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Quantization of the kinetic energy of a nucleus with deformation in
curvilinear coordinates in the presence of octupole vibrations of its surface
is performed. The obtained Hamiltonian differs from the previously known
expression for quadrupole vibrations only in the coefficients before the dif-
ferentiation operators ∂/∂γ and ∂/∂η. This is due to the difference in the
components of the moment of inertia tensor of the nucleus for quadrupole
and octupole modes. An exact expression for the full Hamiltonian of an
even–even nucleus is determined, taking into account both quadrupole and
octupole deformations, including seven dynamic variables. Some fields of
application of the proposed Hamiltonian are discussed.
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1. Introduction

The main modes of excitation of medium and heavy atomic nuclei are
associated with collective forms of motion, including surface and elastic vi-
brations [1, 2]. In this case, the shape of the nuclear surface is represented in
an expansion in five parameters corresponding to the spherical harmonics of
the second order, which describes quadrupole vibrations. The corresponding
Hamiltonian includes both kinetic and potential components in a certain set
of variables, which allows one to describe the dynamics of vibrations of the
nuclear surface.

After the discovery of the Bohr Hamiltonian, many solutions of the
Schrödinger eigenvalue equation have been proposed, but in many cases,
they are limited to the quadrupole degree of freedom [4–6]. The Hamil-
tonian describing quadrupole and octupole deformations was investigated
in [7], where the core surface is represented by an expansion in seven param-
eters, which correspond to third-order spherical harmonics. Strong octupole
correlations leading to pear-shaped shapes can occur for certain numbers of
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protons and neutrons Z and N [8]. A joint parameterization of quadrupole
and octupole deformations is considered in [3], where internal variables are
defined in the rest frame of the general moment of inertia tensor. In this
case, the non-axial deformation parameters are not fixed at zero [9].

The collective model with quadrupole and octupole deformations was
applied to deformed axially symmetric nuclei in Refs. [10–15]. The impor-
tance of taking into account deformation asymmetry parameters is shown in
Refs. [7, 16]. As well as in triaxial nuclei, the eigenvalue of the third compo-
nent of the angular momentum is not a good quantum number (K-mixing)
[16]. The Schrödinger equation with the collective Bohr Hamiltonian is an-
alyzed in detail in Ref. [17]. In addition, it is of interest to analyze solutions
of the Schrödinger equation with the Bohr Hamiltonian, and to study their
connection with the critical behavior of nuclei [18]. Note that in all the above
works, the full form of the Bohr Hamiltonian with quadrupole and octupole
deformations is not given. However, it should be taken into account that it
is necessary to quantize the classical kinetic energy octupole vibrations of
the surface of the nucleus in curvilinear coordinates.

In [20], using the Pauli procedure [19], the quantization of the kinetic en-
ergy of a deformed nucleus in curvilinear coordinates is considered in detail
as applied to quadrupole vibrations of its surface. However, the quantiza-
tion of the classical kinetic energy caused by the rotation during octupole
vibrations of the nucleus surface has not been carried out.

The present work is aimed at obtaining the complete form of the Bohr
Hamiltonian, taking into account quadrupole and octupole deformations.

2. Quadrupole and octupole vibrations of the nuclear surface

The distance from the center of the nucleus to its surface, measured in
the laboratory coordinate system for small deviations from the radius of the
sphere R0, R(θ, φ), can be expanded into spherical functions

R(θ, φ) = R0

1 +∑
λµ

αλµY
∗
λµ(θ, φ)

 , (1)

where θ and φ are polar angles, λ is the rank of spherical tensors αλµ, which
are dynamic variables of collective motions in the nucleus and satisfy the
condition α∗

λµ = (−1)µαλ,−µ, which follows from the condition that spherical
functions are real

Y ∗
λµ(θ, φ) = (−1)−µYλ,−µ(θ, φ) . (2)
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In this paper, we will consider in detail the quadrupole (λ = 2) and octupole
(λ = 3) deformations. Then we will rewrite expression (1) as

R(θ, φ) = R0

1 + 2∑
µ=−2

α2µY
∗
2µ(θ, φ) +

3∑
m=−3

α3mY ∗
3m(θ, φ)

 . (3)

In our model space, only quadrupole and octupole deformations are taken
into account. We also assume that their magnitude is small enough that the
introduction of a monopole or dipole term is not required to maintain con-
stant values of the volume of the nucleus and the position of its center of
mass. The hydrodynamic Bohr model is used for the description of the ki-
netic energy of the quadrupole and octupole deformation of the nucleus. A
system of orthogonal coordinates ξηζ associated with the nucleus is intro-
duced, and its orientation relative to the laboratory system is defined by
three Euler angles θi (i = 1,2, and 3)

R(θ, φ) = R0

[
1 +

2∑
ν=−2

aνY
∗
2ν

(
θ′, φ′)+ 3∑

m=−3

amY ∗
3m

(
θ′, φ′)] , (4)

aν =
∑
µ

αλµD
∗λ
λµ(θ) , αλµ =

∑
ν

Dλ
λµ(θ)aν ,

where Dλ
λµ(θ) is the Wigner function.

