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This paper discusses multi-particle production in QCD and in gravity
at ultrarelativistic energies, their double-copy relations, and strong paral-
lels in emergent shockwave dynamics. Dispersive techniques are applied
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tices and reggeized propagators satisfying double-copy relations; in gravity,
Weinberg’s soft theorem is recovered as a limit of the Lipatov framework.
BFKL evolution in QCD generates wee parton states of maximal occupancy
characterized by an emergent semi-hard saturation scale. Renormaliza-
tion group equations in the Color Glass Condensate (CGC) EFT describe
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multi-particle production described by Cutkosky’s rules in strong time-
dependent fields. Gluon radiation in the CGC EFT has a double copy in
gravitational shockwave collisions, with a similar correspondence applicable
between gluon and graviton shockwave propagators. Possible extensions of
this semi-classical double copy are outlined for computing multi-particle
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1. Introduction

An outstanding problem in QCD is to arrive at a first principles un-
derstanding of 2 → n multi-particle production at collider energies. The
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
and the Large Hadron Collider (LHC) at CERN are multi-particle factories,
with a single heavy-ion collision generating thousands of subatomic particles.
In this deeply Lorentzian regime of the theory, nonperturbative Euclidean
methods are invalid. The bulk of the multi-particle spectrum at colliders is
ultrasoft, with transverse momenta p⊥ < ΛQCD, where perturbative QCD
is inapplicable. This is an embarrassment in praxis1 even for this “nearly
perfect” quantum field theory since we have limited reliable access to a vast
phase space of rich many-body quark–gluon phenomena2. However, with
increasing ultrarelativistic center-of-mass energies (

√
s ), the hadron spec-

trum broadens with average ⟨p⊥⟩ > ΛQCD. Since the underlying gluon and
quark degrees of freedom generating this spectrum are significantly harder,
the parton picture is increasingly viable, and due to asymptotic freedom,
fully robust for p⊥ →

√
s.

These transitions are cleaner in deeply inelastic scattering (DIS) experi-
ments, where one has independent control over the resolution3 (Q2) and the
center-of mass energy. Precision DIS experiments at HERA show that at
fixed large Q2 (where the QCD coupling αs(Q

2) ≪ 1), the inclusive cross
section grows rapidly with decreasing Björken xBj ≈ Q2/s, which, like Q2,
is a Lorentz scalar. In Feynman’s parton model, xBj ∼ x≪ 1, the longitudi-
nal momentum fraction of a “wee” struck parton. Thus, with decreasing x,
one has access to a 2 → n regime (albeit spacelike), where weak coupling
methods may be employed.

The paradigmatic approach in this “small-x Regge asymptotics” is the
Balitsky–Fadin–Kuraev–Lipatov (BFKL) framework that provides a system-
atic approach to multi-particle production when n≫ 1. Since the number of
Feynman diagrams explode factorially with n, it is truly remarkable that any
sort of quantitative approach is reliable, a feat achieved by BFKL through
powerful application of dispersive methods, and systematic resummation of
leading contributions in x at each order in perturbation theory. There are
many subtleties and caveats to be attached to this approach, but they too
can be quantified. We will attempt in this contribution to elucidate the

1 A Greek word, whose meaning in this context can be translated as the “desire for
active engagement and purposeful endeavor” of physicists with experiment.

2 This comment is also relevant for the phase diagram of QCD at finite temperatures
and baryon chemical potentials.

3 Its equivalent in the language of 2 → 2 + n amplitudes is the Mandelstam variable
t ≡ (p1 − ℓ0)

2, where ℓ0 is the momentum of one of the incoming particles after the
collision — see Fig. 1.
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BFKL approach to 2 → n scattering, outline its regime of validity, and de-
scribe the rich many-body physics that emerges when the framework breaks
down as x→ 0.

Equally strikingly, the BFKL paradigm has a quantitative counterpart
in 2 → n gravitational scattering in the trans-Planckian regime. This was
worked out in a pair of remarkable papers by Lipatov more than 40 years
ago, who showed that the dispersive methods developed for QCD apply
identically to gravity in the ultrarelativistic regime. Further, Lipatov noticed
a double copy between the effective vertices in QCD and in gravity that are
the fundamental objects in the construction of 2 → n amplitudes. This work
predates the observation by Kawai, Lewellen, and Tye (KLT) [1] of a double
copy between the Yang–Mills theory and Einstein gravity in the low-energy
limit of string theory, and the subsequent explosion of interest in double
copies, and their relevance for gravitational radiation, following the seminal
work of Bern, Carrasco, and Johansson (BCJ) that we will briefly discuss
later.

Implicit in Lipatov’s work is the understanding that the ultrarelativistic
limit of Weinberg’s soft graviton theorem arises as a limit of his framework,
providing a smooth extension of this theorem to the regime where Mandel-
stam t is not ultrasoft. This realization connects his work to the burgeoning
literature on “celestial amplitudes”, spelling out the “triangle” of connections
between soft theorems, asymptotic symmetries, and memory effects, as first
shown by Strominger to be generic both to gauge theories and gravity. Li-
patov understood further that his 2 → n scattering amplitude results for
both QCD and gravity could be recast as an effective field theory (EFT),
whose dynamics is captured by the interaction of emergent reggeon degrees
of freedom with gluons and gravitons, respectively. Identical conclusions for
gravity from the perspective of trans-Planckian superstring amplitudes were
reached by Amati, Ciafaloni, and Veneziano (ACV) who employed this EFT
description to great effect in quantifying classical and quantum contribu-
tions to scattering amplitudes. We will discuss some aspects of their work
in this paper.

All of the aforementioned work provides essential insight into a first prin-
ciples S-matrix approach, as articulated by ’t Hooft, to the problem of black
hole formation in quantum field theory. Important ingredients, as we will
discuss, are t-channel fractionation and s-channel classicalization, leading to
a dominantly classical picture, with subleading quantum corrections that are
relevant for black hole formation and subsequent evaporation. In particular,
some elements of the Lipatov construction have a much smaller window of
applicability in gravity than in QCD, which others remain important in the
emergent classical framework; this subtlety is sometimes a source of confu-
sion.
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The emergent paradigm, both in QCD (in Regge asymptotics) and in
gravity, is of shockwave scattering and multi-particle production in these
collisions. In QCD, this dynamics is captured in a Color Glass Condensate
(CGC) EFT which incorporates essential features of the BFKL framework.
This is a theory of stochastic static (large x) color sources coupled to dy-
namical (small x) gauge fields; small-x operators are computed for each
static configuration of color charges, and averaged over with a nonpertur-
bative gauge-invariant weight functional (density matrix) containing non-
trivial information on large-x modes. Shockwave propagators are computed
from semi-classical fluctuations in the CGC background. With this, leading
αs ln(1/x) ∼ O(1) contributions can be extracted and summed to all orders.
This summation is described by renormalization group (RG) equations for
the rapidity evolution of lightlike Wilson line correlators, which capture the
many-body dynamics of wee parton correlations. The BFKL equation re-
sults from taking a low parton density limit of the RG equation for two-point
correlators.

In gravity, we will show similarly to QCD that the Lipatov vertex emerges
in shockwave scattering. Likewise, shockwave propagators satisfy a double-
copy relation. Thus emboldened, we can extend our double-copy insights
to multi-particle production. In doing so, we make use of a systematic
dilute–dilute, dilute–dense, and dense–dense power counting scheme, where
one expands in ratios of densities of the shockwave sources relative to the
impact parameter corresponding to inelastic emissions. This ordering, com-
bined with the ultrarelativistic limit of shockwave scattering, allows us for
some measure of analytic insight into radiation that occurs in the strong-field
regime. In the dilute–dense approximation, one should be able to compute
rescattering contributions, in particular self-force and tidal effects that for-
mally appear at high order in the standard post-+++ expansion. In the
dense–dense shockwave scattering regime, as in QCD, analytical computa-
tions may not be feasible; nevertheless, numerical simulations in this EFT
framework may be more computationally efficient than full-blown numerical
relativity simulations.

From a conceptual perspective, the holy grail would be to follow the
2 → n framework all the way through black hole formation and evaporation.
A key element, which we touch on briefly is congruence of null geodesics
resulting from copious inelastic production and rescattering of gravitons in
the strong-field regime. Classically, this is described by the Raychaudhuri
equation, and a useful goal would be an RG-based understanding of this
equation and how quantum effects influence it. This line of inquiry may
be valuable in the search for quantum imprints on gravitational radiation.
Ironically, the search at colliders in the context of 2 → n scattering is the
identification of a robust many-body semi-classical QCD regime.
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Finally, we should emphasize the limited scope of this paper, with our
focus being on the weakly coupled strong-field regimes of QCD and gravity.
These regimes, of course, do not exist in isolation from the genuinely strongly
coupled regimes of both theories. A powerful approach towards making
progress in strongly coupled gauge theories is the well-known AdS/CFT cor-
respondence [2] and its many descendants. In the context of 2 → n scatter-
ing, particularly noteworthy is the BPST framework of Brower, Polchinski,
Strassler, and Tan [3–5], which has spawned a significant literature. There is
much common ground to explore, in particular in the context of holography,
and in general features of scattering amplitudes, that may be universal to
strong-field dynamics irrespective of coupling strength and matter content.
Similarly, in gravity, there is a vast literature on Planck scale physics — for
a sense of the various strands in the literature, we refer the reader to the
compilation of viewpoints in [6]. Another loose strand in our coverage is the
connection of our work to quantum information science. We have addressed
this briefly in the concluding section but clearly this topic deserves a more
comprehensive treatment.

2. 2 → 2 + n processes in the Regge limit of QCD

In this section we will discuss the radiation of gluons within the high-
energy scattering framework of Fadin, Kuraev, and Lipatov [7], and of Bal-
itsky and Lipatov [8], together known by the acronym BFKL. Their work
made use of dispersive techniques; we will largely follow this approach in the
present section. Our treatment is strongly influenced by and complements
excellent other reviews on BFKL [9–12]. We will focus on the leading-
logarithm approximation to 2 → n scattering amplitudes in multi-Regge
kinematics. There is a considerable body of work on BFKL at next-to-
leading-logarithmic accuracy that we will only discuss briefly. For a recent
state-of-the-art review, we refer the reader to [13]. Subsequent to our discus-
sion of the derivation of the BFKL equation and a discussion of its solution,
we will discuss the breakdown of the BFKL framework and the emergent
phenomenon of gluon saturation. The latter is described in the Color Glass
Condensate (CGC) effective field theory, which will be discussed at length
in Section 4.

