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In this paper, we introduced two definitions of N-tuple compound syn-
chronization (NCS) and N-tuple compound combination synchronization
(NCCS) in (2N + 2) and (3N + 2) different chaotic models, respectively.
The analytical formulas for the control functions are derived from two estab-
lished theorems in order to perform these types of synchronization. These
new types of synchronization are considered a generalization of various
types disccussed in the literature. Numerous applications in engineering
and physics may benefit from these new types of synchronization, e.g., im-
age encryption and electronic circuits. Using the active control technique
for the choice N = 5, we study two examples of 5CS and 5CCS in 12 and 17
different chaotic models. The analytical forms of the control functions are
used and good agreement is found. The Runge-Kutta method of order four
is used in our numerical simulations. Other examples can be similarly stud-
ied. We designed an electronic circuit for the proposed N-tuple compound
synchronization in 12 different chaotic models. Using MATLAB/Simulink,
both numerical and simulation results show good agreement. For other
drive models, similar circuit implementations can be created.
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1. Introduction

Chaotic and hyperchaotic models have received increased attention over
the past few decades. Recently, they have many applications in many fields
such as machine learning, data analysis, and biology science [1-4]. As a basic
system of atmospheric convection, Lorenz [5] introduced the first canonical
chaotic attractor. By developing the complex Lorenz models as an exten-
sion of the original Lorenz equations, the authors of [6] opened a way for
investigating complex chaos. The simplified Lorenz model with a single pa-
rameter was proposed by the authors in |7]. For the integer order derivative,
the dynamical characteristics and synchronization of the complex simplified
Lorenz model were examined [8].

The simplified Lorenz system [7] can be expressed as follows:

1 = 10(xe — 1),
o = (24 —da)x) + axe — x123,

T3 = —gacg—l—xlxg, (1)

where the real state variables x1, zo,x3 € R, the real bifurcation parameter
a € R of model (1), and the time derivative is dot.

For a = 2 and the initial conditions (x1,z2,23)T(0) = (0.1,0.2,0.3)T,
system (1) has a chaotic attractor [7] (see Fig. 1).
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Fig.1. Chaotic attractor of model (1) for @ = 2, (a) (x3,z2,21) space and (b)
(1, x3) space.
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The synchronization of hyperchaotic (or chaotic) models is an essential
subject of research in non-linear dynamical models. It has been thoroughly
examined in numerous areas such as image encryption, secure communi-
cation, neural networks, astronomy, economics, ecology, and many more
[9-14]. Two models can simultaneously generate the same signals when
they are in synchronization. This indicates that the error states of syn-
chronized models approach zero. We are motivated by the original tech-
nique presented by [15] to drive two identical models into synchronization.
Several types of synchronization were investigated for integer-order models
such as complete synchronization [15], combination synchronization [16, 17],
combination—combination synchronization [17, 18], compound synchroniza-
tion [19], double compound synchronization [20], compound combination
synchronization [21], double compound combination synchronization [22],
triple compound synchronization [23], and triple compound combination
synchronization [24]. Jahanzaib et al. [25] proposed a novel synchroniza-
tion scheme called quad compound combination anti-synchronization in ten
fractional-order chaotic models. Recently, Khattar et al. [26-29] investi-
gated many other types of synchronization.

The chaotic Rossler model is given by [30]

71 = —Y2 — Y3,

. 2

Y2 = y1+Ey27

. 2

U3 = E+y3(y1—5-7), (2)

where y1,y2,y3 € R are real state variables of model (2).
The chaotic Chen model [31] is

2 = bi(z2 — 21),

2y = (bg —b1)z1 — 2123 + b322,

Z3 = —byzz + 2122, (3)
where the real state variables z1, 20,23 € R and b1,b9,b3 € R are constant

parameters (3).
The chaotic Burke-Show model [32] is

= —p(ur +ug),
Uz = —Ug — puiU3,
us = o+ pujug, (4)

where the real state variables ui,us,u3 € R and p,0 € R are constant
parameters of (4).
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The chaotic Lii model is defined by [33]

01 = ay(ve —v1),
U2 = agvz — V13,
U3 = —agv3 + v1v2, (5)

where the real state variables v1,v2,v3 € R and a1, a9,a3 € R are constant
parameters of (5).