Now we will choose the coordinate system ξηζ in such a way that the
following relations are satisfied a1 = a−1 = 0, a2 = a−2 and

a0 = β2 cos γ, a2 = a−2 =
β2 sin γ√

2
, (5)

where β2 ≥ 0 is the quadrupole deformation parameter and γ (0 ≤ γ ≤ π
3 )

is the quadrupole deformation asymmetry parameter [1, 5].
We choose the body-fixed coordinate axes, and assume that the shape

of the nucleus becomes symmetrical at large octupole deformation, then
the asymmetry parameters tend to zero, i.e. [21–23] a3,±1 = a3,±3 = 0,
a3,2 = a3,−2, and

a30 = β3 cos η , a32 = a3,−2 =
β3 sin η√

2
, (6)

where β3 is the octupole deformation parameter and the octupole deforma-
tion asymmetry parameter is η (0 ≤ η ≤ π/2) [22, 24].



10-A2.4 M.S. Nadirbekov, S.N. Kudiratov, F.R. Kungurov

We remark that the case of a3,±1 ̸= 0, a3,±3 ̸= 0 was considered in
Ref. [25], whereas in Ref. [26], it was shown that deformation degrees of
freedom determined by a3,±3 can be associated with pure two-quasiparticle
states and may not need to be considered as collective variables.

We write the total energy of the quadrupole and octupole deformations
of the shape of the nucleus in the following form [5]:

E =
B2

2

(
β̇2
2 + β2

2 γ̇
2
)
+

B3

2

(
β̇2
3 + β2

3 η̇
2
)
+V (β2, β3, γ, η)+

3∑
κ=1

ω2
κJκ
2

, (7)

where quantities B2 and B3 are the quadrupole and octupole mass parame-
ters, respectively, V (β2, β3, γ, η) are the potential energy of β2-, β3-, γ-, and
η-vibrations, and the last term in (7) is the rotational energy. The angular
velocity components of the nucleus in the body-fixed system ωκ (κ = 1,2,3)
can be expressed through time derivatives of three Euler angles., Jκ are
components of the total moment of inertia and have the following form:

J1 =B2

(
3a220+2

√
6a20a22+2a222

)
+4B3

(
3a230+4a232+

√
30a30a32

)
, (8)

J2 =B2

(
33a220−2

√
6a20a22+2a222

)
+4B3

(
3a230+4a232−

√
30a30a32

)
, (9)

J3 = 8B2a
2
22+8B3a

2
32 . (10)

To quantize the total energy (7), the following conditions must be met.
The kinetic energy is expressed explicitly in terms of the time derivatives of
collective variables and the potential energy must be written in the form of
scalar variables. The total moment of inertia associated with the collective
rotations was diagonal because we consider the quadrupole and octupole
separately.

3. Quantization of the kinetic energy of an octupole deformed
nucleus in curvilinear coordinates

In order to quantize the classical kinetic energy arising from rotational
motion, as well as quadrupole and octupole vibrations of the nuclear sur-
face, it is necessary to introduce the Euler angles θ1, θ2, θ3, and the internal
variables a20, a22, a30, and a33. In this paper, curvilinear coordinates are
understood as coordinates that cannot be represented as linear combinations
of Cartesian coordinates with constant coefficients [27]. A detailed analysis
of the quantization of the kinetic energy of a deformed nucleus in a curvi-
linear coordinate space, as applied to the internal variables a20 and a22, was
presented in [20].
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Here, we illustrate a very similar procedure for the variables a30 and
a32. In this paper, we consider the simultaneous occurrence of quadrupole
and octupole deformation of the shape of an even–even nucleus. However,
we do not take into account their interaction because the problem becomes
mathematically very complicated and we start with the same approximation
that we can neglect their interaction. Therefore, we can write the energy of
octupole vibrations by analogy with quadrupole vibrations as in [1, 3, 5]