2.1. Diagrammatic approach to BFKL

The discussion here, and in the following subsections, will demonstrate
that the imaginary part of the elastic scattering amplitude of two gluons
in the QCD Regge limit is dominated in the leading log s approximation
by uncrossed “effective” ladder diagrams, where the vertices of the ladder
are nonlocal “Lipatov” vertices instead of bare 3-point vertices, with the
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internal dominant t-channel propagators corresponding to the exchange of
reggeized gluons. The color singlet projection of the exchange of two t-chan-
nel reggeized gluons is called the BFKL pomeron. The structure of the
corresponding 2 → 2+n inelastic amplitude (half-ladder) is shown schemat-
ically in Fig. 1.

p1 ℓ0

ℓ1

ℓ2

ℓn

p2 ℓn+1

···

Fig. 1. Multi-gluon production amplitude in multi-Regge kinematics depicting the
two key components in BFKL renormalization group evolution of the cross section
with rapidity: (1) The dark blobs represent the nonlocal Lipatov effective vertices,
and (2) the thick vertical gluon lines represent t-channel reggeized gluon propa-
gators incorporating all-order (leading logarithmic in x) virtual corrections. The
external lines can be any source of glue.

We begin by evaluating the elastic gluon–gluon scattering amplitude in
the Regge regime to leading-logarithmic accuracy. The latter is a kinematic
approximation which is defined as

αs ln(1/xi) ∼ 1 , αs ≪ 1 , (2.1)

where αs = g2/4π, with g the QCD coupling. Referring to Fig. 1, xi is the
longitudinal momentum fraction xi ∼ |ℓi|/

√
s of the ith emitted gluon, with

transverse momenta ℓi, and the squared center-of-mass energy s = 2p1 · p2.
In the Regge asymptotics of BFKL, one assumes that

√
s ≫ |ℓn| ≫ ΛQCD,

where ΛQCD is the intrinsic QCD scale; in these kinematics, one can evaluate
scattering amplitudes via Feynman diagrams where only leading-logarithmic
contributions in αs ln(1/xi) are retained.
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With this in mind, the computation of such terms can be reduced to the
computation of the s-channel discontinuities of scattering amplitudes4. For
the 2 → 2 amplitude, the discontinuity is given in terms of its imaginary
part by

−iDiscsA2→2 = 2 ImA2→2

=

∞∑
n=0

∫
d
(
P.S.n+2

) ∑
color,

polarizations

A2→n+2({k})A†
2→n+2({k − q}) ,

(2.2)

where q is the total momentum transfer in the amplitude A2→2 and {k}
denotes the momentum labels of the exchanged gluons in the ladder. Here,
the sum extends over all possible intermediate states n and A2→n+2 is the
amplitude for the 2 → n+ 2 transition. The factor d(P.S.n+2) corresponds
to the phase space density of the n intermediate particles; we will define
it explicitly and simplify it in multi-Regge kinematics (MRK) shortly in
Section 2.2.1. From the discontinuity on the l.h.s., one can reconstruct the
full amplitude to the required leading-log accuracy by the replacement

s logn
(s
t

)
→ − 1

πi(n+ 1)
s logn+1

(
−s
t

)
. (2.3)

For n = 0, this gives the usual identity (we take the branch cut of the
logarithm along the positive real axis)

Im log

(
−s
t

)
=

1

2
Discs log

(
−s
t

)
=

1

2
lim
ε→0

(
log

(
−s
t

+ iε

)
− log

(
−s
t

− iε

))
= −iπ .

For higher n, the exact result for the discontinuity is

1

2
Discs log

n+1

(
−s
t

)
=

1

2
lim
ε→0

(
logn+1

(
−s
t

+ iε

)
− logn+1

(
−s
t

− iε

))
=

1

2

(
logn+1

(s
t

)
−
(
log
(s
t

)
+ 2πi

)n+1
)
. (2.4)

Since in the Regge limit we have log(s/t) ≫ 1, the last equality can be
expanded to leading order as −πi(n+ 1) logn(s/t) [7, 10].

4 For a recent modern introduction to the general properties of the analytic S-matrix,
we refer readers to [14].
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We will first study the 2 → 2 scattering of gluons. The incoming gluons
carrying momentum p1 and p2, along with respective helicities λ1 and λ2,
scatter into final-state gluons with momenta p3 = p1−q and p4 = p2+q, with
respective helicities λ′1 and λ′2. As we will discuss shortly, elastic scattering
in the Regge regime (defined as s ≫ −t, where s = (p1 + p2)

2 and t = q2)
proceeds via the exchange of a color singlet object called the pomeron that
carries the quantum number of the vacuum. Since the elementary gluon
constituents of QCD carry color charge in the adjoint (octet) representation
of SU(3) color, the lowest order contribution that gives rise to pomeron
exchange is the one-loop contribution shown in Fig. 2 (b) and (c).

a
p1 ℓ0

p2 ℓ1

k

(a)

p1
a b

p2

ℓ0

ℓ1

k q − k

(b)

p1
a b

p2

ℓ0

ℓ1

(c)

Fig. 2. 2 → 2 gluon scattering amplitude at order g2 and g4. Figure (a) represents
the leading order one-gluon exchange Born diagram. Figures (b) and (c) are the
O(g4) two-gluon exchanges that give the lowest order contribution to color-singlet
pomeron exchange.

These diagrams have an imaginary part that can be computed using
Cutkosky rules. First, we need the tree-level Born amplitude in the Regge
limit, shown in Fig. 2 (a). This can be evaluated as follows. Recall that the
three-point gluon vertex can be expressed as

Γαα′a
µµ′ρ = −igfαα′a

(
ηµµ′ (−p1 − ℓ0)ρ + ηµρ (k + p1)µ′ + ηµ′ρ (ℓ0 − k)µ

)
= −igfαα′a

(
ηµµ′ (−p1 − ℓ0)ρ + ηµρ (2k + ℓ0)µ′ + ηµ′ρ (p1 − 2k)µ

)
,

(2.5)
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where ηµν is the metric tensor of Minkowski spacetime. The convention used
here is that the momentum p1 is incoming and ℓ0 and k = p1 − ℓ0 outgoing.
Since the external particles have high energies, their momenta undergo only
small changes in the scattering. Taking the momenta of the external particles
at the vertex to be p1 and ℓ0, we can get rid of the k dependence in the above
formula. Further, since the momenta p1 and ℓ0 are on-shell in the Born
amplitude, the contributions proportional to pµ1 and ℓµ

′
0 can be omitted since

they ultimately vanish upon contracting with polarization tensors ϵµ(p1) and
ϵµ′(ℓ0). We then have

Γαα′a
µµ′ρ ≈ 2igfαα

′cηµµ′p1,ρ . (2.6)

Similarly, the eikonal vertex associated with the second particle with mo-
mentum p2 is 2igfββ

′a′ηνν′p2,ρ′ . Sewing together the two vertices via the
gluon propagator (in Feynman gauge) δaa′gρρ′/(k2 + iϵ) gives the following
result for the Born amplitude in the Regge limit:

Aµµ′νν′
0,αα′ββ′(s, t) = 2g2

(
s

−t

)
ηµµ

′
ηνν

′
(G0)αα′ββ′ . (2.7)

Here, s = 2p1 · p2, t = −k2 = −(p1 − ℓ0)
2, T a

αα′ = ifaαα′ , and (G0)αα′ββ′ ≡
(T a⊗T a)αα′ββ′ =

∑
a T

a
αα′T a

ββ′ is the associated color factor with α, β, α′, β′

being the color indices of the incoming and outgoing gluons. To avoid clutter,
we will suppress the Lorentz and color indices on Aµµ′νν′

0,αα′ββ′ when these labels
are self-explanatory.

In order to compute the imaginary part of the diagrams in Fig. 2 (b)
and (c), we use Eq. (2.2) in a systematic perturbative expansion of the r.h.s.
Towards this end, we begin with the (n = 0) explicit expression for the
2-body phase space integral∫

d
(
P.S.2

)
=

∫
d4ℓ0
(2π)3

δ
(
ℓ20
) d4ℓ1

(2π)3
δ
(
ℓ21
)
(2π)4 δ(4) (p1 + p2 − ℓ0 − ℓ1) .

(2.8)
Next, performing the change of integration variables,

ℓ0 = p1 − k , ℓ1 = p2 + k , (2.9)

the phase space measure becomes∫
d
(
P.S.2

)
=

1

(2π)2

∫
d4k δ

[
(p1 − k)2

]
δ
[
(p2 + k)2

]
. (2.10)

We further introduce a “Sudakov decomposition” for the k momenta

k = ρp1 + λp2 + k⊥ , (2.11)
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where the Sudakov parameters ρ and λ are bounded between (0, 1) and
(−1, 0), respectively. From this decomposition, we see that

d4k =
s

2
dρdλ d2k . (2.12)

Note that here p1 = (p+1 , 0, 0, 0) and p2 = (0, p−2 , 0, 0), with s = 2 p+1 p
−
2 . Us-

ing the on-shell condition for ℓ0 and ℓ1, the phase space measure in Sudakov
variables can be expressed as∫

d
(
P.S.2

)
=

s

2 (2π)2

∫
dρdλ d2k δ

[
−sλ(1− ρ)− k2

]
δ
[
sρ(λ+ 1)− k2

]
.

(2.13)
In the MRK regime, the leading-logarithmic contributions in x come from
the regions of integration corresponding to

1 ≫ ρ ∼ k2

s
, 1 ≫ |λ| ∼ k2

s
. (2.14)

Therefore, the 2-body phase space measure in these kinematics can be ap-
proximated by∫

d
(
P.S.2

)
=

s

2 (2π)2

∫
dρdλ d2k δ

(
−sλ− k2

)
δ
(
sρ− k2

)
. (2.15)

Further, using

Aλ1λ′′
1λ2λ′′

2
2→2,αα′′ββ′′(s, t) = Aµµ′′νν′′

0,αα′′ββ′′(s, t)ϵ
λ1
µ ϵ

λ′′
1

µ′′ϵ
λ2
ν ϵ

λ′′
2

ν′′ , (2.16)

and the polarization sum
∑

ζ ϵ
ζ
µϵ

ζ
ν = −ηµν , we find that the imaginary part

of Fig. 2 (b), as given by Eq. (2.2), is

ImAµµ′νν′
I =

g4

(2π)2
s3ηµµ

′
ηνν

′
GI

×
∫

dρdλd2k δ
(
−sλ− k2

)
δ
(
sρ− k2

) 1

k2(q − k)2
. (2.17)

Here, GI ≡ (T aT b)⊗ (T aT b) (in terms of color indices: GI,αα′ββ′ =
∑

abα′′β′′

T a
αα′′T b

α′′α′T a
ββ′′T b

β′′β′). From this expression, a consequence of the delta-
function constraints in Regge asymptotics is −ρλs ≪ k2 which, in turn,
implies k2 ≈ −k2, (k − q)2 ≈ −(k − q)2, and t = −q2. Hence,

ImAµµ′νν′
I = g4

s

t
ηµµ

′
ηνν

′
GI

∫
d2k

(2π)2
−q2

k2(q − k)2
. (2.18)
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From this, one can reconstruct the complete amplitude in Fig. 2 (b) using
Eq. (2.3)

Aµµ′νν′
I =

g4

π

s

t
log

(
s

−t

)
ηµµ

′
ηνν

′
GI

∫
d2k

(2π)2
−q2

k2(q − k)2
. (2.19)

Similarly, the amplitude in Fig. 2 (c) is

Aµµ′νν′
II =

g4

π

u

t
log

(
u

−t

)
ηµµ

′
ηνν

′
GII

∫
d2k

(2π)2
−q2

k2(q − k)2
, (2.20)

where GII = (T aT b)⊗ (T bT a). The total amplitude at this order is the sum
of AI and AII.