Mahmoud et al. [34] designed a circuit realization for the hyperchaotic
complex Lii systems using MATLAB/Simulink in order to confirm the hy-
perchaotic behaviour. In [35], the viability of the new chaotic model with
a stable fixed point is examined by demonstrating its electronic circuit im-
plementation. Using MATLAB/Simulink, the simulation of the chaotic Chua
system is presented, for more details, see [22]. The authors of [36] designed
an electronic circuit implementation of a chaotic model having stationary
points in the rounded square loop. Furthermore, the implementation of an
electronic circuit of the novel chaotic model with a line of stationary points is
presented, and a very good agreement is demonstrated between the MultiSim
outcomes and the MATLAB simulations of the theoretical model in [37].

Motivated by previous research, this paper aims at proposing two defini-
tions of N-tuple compound synchronization (NCS) and N-tuple compound
combination synchronization (NCCS) in (2N + 2) and (3N + 2) different
chaotic models using an active control technique [38]. To achieve these
kinds of synchronization, we present two theorems to derive the analytical
formulas for the control functions. In the literature, these synchronization
types are regarded as generalizations of many other [19-25]. Using models
(1)=(5), we give two examples of the 5-tuple compound and compound com-
bination synchronization in twelve and seventeen different chaotic models,
respectively. The validity of the analytical control functions is verified us-
ing numerical tests, which show a good degree of agreement between them.
Also, we designed a circuit implementation as an application for the pro-
posed synchronization using MATLAB/Simulink.

Our article is organised as follows: Section 2 contains a definition of NCS
in different chaotic models. The analytical formula for the control functions
is derived from verified theorem. In like manner, we stated the definition of
NCCS in different chaotic models in Section 3. A scheme to achieve NCCS
is given. In Section 4, two examples of N-tuple compound and compound
combination synchronization are given to indicate a very good agreement
between both numerical and analytical results. The electronic circuit of the
proposed synchronization is given in Section 5. We used MATLAB/Simulink
to construct a block diagram and we found a good agreement of numerical
and simulation results of our proposed synchronization. Section 6 contains
the conclusion of our observations.
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2. N-tuple compound synchronization
in (2N + 2) chaotic models

This section presents the layout of a distinct type of NCS using an active
control method. This synchronization type is considered a generalization of
several types described in the literature [19-25]. We give the definition and
scheme of NCS in (2N +2) different chaotic models. We consider the (N +2)
drive models and N response models which, respectively, are

= f(z),

v = 9),
Zi :h(zi), ’i=1,2,...,N, (6)
U :&(ui)—kmi, i:1,2,...,N, (7)
where z = diag(z1,z2,...,2y), y = diag(y1,y2, .-, yn), zi = diag(zi1, 22,
.oy Zin), and u; = diag(wi1, wse, . . ., Uiy ) represent the state matrices of mod-
els (6)—(7). Additionally, f,g,h;, & are (n x n) diagonal continuous func-
tions and m; = diag(mj1, msg, . .., M4y ) are the matrices of control functions,

which depend on x, ¥, z;, u;, ¢ = 1,2,..., N.

Definition 2.1. The NCS in (N + 2) drive models (6) and another N
response models (7) can be achieved if

N
Jim flef| = lim Z; [(Az + By)zi — Cius]|| =0, (8)

where A = diag(a,aq,...,a,), B = diag(b1, b, ..., b,), C; = diag(c;1, o,
...,Cpn) are nonzero constant matrices, the synchronization error is e =
diag(e1,e2,...,ey), and || - || is the matrix norm.

Remark 2.1. For the choice N = 4, the quad compound synchronization
[25] can be obtained.

Remark 2.2. We get the triple compound synchronization [23]| for the
choice N = 3.