Eβ3 =
B3

2

(
β̇2
3 + β2

3 η̇
2
)
+ V (β3, η) +

3∑
κ=1

ω′2
κJ

(3)
κ

2
. (11)

Here, V (β3, η) is the potential energy of β3- and η-vibrations, the last term
is the rotational energy operator in the case of octupole vibrations, where
ω′
κ are components of angular velocities of the nucleus with octupole defor-

mation in the body-fixed system, and components of the total moment of
inertia for octupole vibrations are equal to

J
(3)
1 = 4B3

(
3a230 + 4a232 +

√
30a30a32

)
= 8B3β

2
3

(
3

2
cos2 η + sin2 η +

√
15

2
sin η cos η

)
, (12)

J
(3)
2 = 4B3

(
3a230 + 4a232 −

√
30a30a32

)
= 8B3β

2
3

(
3

2
cos2 η + sin2 η −

√
15

2
sin η cos η

)
, (13)

J
(3)
3 = 8B3a

2
32 = 8B3β

2
3 sin

2 η . (14)

From (11), we extract the kinetic energy

T =
B3

2

(
β̇2
3 + β2

3 η̇
2
)
. (15)

We quantize the classical kinetic energy associated with the rotation and
octupole oscillations of the surface of the nucleus by choosing as independent
variables the Euler angles θ1, θ2, θ3, and the internal variables a30 and a33.

Hence, we can write the kinetic energy operator [20]

T̂ = −1

2
ℏ2
∑
µ

1

mµ

∂2

∂x2µ
, (16)

which we use for quantization of the classical kinetic energy (15) .
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Now, the kinetic energy operator corresponding to the classical expres-
sion (11) can be written as [20]

T̂ = −ℏ2

2

1√
G

∑
ij

∂

∂qi

(√
Ggij

∂

∂qj

)
, (17)

where G is the determinant of the metric tensor gij , which is determined by
the following expression:

gµν =
∑
k

JkVk,µ(θi)Vk,ν(θi) , µ, ν ≥ 3 , (18)

where Vk,ν(θi) is as in [20]

Vk,l(θ1, θ2, θ3) =

 − sin θ2 cos θ3 sin θ3 0
sin θ2 cos θ3 cos θ3 0

cos θ2 0 1

 . (19)

We find non-zero matrix elements of gµν

g11 = B3 , (20)
g22 = 2B3 , (21)
g33 =

(
J1 cos

2 θ3 + J2 sin
2 θ3
)
sin2 θ2 + J3 cos

2 θ2 , (22)
g34 = (J2 − J1) sin θ2 cos θ3 sin θ3 = g43 , (23)
g44 = J1 sin

2 θ3 + J2 cos
2 θ3 , (24)

g53 = J3 cos θ2 = g35 , (25)
g55 = J3 . (26)

Using expressions (20)–(26), it is easy to find the determinant of this matrix

G = det(gµν) = 2B2
3 sin

2 θ2J1J2J3

= 32B5
3 sin

2 θ2a
2
32

[(
3a230 + 4a232

)2 − 30a230a
2
32

]
. (27)

The matrix gµν , the inverse of the matrix gµν (18), has been found from the
relation

gµν = g−1
µν =

Gµν

G
, (28)

where Gµν is the algebraic complement of the element gµν in the determinant
of G. Now, we find non-zero matrix elements of g−1

µν

g−1
11 =

1

B3
, g−1

22 =
1

2B3
, (29)
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g−1
33 =

2B2
3J3
G

(
J1 sin

2 θ3 + J2 cos
2 θ3
)
, (30)

g−1
34 = g−1

43 =
−2B2

3J3
G

sin θ2 sin θ3 cos θ3 (J1 − J2) , (31)

g−1
35 = g−1

53 =
−2B2

3J3
G

cos θ2
(
J1 sin

2 θ3 + J2 cos
2 θ3
)
, (32)

g−1
44 =

2B2
3J3
G

sin2 θ2
(
J1 cos

2 θ3 + J2 sin
2 θ3
)
, (33)

g−1
45 = g−1

54 =
2B2

3J3
G

cos θ2

× (−J1 sin θ2 cos θ3 sin θ3 + J2 sin θ2 sin θ3 cos θ3) , (34)

g−1
55 =

2B3

G
sin2 θ2

[
J1J2 cos

4 θ3 + J2 cos
2 θ3

(
J3 cot θ2 + 2J1 sin

2 θ3
)

+J1 sin
2 θ3

(
J3 cot

2 θ2 + J2 sin
2 θ3
)]

. (35)

Note that the expression for g−1
55 (35) differs from that in work [20].