To compute the pomeron exchange contribution to the elastic ampli-
tude, we need to project these amplitudes onto the singlet representation
for which we take the traces of GI and GII as GI → Tr(T aT b) Tr(T aT b) and
GII → Tr(T aT b) Tr(T bT a). After this projection, the two color factors are
clearly identical. Therefore, the real parts of the amplitudes I and II cancel
between the s- and u-channel contributions (after using u ≈ −s in the Regge
limit), and we are just left with the imaginary part. Hence, the lowest order
contribution to the elastic (pomeron exchange) amplitude is given by

A(0),µµ′νν′ = iN2
c

(
N2

c − 1
)
g4
s

t
ηµµ

′
ηνν

′
∫

d2k

(2π)2
−q2

k2(q − k)2
, (2.21)

where we used Tr(T aT b) = Ncδab. Note that at this order in the coupling,
the imaginary part of the amplitude grows as s. At higher orders in the
coupling that we turn to next, this behavior get corrected by log(s) terms.

At next order in perturbation theory, the imaginary part of the elas-
tic amplitude for color singlet exchange receives (a) purely real, and (b)
the interference of real and virtual contributions. To extract the real con-
tribution to the imaginary part of the amplitude at this O(g6), we need to
compute the amplitude for the incoming gluons with momenta p1, p2 to scat-
ter into a gluon of momentum ℓ0 = p1 − k1, a second gluon of momentum
ℓ2 = p2 + k2, and the third with momentum ℓ1 = k1 − k2. The Feynman
graphs that contribute to this gg → ggg process are shown in Fig. 3. Notice
that, in principle, there can be diagrams that involve 4-gluon interaction
terms. The only such diagrams at this order are the ones where the 4-point
vertices are associated with the external lines. However, because these ver-
tices do not carry any energy factors, their contribution is suppressed in the
Regge limit5.

5 We will discuss subleading contributions later in this section. We will see in the next
section on gravity in the Regge limit that such diagrams do contribute (see Fig. 24)
to the construction of the gravitational Lipatov vertex because 3- and 4-point vertices
in gravity contribute with the same power of the energy.
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p1 ℓ0

ℓ1

p2 ℓ2

(a)

p1 ℓ0

ℓ1

p2 ℓ2

(b)

p1 ℓ0

ℓ1

p2 ℓ2

(c)

p1 ℓ0

ℓ1

p2 ℓ2

(d)

p1 ℓ0

ℓ1

p2 ℓ2

(e)

Fig. 3. Feynman graphs for the gg → ggg process that contribute to the imaginary
part of the 2-to-2 scattering at order g6.

As previously for the 2 → 2 case, we now need the 3-body phase space
measure in order to compute the imaginary part at order g6. We shall
compute below this measure in a way that is naturally generalizable to the
n-body phase space measure which will be useful later. The three-body
phase space measure is∫

d
(
P.S.3

)
=

∫ 2∏
i=0

[
d4ℓi
(2π)3

δ
(
ℓ2i
)]

(2π)4δ(4)

(
p1 + p2 −

2∑
i=0

ℓi

)
. (2.22)

The momenta ℓi correspond to the momenta of the produced on-shell gluons,
as shown in Fig. 3. We first integrate over ℓ2, which results in

∫
d
(
P.S.3

)
=

∫ 1∏
i=0

[
d4ℓi
(2π)3

δ
(
ℓ2i
)]

2πδ

[p1 + p2 −
1∑

i=0

ℓi

]2 . (2.23)

We next perform the change of integration variables

ℓ0 = p1 − k1 , ℓ1 = k1 − k2 , ℓ2 = p2 + k2 . (2.24)

The phase space measure in ki variables then becomes∫
d
(
P.S.3

)
=

1

(2π)5

∫
d4k1 d

4k2 δ
[
(k1 − k2)

2
]
δ
[
(p1 − k1)

2
]
δ
[
(p2 + k2)

2
]
.

(2.25)
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Introducing, as previously, the Sudakov decomposition for the ki momenta
ki = ρip1+λip2+ki⊥, with d4ki =

s
2dρi dλi d

2ki, and the on-shell conditions
ℓ20 = ℓ21 = ℓ22 = 0, the phase space measure in terms of Sudakov variables
can be expressed as∫

d
(
P.S.3

)
=

s2

4(2π)5

∫ 2∏
i=1

dρi dλi d
2ki δ

[
−sλ1(1− ρ1)− k2

1

]
×δ
[
sρ2(λ2 + 1)− k2

2

]
δ
[
s(ρ1 − ρ2)(λ1 − λ2)− (k1 − k2)

2
]
.

(2.26)

In the MRK regime, the leading-logarithmic contributions in x come from
the regions of integration,

1 ≫ ρ1 ≫ ρ2 ∼
k2

s
, 1 ≫ |λ2| ≫ |λ1| ∼

k2

s
, (2.27)

where k is a generic transverse momentum whose magnitude is much smaller
than

√
s. We combine the above with the delta-function constraints, we get

k2
1/s = |λ1| ≈ k2/s which implies k2

1 ≈ k2. Similarly, we find that k2
2 ≈ k2

which follows from k2
2/s = ρ2 ≈ k2/s. Therefore, we can approximate all

transverse momenta in the delta-function as k2
1 ≈ k2

2 ≈ (k1 − k2)
2 ≈ k2.

The 3-body phase space measure, in turn, can be approximated as∫
d
(
P.S.3

)
=

s2

4 (2π)5

∫ 2∏
i=1

dρi dλi d
2kiδ

[
−sλ1 − k2

]
×δ
[
sρ2 − k2

]
δ
[
−ρ1λ2s− k2

]
. (2.28)

Having computed the 3-body phase space measure, we now need the
expression for the amplitude A2→3. This is achieved through the explicit
evaluation of the five graphs in Fig. 3. Using the commutation relation
[T a, T b] = ifabcTc, the contribution from Fig. 3 (a) and (b) in the kinematic
regime corresponding to Eq. (2.27) is

−2ig3s
2pσ1

k2
2λ2s

fabcT
a ⊗ T bgµµ′gνν′ . (2.29)

Likewise, the contribution from Fig. 3 (c) and (d) is

−2ig3s
2pσ2
k2
1ρ1s

fabcT
a ⊗ T bgµµ′gνν′ . (2.30)

Finally, Fig. 3 (e) gives

−2ig3s

k2
1k

2
2

[ρ1p
σ
1 + λ2p

σ
2 − (k1 + k2)

σ
⊥] gµµ′gνν′fabcT

a ⊗ T b . (2.31)



11-A1.14 H. Raj, R. Venugopalan

Adding up all the contributions, we arrive at the following expression for the
A2→3 amplitude:

Aµµ′νν′σ
2→3,b (k1, k2) = −2ig3s

k2
1k

2
2

ηµµ
′
ηνν

′
facbT

a ⊗ T cCσ(k1, k2) . (2.32)

Here, Cσ(k1, k2) is the effective “central gluon emission vertex” (also known
as the Lipatov vertex) illustrated in Fig. 4, and is given by

Cµ(k1, k2) = −(k1 + k2)
µ + pµ1

(
ρ1 +

2k2
1

λ2s

)
+ pµ2

(
λ2 +

2k2
2

ρ1s

)
. (2.33)

p1

p2

Cµ(k1, k2)

k1

k2
k1 − k2

Fig. 4. The nonlocal central gluon emission Lipatov vertex, represented by the
black blob.

The contribution of these real graphs to ImA(1)
1 , the imaginary part of

the 2 → 2 amplitude at order g6, is then given by

ImA(1)µµ′νν′
1 =

1

2

∫
d
(
P.S.3

) ∑
color,

polarizations

Aµν
2→3(k1, k2)A

µ′ν′†
2→3 (k1 − q, k2 − q) ,

(2.34)
where

Aµν,λ0λ1λ2
2→3 (k1, k2) = Aµµ′′νν′′σ

2→3,b ϵλ0
µ′′ϵ

λ1
σ ϵ

λ2
ν′′(k1, k2) . (2.35)

The sum over the color factors gives (with the trace taken to obtain the
color singlet projection)

Tr (TaTb) Tr (TcTd) facefbde ≡ G
(1)
0 = N3

c

(
N2

c − 1
)
. (2.36)

Performing the integration over λi and ρi (the lower limit of ρ2 integration
being k2/s), one finds
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ImA(1)µµ′νν′
1 = −Ncg

6

2π
ηµµ

′
ηνν

′
G

(1)
0 s ln

(
s

k2

)
×
∫

d2k1

(2π)2
d2k2

(2π)2

[
q2

k2
1k

2
2 (k1 − q)2 (k2 − q)2

− 1

k2
1 (k1 − k2)

2 (k2 − q)2
− 1

k2
2 (k1 − q)2 (k1 − k2)

2

]
.

(2.37)

We will now compute the contribution of the interference terms (shown
in Fig. 5) to the imaginary part of the 2 → 2 amplitude. Using the results
from the computation of previous order diagrams, the contribution to the
imaginary part from these diagrams is

ImA(1)µµ′νν′
2 = −Ncg

6

4π
ηµµ

′
ηνν

′
G

(1)
0 s ln

(
s

k2

)
×
∫

d2k1

(2π)2
d2k2

(2π)2

[
1

k2
1 (k1 − k2)

2 (k2 − q)2
+

1

k2
2 (k2 − k1)

2 (k1 − q)2

]
.