Remark 2.3. The double compound synchronization [20] is given, if N = 2,
while we can get the compound synchronization [19] for the choice N = 1.

Remark 2.4. One can obtain the combination synchronization [16, 17], if
N =1 and z; = constant.
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Theorem 2.1. If the control functions are built as follows, the NCS in
(N+ 2) drive models (6) and N response models (7) will be achieved

N N
U:Z Cimi = Ke +Y _ [~Ci&i(ui)+(Af (x)+Bg(y))zi+ (Az+By)hi(z)] ,

i=1
(9)
where the control gain matriz is denoted K = diag(ky, ka, ..., ky).
Proof. Using (8), we get
N
¢ = Y [(Af(2) + Bg(y))zi + (Az + By)hi(z;) — Cii(u;) — Cmy]
i=1
N
= Y [(Af(x) + Bg(y))zi + (Az + By)hi(z) = Ci&i(u)] = U, (10)
i=1
substituting Eq. (9) into Eq. (10), we have
N
Z ) + By(y))zi + (Az + By)hi(z) — Ci&i(wi)] — Ke
Y,
= [=Cii(w) + (Af (@) + Bg(y))zi + (Az + By)hi(2;)], (11)
i=1
then,
¢=—Ke. (12)
A Lyapunov function is defined as follows:
V(t) = ;eZ (13)
then, we get )
V(t)=et=—Ke* = —2KV(t). (14)

The error e(t) — 0 as t — oo, because V(t) is a positive definite and V (t)
is negative definite, and hence the NCS in (N + 2) drive models (6) and N
response models (7) can be done. O

3. N-tuple compound combination synchronization
in (3N + 2) chaotic models

In a similar way, we present the definition and scheme of NCCS in (3N +2)
different chaotic models. The (N + 2) drive models are considered as in
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Egs. (6) and the first N response models are given in Egs. (7), while the
second N response models are

v'i:m(vi)—i—si, 1=1,2,...,N, (15)
where v; = diag(vi1, vi2, . . ., Uin) represent the state matrices of models (15)
and s; = diag(s;1, Si2, - - -, Sin) are the matrices of control functions, which

depend on x,y, z;,u;, v;,1 = 1,2,..., N.

Definition 3.1. The NCCS in (N + 2) drive models (6) and 2N response
models (7) and (15) can be performed if

N
Jim el = Jim |33 (e + Bz~ G = Do | =0, (1)
1=
where D; = diag(di1,d;2, ..., d;,) are nonzero constant matrices.

Remark 3.1. For N = 4, the quad compound combination synchronization
[25] is obtained.

Remark 3.2. By selecting N = 3, the triple compound combination syn-
chronization [24] can be obtained.

Remark 3.3. The double compound combination synchronization [22] is
given, if N = 2, while we can get the compound combination synchronization
[21] for the choice N = 1.

Remark 3.4. One can obtain the combination—combination synchroniza-
tion [18], if N =1 and z; = constant.

Remark 3.5. In the literature, the NCCS is considered a generalization of
various synchronization types, see, e.g., [19-25].

Theorem 3.1. The NCCS in (N+ 2) drive models (6) and 2N response
models (7) and (15) will be done, if the control functions are described as

N
i=1
N
= Ke+Y [=Citi(ui)—Dymi(vi)+(Af (z)+ Bg(y))zi+(Ax+By)hi(z)]
i=1
(17)
where the control gain matriz is denoted K = diag(k1, ke, ..., kn).

Proof. The proof can be written as we did in Theorem 2.1. O
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4. Examples of N-tuple compound,
and compound combination synchronization

Two illustrative examples are presented in this section to show the valid-
ity of our schemes which were investigated in Sections 2 and 3. We choose
N = 5, which gives a 5-tuple compound and compound combination syn-
chronization.

