mb = 10−27 cm2 = 0.1 fm2. We estimate the order of
probability

∑
ϕ P (ϕ), where P (ϕ) is given by equation (8). Assuming a 9Be

target thickness of ρ = 1g/cm2, a molar mass for 9Be of M = 9 g, and
a maximal value for the sum of cross sections

∑
ϕ σ(P, ϕ) = 100 mb, the

probability is no greater than

∑
ϕ

P (ϕ) =
1 g/cm2

9 g
× 6.022× 1023× 100× 10−27 cm2 = 6.691× 10−3 . (9)

For a typical sum of cross sections for all fragments of the order of 100
mb, we find that the probability is a few per thousand and remains signifi-
cantly smaller than unity. This conclusion is particularly valid for the target
thicknesses considered in this paper, ranging from 1 to 17 g/cm2.

3. Results

All calculations were performed for five different projectiles: 238U, 209Bi,
180W, 152Sm, and 124Xe, colliding with a 9Be target, representing typical
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fragmentation reactions used at the GSI facility. The basic properties of
primary and secondary reactions were studied for a sample target thickness
of 12 g/cm2. In the first step, we studied the cross-section distribution for
fragments obtained in primary reactions. To achieve this, a fragment with
a chosen proton number Z was selected, and cross sections for its isotopes
(i.e., different neutron numbers N) were computed. We observed that the
cross sections followed a Gaussian distribution with well-defined mean values
and widths. The neutron numbers corresponding to the mean values for a
fixed proton number Z formed a path on the nuclear chart (Z,N). Five
such paths for different projectiles are shown in figure 1.
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Fig. 1. Fragment’s paths for five different projectiles.

Each path starts from the number of protons and neutrons in the projec-
tile. The fragment’s path can be divided into two parts: a common path for
all projectiles, referred to as the ‘asymptotic’, and a second, much shorter
path that converges toward the asymptote. Each path, close to the pro-
jectile, runs almost parallel to the neutron axis — the loss of one proton
corresponds to the loss of several neutrons. As shown in figure 1, it is ev-
ident that lighter projectiles reach the asymptotic path much faster, with
the number of lost neutrons ranging from 2 for 124Xe to 8 for 238U.

The cross sections (in mb) along the fragment’s trajectory are shown in
figure 2. These indicate that the reaction exhibits the highest cross sections
for fragments located closer to the projectile. If only primary reactions are
considered, this value decreases rapidly, suggesting that fragments farther
from the projectile are produced at a lower rate.
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Fig. 2. Cross sections (in mb) on the fragment’s path.

However, this changes when secondary reactions are included in the cal-
culations, particularly for heavier projectiles. In figure 3, the ratio of cross
sections along the fragment’s path is plotted. For heavier projectiles, it can
be observed that after an initial decrease, a significant increase in the ratios
of secondary-to-primary cross-section values occurs, indicating that smaller
fragments may also be produced. This result highlights the importance of
secondary reactions, as their inclusion can increase the cross-section value
by up to threefold.
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Fig. 3. Ratio of cross sections for the secondary and primary relativistic fragmen-
tation.
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The cross section for fragments with fixed proton number Z has almost
Gaussian distribution as a function of neutron numbers NZ . We define
moments for cross-section distributions as

mk(Z) =
∑
NZ

σ(NZ , Z)Nk
Z . (10)

We can estimate the width ∆N of the cross-section distribution as a function
of the neutron number NZ for a fixed proton number Z using the formula

∆N =

√
m2(Z)

m0(Z)
− m1(Z)2

m0(Z)2
. (11)

The deviations ∆N are plotted in figure 4 and are nearly the same for both
primary and secondary reactions. For both types of reactions, ∆N is very
small, of the order of 2–5 neutrons, illustrating how rapidly the cross section
decreases from the fragment’s path. This decrease is more rapid for lighter
fragments, where the deviations are smaller. The production of exotic nuclei
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Fig. 4. Width ∆N of cross section distributions.

depends on the competition between fragmentation and absorption in the
target, as well as on the target thickness. In figure 5, the production prob-
ability of the 98Cd ion in the 124Xe + 9Be → 98Cd reaction is shown as a
function of the target thickness. It can be observed that the production prob-
ability for fragments in secondary reactions is optimal around 14 mg/cm2,
and is nearly seven times higher, on average, than for primary reactions.
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Fig. 5. Probability for primary and secondary reactions as a function of the target
thickness.

4. Conclusion

In this paper, the relativistic fragmentation of heavy projectiles on a
light target was extensively studied. Five different projectiles colliding with
a beryllium target were considered. The results indicate that proton-rich
nuclei are much easier to produce, while neutron-rich nuclei are significantly
more difficult to generate due to the rapid decrease in cross sections as one
moves away from the asymptotic path.

Subsequently, the maximal cross-section values, in terms of proton num-
ber, were compared between primary and secondary reactions for all five
projectiles. These findings already highlight the importance of secondary
reactions. The calculated cross sections show that deviations from the frag-
ment path correspond to a few neutrons.

The maximal cross sections for all five projectiles were compared for
different target thicknesses. The calculations clearly show that the path
remains unchanged regardless of the target thickness; however, the maximal
values do exhibit slight variations, particularly for fragments close to the
projectile.

Finally, the maximal cross sections in terms of proton number were com-
pared between the five projectiles for a chosen target thickness. These com-
parisons indicate that the optimal choice of projectile for producing the
desired fragment is likely the lightest one.
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