(2.38)

The second term in this expression comes from the diagrams where we cut
the amplitude with the one-gluon exchange contribution to the left of the
cut.

p1

p2

k1 k1 − k2 k2 − q

(a)

p1

p2

(b)

Fig. 5. Cut Feynman graphs contributing to ImA at order g6.

Combining the two contributions A(1)
1 and A(1)

2 , the full expression at
order g6, to leading-logarithmic accuracy, is

ImA(1)µµ′νν′ = −Ng
6

2π
ηµµ

′
ηνν

′
G

(1)
0 s ln

(
s

k2

)∫
d2k1

(2π)2
d2k2

(2π)2

×
[

q2

k2
1k

2
2 (k1 − q)2 (k2 − q)2

− 1

2

1

k2
1 (k1 − k2)

2 (k2 − q)2

−1

2

1

k2
2 (k1 − q)2 (k1 − k2)

2

]
. (2.39)
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As noted earlier, we see that the imaginary part of the 2 → 2 amplitude at
order g6 has s log(s) behavior. The BFKL equation we will discuss below
resums these logarithms to all orders in the coupling.

Before discussing higher-order contributions, it will be convenient to in-
troduce the Mellin transform of the imaginary part of the 2 → 2 amplitude
at order r

∞∫
1

d

(
s

k2

)(
s

k2

)−ℓ−1 ImA(r)µµ′νν′(s, t)

s

≡ 4iα2
sη

µµ′
ηνν

′
G

(1)
0

∫
d2k1 d

2k2

k2
2 (k1 − q)2

fr+1 (ℓ,k1,k2, q) . (2.40)

Here, the Mellin amplitude fr+1(ℓ,k1,k2, q) at order r is a function of the
variable ℓ which is conjugate to the Mandelstam variable s. From our pre-
vious computations, we find that the Mellin amplitude for the first two
nontrivial orders is given by

f1 (ℓ,k1,k2, q) =
1

ℓ
δ(k1 − k2) ,

f2 (ℓ,k1,k2, q) = − ᾱs

2π

1

ℓ2

[
q2

k2
1 (k2−q)2

− 1

2

1

(k1−k2)
2

(
1 +

k2
2 (k1−q)2

k2
1 (k2−q)2

)]
,

(2.41)

where ᾱs = Nαs/π.
In Section 2.4, we will write down the recursive BFKL integral equation

which computes the Mellin amplitude to all orders including the leading-
logarithmic contributions from all the intermediate particle cuts that con-
tribute to the imaginary part of the 2 → 2 gluon scattering amplitude. To-
wards this end, we will first assemble the machinery to evaluate higher-order
contributions. This requires the n-body phase space associated with multi-
particle cuts in Regge asymptotics, and the generalization of the leading
contributions of n-particle amplitudes, to all orders at leading-logarithmic
accuracy, to obtain the structure of the effective ladder diagram of the type
shown in Fig. 1.

2.2. Higher-order contributions and the BFKL ladder
2.2.1. The n-particle phase space in multi-Regge asymptotics

Recall that the contribution to the imaginary part of the 2 → 2 amplitude
due to n+ 2 intermediate particle exchange is
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ImA2→2 =

∞∑
n=0

1

2

∫
d
(
P.S.n+2

) ∑
color,

polarizations

A2→n+2 ({k})A†
2→n+2 ({k} − q) ,

(2.42)
where d(P.S.n+2) is the measure for the (n+ 2)-body phase space given by

∫
d
(
P.S.n+2

)
=

∫ n+1∏
i=0

[
d4ℓi
(2π)3

δ
(
ℓ2i
)]

(2π)4δ(4)

(
p1 + p2 −

n+1∑
i=0

ℓi

)
.

(2.43)
The momenta ℓi correspond to the momenta of the produced on-shell gluons;
they are related to the kis (represented by {k}) by the change in integration
variables generalizing Eq. (2.24). Following the method outlined in the pre-
vious analysis, we need to approximate this measure in the MRK regime in
order to obtain the leading-log contribution. The MRK regime is defined as

1 ≫ ρ1 ≫ ρ2 ≫ · · · ≫ ρn+1 ∼
k2

s
,

1 ≫ |λn+1| ≫ |λn| ≫ · · · ≫ |λ1| ∼
k2

s
. (2.44)

As mentioned previously, k is a generic transverse momentum whose mag-
nitude is much smaller than

√
s.

The n-body phase space measure, approximated thus, reads as∫
d
(
P.S.n+2

)
≈ sn+1

2n+1 (2π)3n+2

×
∫ n+1∏

i=1

dρi dλi d
2ki δ

[
−sλ1 − k2

1

]
δ
[
sρn+1 − k2

n+1

]
×

n∏
i=1

δ
[
−sρiλi+1 − (ki − ki+1)

2
]
. (2.45)

Performing the integrals in the λis, we get6∫
d
(
P.S.n+2

)
≈ 1

2n+1(2π)3n+2

×
∫ n∏

i=1

(
dρi
ρi

d2ki

)
dρn+1 d

2kn+1δ
[
sρn+1 − k2

]
. (2.46)

6 In the expressions that we will encounter henceforth, the integrand will not be a
function of λi; it is sufficient to order the longitudinal momenta as fractions xi of p+1 .
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Equipped with this formula for the multi-particle phase space, we will now
turn to compute the contribution of the n+ 2 intermediate particles to the
imaginary part of the 2 → 2 amplitude.

2.2.2. Generalization of the 2 → 3 amplitude to 2 → 2 + n in multi-Regge
kinematics

In the previous subsection, we computed the imaginary part of the 2 → 2
amplitude up to O(g6). We shall now generalize this analysis to all orders,
restricting the discussion to real contributions alone; diagrammatically, this
corresponds to generalizing Fig. 4 to n-gluon emissions. The generalization
involving the virtual contributions will be dealt with in Section 2.4.

We recall that the structure of Fig. 4 with the central gluon emission
Lipatov vertex follows from summing over the five Feynman graphs in Fig. 3.
The generalization that we seek is the one where there are n additional
gluons emitted in multi-Regge kinematics. As noted, formally they appear
to be suppressed in fixed-order perturbation theory. However, the presence
of large logs in xn provide O(1) contributions at each order. Performing this
generalization using Feynman diagrams will be extremely cumbersome. An
efficient alternative approach is that of dispersive techniques that rely on
results at prior orders. Before considering the general n-emissions case, we
will first present this alternative derivation for the Lipatov vertex (n = 1
case).

We begin with the observation that the result for the 2-to-2 gluon ampli-
tude with a single-gluon exchange in the t-channel [15–17] can be expressed
as

Aαα′ββ′
2→2,p1+p2→ℓ0+ℓ1

= Γαα′c
p1ℓ0

g2s

t
Γ ββ′c
p2ℓ1

, (2.47)

where the vertex Γ is given by [11]

Γαα′c
p1ℓ0 = −

√
2ifαα

′c
(
−gµµ′ +

p2,µp1,µ′ + p2,µ′ℓ0,µ
p2 · p1

+ (p1 − ℓ0)
2 p2,µp2,µ′

2(p2 · p1)2

)
×ϵµ(p1)ϵµ

′
(ℓ0) . (2.48)

Since this is not a standard expression, it will be useful to understand how
it is derived. First, we need the expression of the three-point gluon vertex
in the eikonal approximation. This was derived earlier in Eq. (2.6) to be

Γ abc
µµ′ρ ∼ 2igfabcηµµ′p1,ρ . (2.49)

We next contract this vertex with polarization vectors. For the polarizations
associated with incoming and outgoing gluons, we will impose the gauge
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where ϵ(p1) · p2 = ϵ′(ℓ0) · p2 = 0 as follows:

ϵ(p1) → ϵ̃(p1) = ϵ− p2 · ϵ
p2 · p1

p1 , ϵ′(ℓ0) → ϵ̃ ′(ℓ0) = ϵ′ − p2 · ϵ′

p2 · ℓ0
ℓ0 . (2.50)

Finally, the magnitude of the polarization vector of the exchanged gluon
with momenta p1 − ℓ0 is given by

√
2p2/s. (We will discuss why this is the

case further below.) Contracting these polarization vectors with the vertex
in Eq. (2.49) gives

Γ abc
p1ℓ0 ≡ 1

g
Γ abc
µµ′ρϵ̃

µϵ̃′µ
′
√
2p ρ

2

s

= 2ifabc
(
ϵ · ϵ′ − (p2 · ϵ′)(ℓ0 · ϵ)

p2 · ℓ0
− (p2 · ϵ)(p1 · ϵ′)

p1 · p2
+

(p2 · ϵ)(p2 · ϵ′)
(p1 · p2)(p2 · ℓ0)

p1 · ℓ0
)

×
√
2p1 · p2
s

,

=
√
2ifabc

(
gµν −

p2νℓ0µ
p2 · ℓ0

− p2µp1ν
p1 · p2

+
p2µp2ν

(p1 · p2)(p2 · ℓ0)
p1 · ℓ0

)
ϵµϵ′ν ,

= −
√
2ifabc

(
−gµµ′+

p2µp1µ′+p2µ′ℓ0µ
p2 · p1

+(p1−ℓ0)2
p2µp2µ′

2(p2 · p1)2

)
ϵµ(p1)ϵ

µ′
(ℓ0) .

(2.51)

To arrive at the last equality, we performed the following steps:

(1) relabeled the Lorentz indices,

(2) used the approximation p2 · ℓ0 ≈ p2 · p1,

(3) used the fact that −p1 · ℓ0 = 1
2(p1 − ℓ0)

2, and finally,

(4) wrote ϵ′µ′ as ϵµ′
(ℓ0) to avoid clutter in the formulas.

This completes the derivation of Eq. (2.48).
In the Regge limit, where the center-of-mass energy s = 2p1 · p2 is much

larger than any other scale, the formula in Eq. (2.47) reduces to the Born
amplitude (using T a

αα′ = ifaαα′) given in Eq. (2.7). We will repeatedly using
the expression in Eq. (2.47).