4.1. An example of 5-tuple compound synchronization

In this part, we give an example of the 5-tuple compound synchronization
in twelve models. We consider the first two drive models from Egs. (1)—(2)
and the other five drive models can be written from model (3) as

Zin = bi1(zi2 — zi1) ,
Zio = (biz — bi1)zin — zi12zi3 + bizziz
Zi3 = —binziz + zi1 %2, 1=1,2,...,5, (18)

while five response models can be written from model (4) as follows:

Uin = —pi(uin + wi2) +mr,
Ui = —Ui2 — P13 + M52,
W3 = 0; + Pt +miz, 1=1,2,...,5, (19)

where m; = diag(m;1, mi2, m;3) are the matrices of control functions.

For the choice A = diag(1,2,1), B = diag(l,—2,1), and C; =
diag(7,6,1.5), i = 1,2,...,5, and applying Theorem 2.1, the control func-
tions are

U,

Us
()
>

=1
5
= Z [6(—’[14‘2 — pui1u7;3) — (2((24 — 4a)a:1 + axg — :leg) — 2(y1 + 0.2y2))2¢2]

[=7(p(uir + uiz)) — (10(z2 — 1) — (y2 + y3))zin — bir(x1 + y1)(2i2 — 2i1)]

5
Z [1.5(0‘ + pu“uiz) — (:L‘1:E2 — %733 + 0.2+ y3(y1 — 5.7))213]
i=1

—]C161

5
Do12we — 2y2) ((bis — bi1)zin — zinziz + bizziz)] — koeo

- =1 )

5

S [(ws + y3)(—bizziz + zi12i2)] — kses (20)

i=1
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where U = diag(Uy, Uz, Us) = Zle C;m; is the matrix of control func-
tions, K = diag(ki, k2, k3) is gain control matrix, and e = diag(ey, ea, e3) =
diag(di1, d1a, di3) — diag(ri1,712,713) = diag(Xo_,[(x1 + y1)za — Tual,
S22 — 2y)2i2 — Guia), o5y (w3 + y3) zis — 1.5uss)).

4.1.1. Numerical simulations

In numerical simulations for a« = 2, by; = 40, by; = 3, b3y; = 28,
pi = 10, 0y = 8/3; i = 1,2,...,5, K = diag(3,5,7), and the initial
values for the seven drive models (1)—(2) and (18) and the five response
models (19), respectively, zo = diag(0.1,0.3,1), yo = diag(—0.1,0.5, —0.6),
zp; = diag(0.1,0.3,1), and ug; = diag(0.3,—0.6,2); i = 1,2,...,5, the 5-tu-
ple compound synchronization is performed as depicted in Figs. 2-3. The
state variables after the 5-tuple compound synchronization among the drive
models (1)-(2), and (18) and the response models (19) is shown in Fig. 2.
Figure 3 describes the relationship between the response and drive models,
which is evidently expressed as the line y = x. This means the synchroniza-
tion errors approach zeros.

(@)
1000 T T T T dy-=-ry] | T T T
500 - 1
0 J\{\/\/\’V\WMN“MMWJ\’—A\/WW\/\”\{
-500 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
(b)
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(©
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Fig. 2. The state variables for the 5-tuple compound synchronization for the seven
drive models (1)—(2), and (18) (solid curves) and the five response models (19)
(dashed curves): (a) di; and r11 versus t, (b) di2 and r15 versus t, (c) diz and r13
versus t.
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Fig.3. The 5-tuple compound synchronization results in the seven drive models
(1)=(2), and (18) and the five response models (19): (a) (di1,711) space, (b)
(d12,712) space, (c¢) (di3,713) space.

4.2. An example of 5-tuple compound combination synchronization

In this part, we give an example of the 5-tuple compound combination
synchronization in seventeen models. We consider the seven drive models
(1)=(2) and (18), and the first five response models (19), while the second
five response models can be written from model (5) as

Ui = ai1(vie — vi1) + sit
Vg = Q;3V2 — Vi10;3 + S;2,
Vi3 = —Q;20;3 + V102 + 853, (21)

where s; = diag(s;1, Si2, si3) are the matrices of control functions.