Further, we find the volume element in the form

dτ = |G|dq1 . . . dqN , (36)

where qi are generalized coordinates.
Using formula

ω′
k =

dβk
dt

=
∑
i

Vki
∂θi
dt

, (37)

we rewrite formula (11) in the following form:

Eβ3 =
1

2

∑
k

Jk(a30, a32)

(∑
i

Vkl(θ1, θ2, θ3)
dθi
dt

)2

+
1

2
B3

(
ȧ230 + ȧ233

)
. (38)

We choose the generalized coordinates qi (36)

q1 = a30 , q2 = a32 , q3 = θ1 , q4 = θ2 , q5 = θ3 . (39)

We determine some matrix elements gµν of matrix (19)

g11 = B3 , g22 = 2B3 ,

g1k = gk1 for k ̸= 1 ,

g2k = gk2 for k ̸= 2 .
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Now, we rewrite the determinant G (27) as

G1/2 = 16B
5/2
3 sin θ2

[
9a430a

2
32 − 6a230a

4
32 + 16a632

]1/2
.

We calculate the kinetic energy operator for g−1
11 and

−ℏ2

2

1

G1/2

∂

∂q1
G1/2g−1

11

∂

∂q1

= − ℏ2

2B3

[
6a30

(
3a230 − a232

)
9a430 − 6a230a

2
32 + 16a432

∂

∂a30
+

∂2

∂a230

]
.

Now we will calculate the kinetic energy operator for g−1
22 and

−ℏ2

2

1

G1/2

∂

∂q2
G1/2g−1

22

∂

∂q2

=

[
3
(
3a430 − 4a230a

2
32 + 16a432

)
2a32

(
9a430 − 6a230a

2
32 + 16a432

) ∂

∂a32
+

∂2

2∂a232

]
.

We obtain the expression for the kinetic energy operator

T̂a30,a32 = − ℏ2

2B3

[
6a30

(
3a230 − a232

)
9a430 − 6a230a

2
32 + 16a432

∂

∂a30
+

+
∂2

∂a230
+

3
(
3a430 − 4a230a

2
32 + 16a432

)
2a32

(
9a430 − 6a230a

2
32 + 16a432

) ∂

∂a32
+

∂2

2∂a232

]
.

We move on from a30 and a32 to variables β3 and η and consider

β3 =
√
a230 + 2a232 , η = arctan

√
2
a32
a30

.

We have the final form of the expression for the classical kinetic energy
(11) of the octupole β3- and η-vibrations of the nuclear surface in curvilinear
coordinates

T̂β3 = − ℏ2

2B3

1

β4
3

∂

∂β3

(
β4
3

∂

∂β3

)
, (40)

the operator of the kinetic energy of β3-vibration, and

T̂η = − ℏ2

2B3β2
3

[
∂2

∂η2
+

24 cos2 2η − 6 cos 2η

5 + 5 cos 2η + 8 cos2 2η

cos η

sin η

∂

∂η

]
, (41)



Bohr Hamiltonian of the Even–Even Nuclei with Quadrupole . . . 10-A2.9

the operator of the kinetic energy of η-vibration. Operators of the kinetic en-
ergy given by formulas (40) and (41) are determined in the space of variables
β3, η, θ1, θ2, θ3 with the volume element (36)

dτ = β4
3 | sin 3η|| sin θ2|dβ3 dη dθ1 dθ2 dθ3 . (42)

We compare the resulting expressions (40) and (41) with a similar expres-
sion for quadrupole β2- and γ-vibrations of the surface of the nucleus [1, 5]

T̂β2 = − ℏ2

2B2

1

β4
2

∂

∂β2

(
β4
2

∂

∂β2

)
, (43)

the operator of the kinetic energies of β2-vibration

T̂γ = − ℏ2

2B2

1

sin 3γ

∂

∂γ

(
sin 3γ

∂

∂γ

)
, (44)

the operator of the kinetic energies of γ-vibration.
It is evident that the final formulas (41) and (44) do not coincide with

each other. Although the dynamic variables a20, a22 and a30, a32 have
the same expressions via (5) and (6). However, the expressions for the
components of their moments of inertia differ, i.e. the first and second terms
in formulas (8) and (9).