Consider now the 2 → 3 amplitude in Fig. 4 with the incoming particles
labeled by p1, p2 and the outgoing particles labeled by their momenta ℓi,
i = 0, 1, 2, where ℓ1 = k1 − k2 is the momentum of the additional emitted
particle. The residue of the 1/k22 pole of the amplitude A, denoted by Pk22

A,
is

Pk22
Aαα′ββ′δ′

2→2+1 = Aαα′c2δ′
p1+(−k2)→ℓ0+ℓ1

sg2Γ ββ′c2
p2ℓ2

. (2.52)
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Here, Aαα′c2δ′
p1+(−k2)→ℓ0+ℓ1

is the 2 → 2 amplitude in which k2 is the cut (on-
shell) gluon with momentum k2, as depicted in Fig. 6 (left), whose polariza-
tion vector is replaced by

√
2p2/s. (As noted, the reason for this replacement

will be clarified at the end of the subsection.) The minus sign in front of k2 is
there because it is an outgoing momentum from the central emission vertex.
Then using Eq. (2.47), we obtain

Aαα′c2δ′
p1+(−k2)→ℓ0+ℓ1

= gΓαα′c1
p1ℓ0

(p1 − k2)
2

k21

×
[
−

√
2igf c2δ

′c1

(
−gµν +

−p1,µk2,ν + p1,νℓ1,µ
−p1 · k2

+ (−k2 − ℓ1)
2 p1,µp1,ν
2(p1 · k2)2

)
×ϵµ(−k2)ϵν(ℓ1)

]
(2.53)

using in addition Eq. (2.48). Since (p1−k2)2 ≈ −λ2s (a valid approximation
in the MRK regime), collecting all terms together, we get

Pk22
Aαα′ββ′δ′

2→2+1 = −
√
2ig3

−λ2s
k21

sΓαα′c1
p1ℓ0

Γ ββ′c2
p2ℓ2

f c2δ
′c1

×
(
−gµν +

−p1,µk2,ν + p1,νℓ1,µ
−p1 · k2

+ (−k2 − ℓ1)
2 p1,µp1,ν
2(p1 · k2)2

)
ϵµ(−k2)ϵν (ℓ1) .

(2.54)

Next, substituting ϵµ(−k2) →
√
2pµ2/s,

Pk22
Aαα′ββ′δ′

2→2+1 = −2ig3
−λ2
k21

sΓαα′c1
p1ℓ0

Γ ββ′c2
p2ℓ2

f c2δ
′c1

×
(
−p2,ν +

(p1 · p2)k2,ν − (ℓ1 · p2)p1,ν
p1 · k2

+ k21
(p1 · p2)
2(p1 · k2)2

p1,ν

)
ϵν(ℓ1) . (2.55)

p1, α ℓ0, α
′

ℓ1, δ
′

p2, β ℓ2, β
′

k1 c1

k2 c2

k2 c2

(a)

p1, α ℓ0, α
′

ℓ1, δ
′

p2, β ℓ2, β
′

k1 c1

k1 c1

k2 c2

(b)

Fig. 6. Cut diagrams that contribute to pole reconstruction of the Lipatov vertex
in the 2 → 3 amplitude.
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Pulling in −2λ2 through the parenthesis, and identifying λ2 = p1·k2
p1·p2 , gives

Pk22
Aαα′ββ′δ′

2→2+1 = −ig3 s
k21
Γαα′c1
p1ℓ0

Γ ββ′c2
p2ℓ2

f c2δ
′c1

×
(
2p2,ν

p1 · k2
p1 · p2

− 2k2,ν + 2
ℓ1 · p2
p1 · p2

p1,ν −
k21

p1 · k2
p1,ν

)
ϵν(ℓ1) . (2.56)

Finally, using (k1−k2) ·ϵλ′(ℓ1) = 0 and p1 ·ℓ1 ≈ −p1 ·k2 (recall ℓ1 = k1−k2),
we get

Pk22
Aαα′ββ′δ′

2→2+1 = −ig3 s
k21
Γαα′c1
p1ℓ0

Γ ββ′c2
p2ℓ2

f c2δ
′c1

×
(
−2p2,ν

p1 · ℓ1
p1 · p2

− (k1 + k2)ν + 2
ℓ1 · p2
p1 · p2

p1,ν +
k21

p1 · ℓ1
p1,ν

)
ϵν(ℓ1) . (2.57)

In the same manner, one can perform the computation of the residue of the
1/k21 pole of the A2→2+1 amplitude shown in Fig. 6 (right), with the result

Pk21
Aαα′ββ′δ′

2→2+1 = ig3
s

k22
Γαα′c1
p1ℓ0

Γ ββ′c2
p2ℓ2

f c1δ
′c2

×
(
2p1,ν

p2 · ℓ1
p1 · p2

− (k1 + k2)ν − 2
ℓ1 · p1
p1 · p2

p2,ν −
k22

p2 · ℓ1
p2,ν

)
ϵν(ℓ1) . (2.58)

From the results in Eq. (2.57) and Eq. (2.58), one can read off the simul-
taneous residue of the 1/(k21k

2
2) pole. The reconstructed amplitude then

reads

Aαα′ββ′δ′
2→2+1 = ig3

s

k21k
2
2

Γαα′c1
p1ℓ0

Γ ββ′c2
p2ℓ2

f c1δ
′c2Cν(k1, k2)ϵ

ν(ℓ1) , (2.59)

where Cν(k1, k2) is

Cν(k1, k2) = −(k1 + k2)ν + p1,ν

(
2p2 · ℓ1
p1 · p2

+
k21

p1 · ℓ1

)
−p2,ν

(
2p1 · ℓ1
p1 · p2

+
k22

p2 · ℓ1

)
, (2.60)

which is precisely the expression for the covariant form of the Lipatov ver-
tex. Indeed, performing the Sudakov decomposition of k1,2 reveals that this
expression is identical to the result we obtained in Eq. (2.33) from explicit
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computation of the relevant Feynman diagrams

Cν(k1, k2) ≈ −(k1 + k2)ν − ρ1p1 − λ2p2 + 2p1,ν

(
ρ1 +

k2
1

λ2s

)
+2p2,ν

(
λ2 +

k2
2

ρ1s

)
= −(k1 + k2)ν + p1,ν

(
ρ1 +

2k2
1

λ2s

)
+ p2,ν

(
λ2 +

2k2
2

ρ1s

)
. (2.61)

We note that this method of reconstructing the 2 → 3 amplitude from its
pole structure leaves some ambiguity in the amplitude since there is the
freedom to add a term proportional to k21k22. Analyticity and dimensional
analysis fix the largest possible such contribution to be either proportional
to k21k22p1/(ℓ0 · ℓ1)2 or k21k22p2/(ℓ2 · ℓ1)2. Since these contributions are small
in the MRK regime, their addition to the 2 → 3 amplitude do not contribute
to leading order processes.

The aforementioned method of computing the effective Lipatov vertex
can now be generalized to the case of two gluon emissions that we discuss
next [7]. The effective (half) ladder in the n = 2 case is shown in Fig. 7. As in
the n = 1 case, this effective diagram comes from summing over several bare
Feynman graphs. A small subset is shown in Fig. 8. As is clear, the sum over
all such 2 → 4 Feynman diagrams (even in the Regge limit) is a laborious
task. Instead, as we will now discuss, the use of dispersive techniques is far
more efficient and can be extended to higher order in n.

As before, we label the incoming gluons by their momenta p1, p2 and the
outgoing gluons ℓi, i = 0, 1, 2, 3. Here, ℓ1,2 are the additional produced glu-
ons. First, we seek to determine the residue of the k23 pole of the amplitude
associated with the bottom vertical gluon in Fig. 7. This pole is given by
(for example, the leftmost figure in Fig. 9)

Pk23
Aαα′ββ′δ1δ2

2→2+2 = Aαα′c3δ1δ2
p1+(−k3)→ℓ0+ℓ1+ℓ2

gsΓ ββ′c3
p2ℓ3

. (2.62)

p1 ℓ0

ℓ1

ℓ2

p2 ℓ3

Fig. 7. The effective (half) ladder for two gluon production in the MRK regime.
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Fig. 8. A subset of bare Feynman graphs that contribute to the effective diagram for
two gluon production in Fig. 7. Here, MRK is to be understood as the red gluon
being of a smaller rapidity than the emitted gluon in black. The last diagram
(along with any crossed diagram) is subleading in the MRK regime and does not
contribute in the leading-log approximation. See the discussion in Section 2.2.3.

p1, α ℓ0, α
′

ℓ1, δ1

ℓ2, δ2

p2, β ℓ3, β
′

k1 c1

k2 c2

k3 c3

k3 c3

(a)

p1, α ℓ0, α
′

ℓ1, δ1

ℓ2, δ2

p2, β ℓ3, β
′

k1 c1

k1 c1

k2 c2

k3 c3

(b)

p1, α ℓ0, α
′

ℓ1, δ1

ℓ2, δ2

p2, β ℓ3, β
′

k1 c1

k2 c2

k2 c2

k3 c3

(c)

Fig. 9. Cut diagrams that contribute to a pole reconstruction of two Lipatov vertices
in the 2 → 4 amplitude.

Here, Aαα′c3δ1δ2
p1+(−k3)→ℓ0+ℓ1+ℓ2

is the 2 → 3 amplitude for which we computed
the answer above — we just need to replace p2 → −k3 appropriately. As
a result, one obtains (the sum over c1 and c2 is implied below)
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Aαα′c3δ1δ2
p1+(−k3)→ℓ0+ℓ1+ℓ2

= −sλ3g
2

k21k
2
2

Γαα′c1
p1ℓ0

γc2δ1c1(k1, k2)
(
−
√
2igf c3δ2c2

)
×
(
−gµµ′ +

−p1,µk3,µ′ + p1,µ′ℓ2,µ
−p1 · k3

+ (−k3 − ℓ2)
2 p1,µp1,µ′

2(p1 · k3)2

)
ϵµ(−k3)ϵµ

′
(ℓ2) ,

(2.63)

where λ3 is the Sudakov decomposition parameter associated with k3 and
γc2δ1c1(k1, k2) is defined as

γc2δ1c1(k1, k2) ≡ if c2δ1c1Cν(k1, k2)ϵ
ν(ℓ1) . (2.64)

Following the same steps as previously, we can simplify this expression fur-
ther

Aαα′c3δ1δ2
p1+(−k3)→ℓ0+ℓ1+ℓ2

= − ig3

k21k
2
2

Γαα′c1
p1ℓ0

γc2δ1c1(k1, k2)f
c3δ2c2

×
[
−(k2 + k3)µ′ + p1µ′

(
ρ2 −

2k22
λ3s

)
+ λ3p2µ′

]
ϵµ

′
(ℓ2) .

(2.65)

Therefore, the net result for the residue of the 1/k23 pole of the A2→2+2

amplitude is

Pk23
Aαα′ββ′δ1δ2

2→2+2 = − ig4s

k21k
2
2

Γαα′c1
p1ℓ0

γc2δ1c1(k1, k2)f
c3δ2c2Γ ββ′c3

p2ℓ3

×
[
−(k2 + k3)µ′ + p1µ′

(
ρ2 −

2k22
λ3s

)
+ λ3p2µ′

]
ϵµ

′
(ℓ2) .