For the same choice of A, B,C; as in Subsection 4.1 and D; =
diag(7,6,1.5), i = 1,2,...,5, and applying Theorem 3.1, we can write the
control functions (17) as

Uy
Us

5
Azl[7(*P(u7‘,1 +ui2) + a1 (viz — 1)) — (10(x2 — w1) — (y2 +¥3))zi1 — bin (w1 + y1)(zi2 — 2i1)]
i=

5

= _21[6(—W2 — puj1uiz + ai3vi2 — vi1v3) — (2((24 — da)zy + aze — x123) — 2(¥1 + 0.292))242]
i=
5
121[1-5(0 + puiruiz — ;203 + vi1v2) — (1112 — 823 +0.24ys(y1 — 5-7)) ;3]
i=
—kiey

5

’21[(212 —2y2)((big — bi1)zi1 — zi12:3 + bizzi2)] — kaea
- 1= y
(22)

5
VZI[(Ws +y3)(=biz2ziz + 2i12:2)] — k3es
=
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5

where U = diag(Uy, U, Us) = > (Cim;+ D;s;) is the matrix of control func-
i=1

tions, K = diag(ky, k2, k3) is gain control matrix, and e = diag(ey, ez, e3) =

5
diag(dai, do2, dog) — diag(ra1, rog, rog) = diag( D [(x1 + y1)zi1 — 7(ui1 + vi1)],
i=1

5
(222 — 2y2)zi2 — 6(us2 + vi2)], D [(w3 + y3)2zi3 — 1.5(wiz + v43)]).
i=1 i=1

4.2.1. Numerical simulations

In numerical simulations, for the same initial values and the same pa-
rameters for the seven drive models (1)—(2) and (18) which were used in Sub-
section 4.1 except K = diag(1, 2, 3) and the initial values of the ten response
models (19) and (21) up; = vo; = diag(—0.14,-0.43,6.7); i = 1,2,...,5, the
5-tuple compound combination synchronization is done as seen in Figs. 4-5.
Figure 4 indicates the 3D space of state variables after the 5-tuple compound
combination synchronization in the drive models (1)-(2) and (18), and the
response models (19) and (21). The synchronization errors approach zeros
as illustrated in Fig. 5.

Remark 4.1. Further examples of N-tuple compound and compound com-
bination synchronization can be similarly studied.

(@) (b)
1000 1000 -
500 500
g 0. 5 0
-500 -500 -
-1000.] -1000
4000 - = 4000 - [ o
. <" 1000 . <" 1000
2000 0 2000 - o
N~ -1000 S -1000
0 -2000 0 -2000
d23 dgg T23 7922

Fig.4. The 5-tuple compound combination synchronization of: (a) the seven drive
models (1)—(2) and (18) in (daz,das,d21) space, and (b) the ten response models
(19) and (21) in (T22,7’23,T21) space.
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Synchronization errors

2 | I |
0 5 10 15 20

t

Fig.5. The 5-tuple compound combination synchronization errors for the drive
models (1)—(2), and (18) and the response models (19) and (21).

5. Circuit implementation of the 5-tuple compound
synchronization (5CS)

We designed a circuit implementation for the 5-tuple compound synchro-
nization of twelve models. The circuit for one model is presented in detail,
while the circuits for the remaining eleven are omitted to avoid repetition,
as they are functionally identical. An electronic circuit for the chaotic sim-
plified Lorenz model (1) is designed, see Fig. 6, which is one of five drive
models of 5CS (see Subsection 4.1). The simulation results of this circuit
are compared with the numerical ones of Section 1 (Fig. 1). The circuit
equations with their parameters take the form

1

Tr1 = ClRl (35'2 —l‘l) N
. 1 n 1 1
T = x T — 1T
> 7 Ry ' T CyRy? T CuRy Y
. -1 1
xr3 — 12 . (23)