The volume element (36) in the space of variables β2, γ, β3, η, θ1, θ2, θ3
is determined as

dτ = β4
2β

4
3 | sin 3γ|| sin 3η|| sin θ2|dβ2 dβ3 dγ dη dθ1 dθ2 dθ3 . (45)

As noted above, quantization of the kinetic energy of a deformed nucleus
over curvilinear coordinates in quadrupole space was presented in [20]. We
applied an analogy of this method for the quantization of the kinetic energy
of octupole deformations on curvilinear coordinates. We agree that the
proposed quantization of the kinetic energy of octupole deformations is rough
since the octupole collective motion is more complicated than the quadrupole
one, and the theory of spherical octupole tensors is even more complicated.
The principal axes of the quadrupole tensor can be determined. However,
for octupole tensors, this is impossible [28]. Taking into account these and
other properties of the octupole collective motion, the Hamiltonian of the
kinetic energy of the octupole motion in curvilinear coordinates is presented
in [28]. In addition, such a Hamiltonian is also presented in [3]. However,
the Hamiltonians obtained in these works are very complex and difficult to
use.

It should be noted that the Hamiltonian we proposed, despite the above-
mentioned shortcomings, is very simple and easy to use. Below are some
examples of its application.
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The Hamiltonian of an even–even nucleus with quadrupole and octupole
deformations in the curvilinear coordinates has the following form:

Ĥ = T̂β2 + T̂β3 + T̂γ + T̂η + T̂rot + V (β2, β3, γ, η) , (46)

where V(β2), V(β3), V(γ), and V(η) are potential energies of β2-, β3-, γ-,
and η-vibrations, separately.

Usually, this problem can be solved by choosing the phenomenological
form of this potential energy. Often, the general form of potential energy is
expressed in the following [29]:

V (β2, β3, γ, η) = V (β2) + V (β3) +
V (γ)

β2
2

+
V (η)

β2
3

. (47)

A general solution to the Schrödinger equation with the operator (46)
has not yet been found. Therefore, the study of collective excitations of the
deformed even–even nuclei is carried out by introducing simplifying assump-
tions.

Hamiltonian (46) can be applied to even–even nuclei with free triaxiality.
Further, if we assume γ = γeff , η = ηeff , then the Bohr Hamiltonian

can be applied to even–even nuclei with effective triaxiality which has the
following form:

Ĥ = − ℏ2

2B2

1

β3
2

∂

∂β2

(
β3
2

∂

∂β2

)
− ℏ2

2B3

1

β3
3

∂

∂β2

(
β3
2

∂

∂β3

)
+

3∑
i=1

ℏ2ϵIτ
4Ji

+ V (β2, β3) , (48)

where ϵIτ is the energy spectrum of the triaxial quadrupole–octupole rigid
rotator [16], τ labels the triaxial rigid rotator states. This Hamiltonian was
applied for the description of the excited collective states of the even–even
nuclei of the lanthanide and actinide region [7, 30].

If we assume that γ = 0, η = 0, and K = 0, then the Bohr Hamilto-
nian can be applied for axially-symmetric even–even nuclei which has the
following form:

Ĥ = − ℏ2

2B2

1

β2
2

∂

∂β2

(
β2
2

∂

∂β2

)
+− ℏ2

2B3

1

β2
3

∂

∂β2

(
β2
2

∂

∂β3

)
+

ℏ2I(I + 1)

6B2β2
2 + 6B3β2

3

+ V (β2, β3) . (49)

This Hamiltonian was applied for the description of the excited collective
states of the even–even nuclei of the lanthanide and actinide region [10–15].
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If we assume that β2 = β2eff , β3 = β3eff , γ = γeff , η = ηeff , we get the
Hamiltonian adiabatic approximation for the rigid rotator [16]

Ĥ =

3∑
κ=1

ω′2
κJ

(3)
κ

2
. (50)

This Hamiltonian was applied for the description of the excited collective
states of the even–even nuclei of the actinide region [16].

4. Conclusion

To describe quadrupole and octupole excitations in even–even nuclei,
a Hamiltonian is used. For ease of analysis, this operator is expressed in
a curvilinear coordinate system. A formulation of the Hamiltonian in curvi-
linear coordinates that takes into account quadrupole deformations has al-
ready been developed previously. In this paper, the kinetic energy of a
deformed nucleus with octupole vibrations of the surface presented in curvi-
linear coordinates is quantized for the first time.

As a result, the exact form of the Hamiltonian for an even–even nucleus
with quadrupole and octupole deformations is obtained. This Hamiltonian
is determined by seven dynamic variables: β2, γ, β3, η, θ1, θ2, θ3.

Some fields of application of the Hamiltonian we proposed are discussed.

The work is financed by the state budget of the Republic of Uzbekistan.
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