(2.66)

In a similar manner, we can determine the residue of the 1/k21 pole to be

Pk21
Aαα′ββ′δ1δ2

2→2+2 =
ig4s

k22k
2
3

Γαα′c1
p1ℓ0

γc3δ2c2(k2, k3)f
c1δ1c2Γ ββ′c3

p2ℓ3

×
[
−(k1 + k2)µ′ + p2µ′

(
λ2 −

2k22
ρ1s

)
+ ρ1p1µ′

]
ϵµ

′
(ℓ1) .

(2.67)

Finally, we need to compute the residue of the 1/k22 pole (rightmost diagram
in Fig. 9)

Pk22
Aαα′ββ′δ1δ2

2→2+2 = Aαα′c2δ1
p1+(−k2)→ℓ0+ℓ1

sAββ′c2δ2
k2+p2→ℓ2+ℓ3

. (2.68)

The two 2-to-2 subamplitudes Aαα′c2δ1
p1+(−k2)→ℓ0+ℓ1

and Aββ′c2δ2
k2+p2→ℓ2+ℓ3

can be
written in a manner similar to Eq. (2.47)
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Aαα′c2δ1
p1+(−k2)→ℓ0+ℓ1

= g2Γαα′c1
p1ℓ0

(p1 − k2)
2

k21
Γ c2δ1c1
−k2ℓ1

,

Aββ′c2δ2
k2+p2→ℓ2+ℓ3

= g2Γ c2δ2c3
k2ℓ2

(p2 + k2)
2

k23
Γ ββ′c3
p2ℓ3

, (2.69)

where (after some simplification) the subamplitudes read

Aαα′c2δ1
p1+(−k2)→ℓ0+ℓ1

= Γαα′c1
p1ℓ0

−g
k21

[
igf c2δ1c1

(
λ2p2,µ′ − (k1,µ′ + k2,µ′)

+ρ1p1,µ′ − 2k21
sλ2

p1,µ′

)
ϵµ

′
(ℓ1)

]
,

Aββ′c2δ2
k2+p2→ℓ2+ℓ3

= Γ ββ′c3
p2ℓ3

g

k23

[
igf c2δ2c3

(
ρ2p1,µ′ − (k2,µ′ + k3,µ′)

+λ3p2,µ′ − 2k23
sρ2

p2,µ′

)
ϵµ

′
(ℓ2)

]
. (2.70)

Collecting all terms together and substituting these in Eq. (2.68), we obtain
the residue of the 1/k22 pole of the Aαα′ββ′δ1δ2

2→2+2 amplitude to be

Pk22
Aαα′ββ′δ1δ2

2→2+2 = − sg2

k21k
2
3

Γαα′c1
p1ℓ0

Γ ββ′c3
p2ℓ3

×
[
igf c2δ1c1

(
λ2p2,µ′ − (k1,µ′ + k2,µ′) + ρ1p1,µ′ − 2k21

sλ2
p1,µ′

)
ϵµ

′
(ℓ1)

]
×
[
igf c2δ2c3

(
ρ2p1,µ′ − (k2,µ′ + k3,µ′) + λ3p2,µ′ − 2k23

sρ2
p2,µ′

)
ϵµ

′
(ℓ2)

]
. (2.71)

Now, examining the results in Eqs. (2.66), (2.67), and (2.71), we can read
off the simultaneous pole in 1/(k21k

2
2k

2
3). The final result for the 2 → 2 + 2

MRK amplitude is

Aαα′ββ′δ1δ2
2→2+2 = − sg2

k21k
2
2k

2
3

Γαα′c1
p1ℓ0

Γ ββ′c3
p2ℓ3

×
[
igf c2δ1c1

(
−(k1,µ′+k2,µ′) + p1,µ′

[
ρ1 −

2k21
sλ2

]
+

[
λ2 −

2k22
ρ1s

]
p2,µ′

)
ϵµ

′
(ℓ1)

]
×
[
igf c2δ2c3

(
−(k2,µ′+k3,µ′) + p2,µ′

[
λ3 −

2k23
sρ2

]
+ p1,µ′

[
ρ2 −

2k22
λ3s

])
ϵµ

′
(ℓ2)

]
=

sg4

k21k
2
2k

2
3

Γαα′c1
p1ℓ0

γc1δ1c2(k1, k2)γ
c2δ2c3(k2, k3)Γ

ββ′c3
p2ℓ3

. (2.72)

This neat (and compact) result is what is shown diagrammatically in Fig. 7.
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The above method can be straightforwardly generalized to the A2→2+n

MRK amplitude and we find that the result is of the same form as those in
Eqs. (2.59) and (2.72). The n Lipatov vertices are sandwiched between the
external vertices Γ along with the associated propagators

Aαα′ββ′δ1...δn
2→n+2 =

sgn+2∏n+1
i=1 k

2
i

Γαα′c1
p1ℓ0

(
n∏

i=1

γciδici+1(ki, ki+1)

)
Γ

ββ′cn+1

p2ℓn+1
, (2.73)

where the relation of γciδici+1 to the Lipatov vertex was specified in Eq. (2.64).
The amplitude is represented by the Feynman ladder graph shown in Fig. 10
with bare gluon propagators being exchanged in the t-channel and effective
Lipatov vertices for each emitted gluon. This ladder compactly sums n! bare
Feynman graphs (with bare three-point gluon vertices), albeit only those cor-
responding to the leading contributions in MRK7. In the remainder of this
section, we will discuss yet another elegant proof8.

In Fig. 10, there are n + 1 intermediate propagators (igµν/k
2
i ), (i= 1,

. . . , n+1). Consider cutting the ith propagator, as we discussed previously.
This separates the amplitude A2→2+n(p1, k1, k2, . . . kn+1, p2) into two parts:
Mµ(p1, k1, k2, . . . ki) and N ν(ki, ki+1, . . . kn+1, p2) as depicted in Fig. 11.
Since the ith gluon was cut, and therefore on-shell, the subamplitudes Mµ

and N µ satisfy the Ward identities

kiµMµ(p1, k1, k2, . . . ki) = 0 , kiµN µ(ki, ki+1, . . . kn+1, p2) = 0 . (2.74)

In addition, these subamplitudes satisfy the identities

p1µMµ(p1, k1, k2, . . . ki) = 0 , p2µN µ(ki, ki+1, . . . kn+1, p2) = 0 . (2.75)

7 Equation (2.73) is an expression for a 2 → 2 + n tree-level gluon amplitude with
arbitrary helicity configurations for the external gluons. When considering maximally
helicity-violating (MHV) configurations, the tree-level gluon amplitude for arbitrary
kinematics is described by the Parke–Taylor formula [18]. The MRK limit of the
Parke–Taylor amplitude was obtained in [19] and it was further demonstrated in
[20] that this limit coincides with the MHV projection of the tree-level amplitude in
Eq. (2.73).

8 A general method for constructing 2 → 2+n tree-level gluon amplitudes is the off-shell
current method of Berends and Giele [21], resulting in recursion relations for n-point
tree-level gluon amplitudes in terms of lower point amplitudes; a proof of the Parke–
Taylor formula [18] for MHV amplitudes that we noted earlier is obtained in this
approach. An alternative on-shell framework is that of Britto–Cachazo–Feng–Witten
(BCFW) [22, 23], where the recursion relations of the n-point tree-level amplitudes
are given in terms of sum over products of lower point on-shell tree-level amplitudes
convoluted with off-shell propagators sandwiched in the product. The construction
we discuss here [24] appears to be the MRK limit of this framework. For further
reviews on these topics, see [25–27].
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(p1 α) (ℓ0 α′)

(p2 β) (ℓn+1 β′)

σ1

σi−1

σi

σn

(ℓ1 b1)

(ℓi−1 bi−1)

(ℓi bi)

(ℓn bn)

k1 a1

k2 a2

ki−1 ai−1

ki ai

ki+1 ai+1

kn an

kn+1 an+1

Fig. 10. Tree-level multi-gluon production amplitude in multi-Regge kinematics.
Black blobs represent the nonlocal Lipatov effective vertices.

Mµ

p1

p2

N ν

ki µ

ki ν

Fig. 11. Illustration of the 2 → n+2 amplitude A2→2+n(p1, k1, k2, . . . kn+1, p2) fac-
torized into two subampitudes Mµ(p1, k1, k2, . . . ki) and N ν(ki, ki+1, . . . kn+1, p2)

separated by a cut propagator represented by the horizontal dashed line.
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These identities are satisfied in the eikonal approximation where Mµ (N µ) is
proportional to the largest momenta pµ1 (pµ2 ), with the subleading corrections
suppressed by the magnitudes of these momenta.

Further, taking advantage of the Sudakov decomposition of kµi , we obtain

ki⊥µMµ(p1, k1, k2, . . . ki) = −λi p2µMµ(p1, k1, k2, . . . ki) ,

ki⊥νN ν(ki, ki+1, . . . kn+1, p2) = −ρi p1ν N ν(ki, ki+1, . . . kn+1, p2) . (2.76)

As a next step in the derivation, we observe that inside the full 2 → n+2
amplitude A2→n+2, the subamplitudes Mµ and N ν were glued together via
the numerator gµν of the uncut propagator. In the eikonal approximation,
where we retain only the piece proportional to the external momenta, Mµ

is contracted with the largest piece of N µ (pµ2 ); likewise, N ν is contracted
with the largest piece of Mν (pν1). This implies that the numerator of the
uncut propagator can be replaced by gµν → 2pµ1p

ν
2/s, with the factor 2/s to

ensure unit normalization of the metric. (Note that since
∑

pol ϵ
µϵν ∼ gµν ,

the aforementioned eikonal counting is what was responsible for the replace-
ments of the polarization vectors by p1,2/

√
s earlier in this subsection.) Now,

using Eq. (2.76), this replacement can be reexpressed as

gµν →
2ki⊥µki⊥ν

λiρis
. (2.77)

Stated more transparently, we assign a factor of
√

2/s ki⊥µ/λi with
the vertex at the top end of an intermediate gluon line and a factor of√

2/s ki⊥ν/ρi with the vertex at the bottom end of the intermediate gluon
line. Since the index i corresponding to the cut is arbitrary in this discus-
sion, the argument can be repeated for any of the intermediate gluon lines.
As a result, the A2→2+n amplitude can be expressed as

Aµνµ′σ1...σnν′
2→2+n = 2ig2+nsηµµ

′
ηνν

′
Gn(b1, . . . , bn)

i

k2
1

n∏
i=1

i

k2
i+1

2kµi

i⊥k
νi
i+1⊥

2λi+1ρis

×
[
gµiνi(−ki−ki+1)