C3R5 3 C3Rg

The circuit has three channels that are used to add, subtract, and in-
tegrate the state variables x1, xo, and x3. The state voltages of the three
channels are represented by these variables. The values of circuit elements
which correspond to model (1) with the same parameters values as in Fig. 1,
are Ry = 0.005 kQ, Ry = 0.00416 k€2, R3 = 0.03333 k2, R4 = 0.06667 kS2,
Rs = 0.075 k2, Rg = 0.2 kQ2, R = 10 k€2, and the capacitors are C; = 20 uF,
Cy = 15 pF, and C3 = 5 pF. Figure 6 shows the circuit implementation
of model (23), the output of this circuit is the solution of model (23). The
block diagram simulation is illustrated in Fig. 7. The numerical solution
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in Fig. 1 agrees with the equivalent simulation observations of the chaotic
simplified Lorenz model (23), as seen in Fig. 8. Similarly, we can design
circuit implementation for the other five drive models.

C "
R I
X2 M
R
R R
X WY
fb_ X7
Cz’
R
XJ; - i A ————

2
R

R
R S
1
R
X2 _"\‘—; “'E'{ ’—w—“ X2
R

R
P X X
X3 o G
Il
Rs L

X3 M

R
X R & R
b b %

Fig.6. Circuit diagram of the chaotic simplified Lorenz model (23).

Subiract3

Fig.7. Block diagram of the chaotic simplified Lorenz model (23) using MAT-
LAB/Simulink.
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0 L L L
20 -10 0 10 20
I

Fig. 8. Simulation observations of model (23) for the same parameters as in Fig. 1:
(a) (z3,x2,21) space and (b) (z1,x3) space.

Additionally, MATLAB/Simulink provided the 5-tuple compound syn-
chronization results, which are displayed in Figs. 9-10. Figure 9 shows
the same results as Fig. 2, while Fig. 10 indicates the synchronization errors

a
1000 d( )

500

=l

-500

>
~
-
=)

8 10 12 14 16 18 20
(b)

2000

-2000

=3
(]
-
=
o«

10 12 14 16 18 20
(Y
5000 d( )

=
N
-
=)
o«

10 12 14 16 18 20

t

Fig.9. Simulation observations of the 5-tuple compound synchronization for the
seven drive models (1)—(2) and (18) (solid curves), and the five response models (19)
(dashed curves): (a) di; and 717 versus t, (b) di2 and 715 versus t, (¢) di3 and 713
versus t.
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which go to zeros as in Fig. 3. This means that there is a good agreement
between the results of Figs. 9-10 and 2-3. Similar results for 5CCS can be
calculated in the similar way as for 5CS.

(a)

€1

€2
N = o =

- o = o

€3

[ SRR

Fig.10. Simulation observations of the 5-tuple compound synchronization errors
for the seven drive models (1)—(2) and (18), and the five response models (19): (a)

(t761)7 (b) (t’ 62), (C) (tve3)‘

6. Conclusions

The definitions 2.1 and 3.1 of the N-tuple compound synchronization
(NCS) and N-tuple compound combination synchronization (NCCS) are in-
troduced. Theorems 2.1 and 3.1 are presented to give us the analytical
expressions of control functions (9) and (17) to achieve NCS and NCCS,
respectively. The comparisons between the two proposed kinds of synchro-
nization and the previous work are shown in Remarks 2.1-2.4 and 3.1-3.5.
These kinds of synchronization may be useful in a wide range of engineering
and physics applications, including electronic circuits and image encryp-
tion. As special cases, we present two examples of the 5-tuple compound
and 5-tuple compound combination synchronization in twelve and seventeen
models depending on models (1)—(5). Very good agreement between numer-
ical and analytical results is demonstrated, see Figs. 2-5. The electronic
circuit for the chaotic simplified Lorenz model (1) is designed as shown in
Fig. 6. Good agreement between the simulation observations of this circuit
and the numerical solutions is found.

This study is supported via funding from Prince Sattam bin Abdulaziz
University, Saudi Arabia project number (PSAU/2025/R1447).
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