σi+gσi
µi
(2ki−ki+1)νi+g

σi
νi (2ki+1−ki)µi

]
,

(2.78)

where we used the bare three-point gluon vertex and Gn(b1, . . . bn) is the
color factor

Gn(b1, . . . bn) = T a1 ⊗ T an+1

n∏
i=1

faiai+1bi , (2.79)

with all the a-type indices contracted. The factor
2k

µi
i⊥k

νi
i+1⊥

2λi+1ρis
associated with

the vertex i comes from the replacement in Eq. (2.77) of the two vertical gluon
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propagators that are adjacent to the vertex. The factor
√

2/s ki⊥µ/λi comes
from the ith propagator and the factor

√
2/s ki+1⊥ν/ρi+1 comes from the

(i + 1)th propagator. Next, inserting the Sudakov decomposition for the
ki, it is straightforward to show that (up to additive terms proportional to
ki − ki+1)

2kµi

i⊥k
νi
i+1⊥

λi+1ρis

[
gµiνi(−ki − ki+1)

σi + gσi
µi
(2ki − ki+1)νi + gσi

νi (2ki+1 − ki)µi

]
= Cσi(ki, ki+1) , (2.80)

where Cσi is the effective Lipatov vertex in QCD given in Eq. (2.33). Plug-
ging this expression back into Eq. (2.78), we recover the Born-level MRK
amplitude for 2 → 2 + n scattering in Eq. (2.73). This is striking because
it implies that if one takes the standard three-gluon vertex and projects on
it the above-mentioned specific form of the eikonal polarization vectors, one
recovers the Lipatov vertex!

As we will see later in Section 4, the filled black rectangles in Fig. 11 will
be mapped to the classical color charge densities in the CGC framework,
and the iterative procedure described above can likewise be mapped onto
the Wilsonian renormalization group evolution of these classical sources,
described by the BFKL equation. The latter framework also includes vir-
tual corrections to the Born amplitude, which we will discuss shortly in
Section 2.4. Further, as we will discuss in Section 4, the CGC framework
allows one to go beyond BFKL when the source densities become large and
nonperturbative.

2.2.3. Other possible diagrams which are subleading in the Regge limit

In the preceding discussion on the construction of the BFKL ladder,
we did not consider all the tree-level diagrams that could possibly con-
tribute to the n-gluon final state. Here, we will see that the contribution
from diagrams that we ignored are subleading in multi-Regge kinematics.
One such diagram is the cross-ladder diagram shown in Fig. 12 represent-
ing the ith segment of the uncrossed- and crossed-ladder diagrams. In the
uncrossed case, this segment of the ladder is proportional to the product of
two Lipatov vertices Cσi−1Cσi . This product, when expanded out, yields
several tensor factors. For instance, the term proportional to p

σi−1

1 pσi
2 in

the product scales as ρi−1λi+1p
σi−1

1 pσi
2 . We can compare this piece in the

product with the corresponding factor in the crossed-ladder diagram, pro-
portional to (ρ2i /ρ

2
i−1) ρi−1λi+1 p

σi−1

1 pσi
2 , which is suppressed in the MRK

regime as indicated by Eq. (2.44). Furthermore, the propagator in the
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uncrossed case is just 1/k2
i , whereas in the crossed case, it is proportional to

1/(ρi−1λi+1s). Since the on-shell constraint on the produced gluons implies
that k2

i ∼ sρi−1λi, this further suppresses the crossed contribution in the
MRK regime. More crossed rungs will give rise to additional suppression
factors.

ki−1 − ki

ki − ki+1

ki−1

ki

ki+1

ki−1 − ki

ki − ki+1

ki−1

ki−1 + ki+1 − ki

ki+1

Fig. 12. Feynman diagrams representing the ith segment of uncrossed and crossed
ladders.

Let us now look at the left diagram in Fig. 13. This was the rightmost
diagram in Fig. 8 that we will argue to be subleading in the MRK regime.
Here, we compare the coefficient of kσi−1

i−1⊥k
σi
i+1⊥ in the product of Lipatov

vertices in the uncrossed diagram of Fig. 12, which is unity. In Fig. 13 (a),
the coefficient is ρi/ρi+1. Furthermore, there is an extra suppression due
to the internal gluon propagator, proportional to 1/(ρi−1λi+1s). Likewise,
for the diagram with the 4-point vertex in Fig. 13 (b), the coefficient of
k
σi−1

i−1⊥k
σi
i+1⊥ is 1/(ρi−1λi+1s) ≈ ρi/(ρi−1k

2). When we take the effect of the
propagator of the vertical gluon line in the uncrossed diagram, we again
see a suppression by a factor of ρi/ρi−1. Thus the power counting in the
MRK regime establishes the claim that the dominant contribution to the
scattering of two gluons into n+2 gluons in the multi-Regge regime is given
by the uncrossed ladder in Fig. 10.

ki−1 − ki

ki − ki+1

ki−1

ki+1

(a)

ki−1 − ki

ki − ki+1

ki−1

ki+1

(b)

Fig. 13. ith segment of the ladder with a three-point gluon fusion and a quartic
vertex.
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So far, we only discussed diagrams involving purely gluons. In QCD, one
must consider contributions from fermion (quark) fields as well, in particular
diagrams analogous to those in Figs. 12 and 13 (a) where, in a section of the
ladder, two of the gluons are replaced by a fermion–antifermion pair. This
is depicted in Fig. 14. These diagrams are again suppressed with respect to
typical terms that arise from the purely gluonic ladder by a factor of ρi/ρi−1.
In more detail, the contribution from Fig. 14 (a) is

1

ρi−1λi+1s
ū (ki−1 − ki) γ · ki−1⊥

γ · ki
k2i

γ · ki+1⊥u (ki+1 − ki) .

Here, u (ū) is the fermion (antifermion) wavefunction and γµ are the Dirac
gamma matrices. We further use the earlier argument that the lower part of
(i− 1)th gluon propagator gives a factor of

√
2/s ki−1⊥/λi−1 and the upper

part of the (i+1)th gluon propagator gives a factor of
√
2/s ki+1⊥/ρi+1. The

contribution from Fig. 14 (a) is therefore of the order k2

ρi−1λi+1s
which, as we

have seen previously, is of the order ρi/ρi+1. Thus, we obtain a contribution
that is ρi/ρi+1 suppressed relative to a typical term from the purely gluonic
ladder. Likewise, the contributions from the graphs (b) and (c) are similarly
suppressed.

ki−1 − ki

ki − ki+1

ki−1

ki+1

ki

(a)

ki−1 − ki

ki − ki+1

ki−1

ki+1

ki

(b)

ki−1 − ki

ki − ki+1

ki−1

ki+1

(c)

Fig. 14. ith segment of the ladder with fermionic lines.
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Therefore, in the leading-logarithmic approximation, we can neglect
fermion–antifermion pair production in the final state for the computation
of the imaginary part of the 2 → 2 elastic amplitude. Beyond leading-
logarithmic accuracy, such fermion contributions, along with those shown in
Figs. 12 and 13, can contribute to the BFKL ladder.

2.3. Leading virtual graphs: Reggeization

In addition to multiple tree-level contributions to the 2 → n amplitude
that we discussed thus far (culminating in Eq. (2.78)), there are also vir-
tual corrections that contribute to the same leading-logarithmic accuracy in
MRK. These must therefore be fully taken into account.

The leading virtual terms originate from multiple t-channel gluon ex-
change (“horizontal ladder”) diagrams as shown in Fig. 15. The contribution
from the uncrossed and crossed diagrams exponentiates in the MRK regime,
with each additional virtual gluon exchange introducing a leading-logarithmic
factor of αs log(s/|t|)α(t), where α(t) is the Regge trajectory that will be
defined shortly. The result is nontrivial. It depends on the following:

(a) employing the Sudakov decomposition of the four internal propagators,
(b) performing a contour integral over one of the Sudakov variables, and

explicitly performing the integral over the second one,
(c) using crossing symmetry, and
(d) taking the octet projection of the product of the color structure fac-

tors9.

= + + + . . .

Fig. 15. The reggeized gluon, depicted as a thick gluon line, resums the leading-
double-logarithmic corrections to the bare one-gluon exchange amplitude.

We obtained these one-loop results in Eqs. (2.19) and (2.20), and the
result for the one-loop gluon Regge trajectory α(t) reads

α(t) = αsNc t

∫
d2q

(2π)2
1

q2(k − q)2
=
αsNc

2π
log

(
−t
λ2

)
,

(
t = −k2

)
,

(2.81)
9 This derivation is discussed at length (specifically, pages 34–36) in [9] so we will not

repeat the argument here but refer the interested reader to that discussion.
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where λ is an infrared cutoff. This “dressing” of the bare t-channel gluon
propagator is equivalent to replacing the propagators for the vertical gluon
lines in the ladder with the reggeized propagators

igµν

k2
i

→ igµν

k2
i

(
ŝi

k2

)α(k2i )
. (2.82)

In this expression, ŝi is the invariant constructed out of the momenta of the
(i− 1)th and ith emitted gluon from the half-ladder: ŝi = (ℓi−1 + ℓi)

2. Here,
we reiterate that the momentum k2 which appears in the denominator in
the parenthesis is a transverse momentum whose magnitude is much smaller
than

√
s — see Eq. (2.27) and the discussion below it.

Note that the Regge trajectory has a logarithmic dependence on the IR
cutoff λ. As we will see in the following subsection, this divergence will
cancel against the contribution from the real terms. Before we get there, we
will first present an alternative way of incorporating the virtual corrections
to the tree-level 2 → 2 + n amplitude that also explains the origin of the
trajectory in Eq. (2.81) in an elegant way.

To obtain the radiative corrections to the tree-level 2 → 2 + n MRK
amplitude, we first start with the 2 → 2 + n + 2 amplitude, with the two
additional gluons of momentum ℓ and −ℓ with rapidities in between those
of the gluons of momenta ℓi−1 and ℓi. Specifically, we assume that with ℓ =
ρp1+λp2+ℓ, we have the ordering . . . ρi−1 ≫ ρ≫ ρi . . . and . . . λi−1 ≪ λ≪
λi . . . . However, instead of putting the two additional momenta on-shell, we
make them virtual by replacing the δ(ℓ2) function with the propagator 1/ℓ2
and integrating over ℓ. This construction is depicted in Fig. 16.

A point to emphasize is that the additional two gluons are connected
to the ladder via the Lipatov vertex as opposed to bare 3-point gluon ver-
tices. This therefore includes the automatic sum over all the relevant (bare)
Feynman graphs with a soft internal gluon line. In contrast, one would have
needed to sum over all the graphs manually had we used bare three-point
vertices. The effect of adding this virtual line is to insert in the tree-level
amplitude the factor σ(ki) given by

σ(ki) =
g2Nc

2

i

k2i

∫
d4ℓ

(2π)4
i

ℓ2
i

(k − ℓ)2
Cµ(ki, ki − ℓ)Cµ(ki − ℓ, ki) . (2.83)

The factor of Nc arises from contraction of the SU(Nc) structure constants
fabcfabd = Ncδcd associated with each pair of adjacent Lipatov vertex that
are contracted with each other. The factor of 1/2 is included to avoid double
counting the Feynman diagrams corresponding to the different ways in which
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a soft line can be attached. (This can be visualized as the combinatorics
of the contributions that generate the crossed and uncrossed exchanges we
discussed previously.)

ℓi−1

ℓi

ki

ki − ℓ

ki

ki−1

ki+1

ℓ

Fig. 16. Contribution of a soft virtual gluon to the tree-level MRK amplitude. One
of the Lipatov vertices corresponds to the summation over all Feynman diagrams
corresponding to leading gluon emission (absorption) as shown in Fig. 3, while the
other corresponds to the summation over all leading absorption (emission) Feynman
diagram contributions.

In the product of these Lipatov vertices, we will keep only terms that
have a pole in s, since the contributions from the remaining terms do not
give a large log s factor. The relevant term in the product is

Cµ(ki, ki − ℓ)Cµ(ki − ℓ, ki) ≈
2sk4

i

((λi − λ)s+ iϵ)((ρi − ρ)s− iϵ)
. (2.84)

Here, we reinstated the iϵs which are important for carrying out the inte-
gration over the Sudakov variables. Using the Sudakov decomposition of ℓ,
and writing the measure as d4ℓ = s

2dρdλ d
2ℓ, we get10

σ(ki) = −g
2Ncs

4

i

k2
i

∫
d2ℓ

(2π)2

×
∫

dρdλ

(2π)2
i

sλρ− ℓ2 − iϵ

i

−sρ(λi − λ)− (ki − ℓ)2 − iϵ

× 2sk4
i

((λi − λ)s+ iϵ)((ρi − ρ)s− iϵ)
. (2.85)

10 Recall that k2
i = sρiλi − k2

i ≈ −k2
i because sλi = k2

i is enforced by the phase space
δ-function.
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Integrating over λ using Cauchy’s theorem gives

σ(ki) = −g
2Nc

2

∫
d2ℓ

(2π)2
k2
i

ℓ2(ki − ℓ)2

∫
dρ

2π

1

ρ
. (2.86)

In obtaining this result, we used ρ ≫ ρi and ℓ2 ∼ k2
i . Integrating over ρ

from ρi to ρi−1, we finally obtain

σ(ki) = −g
2Nc

4π
log

(
ρi−1

ρi

)∫
d2ℓ

(2π)2
k2
i

ℓ2(k − ℓ)2

= log

(
ρi−1

ρi

)
α
(
k2
i

)
≈ log

(
ŝi

k2

)
α
(
k2
i

)
. (2.87)

Here, the last approximation is obtained as follows: The invariant ŝi =
(ki−1 − ki+1)

2 ≈ ρi−1

ρi
(ki − ki+1)

2 where we used the on-shell condition for
the ith outgoing gluon. In MRK, since all the transverse momenta are of
the same order, we can replace the factor (ki − ki+1)

2 above by a typical
transverse momentum squared k2 (without the subscript i). Consequently,
the ratio ŝi/k2 becomes ρi−1/ρi.

In the above expression for a single virtual gluon insertion, we recov-
ered the expression for the 1-loop gluon trajectory along with the associated
large log. When taking all virtual gluon insertions into account, it was con-
jectured in [7] that the one-loop result in Eq. (2.87) can be exponentiated
when leading-log corrections are included to all-loop order11; this is the phe-
nomenon of gluon reggeization. Namely, every internal vertical propagator
1/k2

i is multiplied by the factor ( ŝi
k2 )

α(k2
i ). This generalizes the replacement

in Eq. (2.82) to all orders in MRK.

2.4. Derivation of the BFKL equation

Following this replacement, the 2 → n+ 2 multi-Regge gluon scattering
amplitude, including both real and virtual contributions, reads

Aµµ′νν′σ1...σn
2→n+2 = 2isgn+2ηµµ

′
ηνν

′
Gn(b1, . . . bn)

i

k2
1

(
1

ρ1

)α(k2
1)

×
n∏

i=1

Cσi(ki, ki+1)
i

k2
i+1

(
ρi−1

ρi

)α(k2
i )
, (2.88)

11 Apart from the nested integrals, the justification for the exponentiation also involves
nontrivial rearrangements for the color factors associated with multiple Lipatov ver-
tices that can appear in all possible permutations; one needs to make use of identities
such as Tr(T aT bT aT c) = 1

2
N2δbc.
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where Gn is the color factor in Eq. (2.79). To compute the imaginary part
of the 2 → 2 scattering amplitude, we insert this MRK amplitude into the
unitarity condition (optical theorem) in Eq. (2.42). After taking the color
sum projection onto the singlet representation, we obtain (see Fig. 17)

ImAµµ′νν′
2→2 = ηµµ

′
ηνν

′
∞∑
n=0

4s2g2n+4(−1)n

2n+2 (2π)3n+2

×
∫ n∏

i=1

(
dρi
ρi

d2ki

)
dρn+1d

2kn+1δ
[
sρn+1 − k2

n+1

]
×PS

∑
bi

Gn(b1, . . . , bi)Gn(b1, . . . , bi)


× 1

k2
1(q − k1)2

(
1

ρ1

)α(k2
1)+α((q−k1)2)

×
n∏

i=1

Cµi(ki, ki+1)Cµi(q − ki, q − ki+1)

× 1

k2
i+1(q − ki+1)2

(
ρi
ρi+1

)α(k2
i+1)+α((q−ki+1)

2)
. (2.89)

The factor of (−1)n is from the sum over gluon polarizations. From the sum
over the color factors in Eq. (2.2), one gets

∑
α′′β′′b1,...bn

fαa1α′′fβ′′an+1βfα′′a′1α
′fβ′a′n+1β

′′

n∏
i=1

faiai+1bifa′ia′i+1bi

=
∑

α′′β′′b1,...bn

(
T a1T a′1

)
αα′

(
T a′n+1T an+1

)
β′β

n∏
i=1

faiai+1bifa′ia′i+1bi
, (2.90)

where in the last line we used fabc = i(T b)ac with T b being the generator of
the gauge group in the adjoint representation.

This expression is manifestly in a tensor product representation of two
adjoint representations of the gauge group. For SU(N), this product decom-
poses into a singlet, an octet plus other higher-dimensional representations12.
To obtain the single representation, we contract α with α′ and β with β′.
This projection onto the singlet representation is what we denoted by PS[. . . ]

12 For N = 3, the decomposition is 8⊗ 8 = (1⊕ 8⊕ 27)S ⊕ (8⊕ 10⊕ 1̄0)A, where the
subscript S (A) stands for symmetric (antisymmetric) representation.
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(p1 α)

(p2 β)

(p′1 α′)

(p′2 β′)

(ℓ0 α′′)

(ℓn+1 β′′)

(ℓ1 b1)

(ℓi−1 bi−1)

(ℓi bi)

(ℓn bn)

k1 a1

k2 a2

ki−1 ai−1

ki ai

ki+1 ai+1

kn an

kn+1 an+1

(ℓ0 α′′)

(ℓn+1 β′′)

(ℓ1 b1)

(ℓi−1 bi−1)

(ℓi bi)

(ℓn bn)

k1 − qa′
1

k2 − qa′
2

ki−1 − qa′
i−1

ki − qa′
i

ki+1 − qa′
i+1

kn − qa′
n

kn+1 − qa′
n+1

Fig. 17. The n-rung ladder contribution to the imaginary part of the amplitude,
where the bold vertical gluon lines indicate reggeized gluons and the black dots
indicate Lipatov vertices.

in Eq. (2.89). It evaluates to

PS

∑
bi

Gn(b1, . . . , bi)Gn(b1, . . . , bi)


= Tr

(
T a1T a′1

)
Tr
(
T an+1T a′n+1

) n∏
i=1

faiai+1bifa′ia′i+1bi

= N2
c δ

a1,a′1δan+1a′n+1

n∏
i=1

faiai+1bifa′ia′i+1bi

= Nn+2
c

(
N2

c − 1
)
. (2.91)

One can also obtain the octet 8A representation from Eq. (2.90) by con-
tracting the hanging color indices by fαcα′fβcβ′ . This projection is relevant
for the demonstration of gluon reggeization [9].
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For n = 0, 1, this gives the result in Eq. (2.21) and Eq. (2.36), respec-
tively. Furthermore, the contraction over the Lipatov vertices gives

Cµi(ki, ki+1)Cµi(q−ki, q−ki+1) = 2

(
q2 −

k2
i (q−ki+1)

2 + k2
i+1(q−ki)

2

(ki − ki+1)2

)
.

(2.92)
Putting everything together, and expressing the imaginary part in terms of
the Born amplitude Aµµ′νν′

0 (s, t) = 2g2 s
−tη

µµ′
ηνν

′ , we get

ImAµµ′νν′
2→2

Aµµ′νν′
0 (s, t)

=
s t

2

∞∑
n=0

g2n+2Nn+2
c

(
N2

c − 1
)
(−1)n+1

(2π)3n+2

×
∫ n∏

i=1

(
dρi
ρi

d2ki

)
dρn+1d

2kn+1δ
[
sρn+1 − k2

n+1

]
× 1

k2
1(q − k1)2

(
1

ρ1

)α(k2
1)+α((q−k1)2)

×
n∏

i=1

(
q2 −

k2
i (q − ki+1)

2 + k2
i+1(q − ki)

2

(ki − ki+1)2

)

× 1

k2
i+1(q − ki+1)2

(
ρi
ρi+1

)α(k2
i+1)+α((q−ki+1)

2)
. (2.93)

This expression can be simplified greatly as follows. We first take its
Mellin transform, which can be expressed as

Mℓ

(
q2
)
≡

∞∫
1

d

(
s

k2

)
ImAµµ′νν′

2→2 (s, t)

Aµµ′νν′
0 (s, t)

(
s

k2

)−ℓ−1

. (2.94)

A straightforward integration over s (recall that q2 = −t) gives

Mℓ

(
q2
)
=

−t
2

∞∑
n=0

g2n+2Nn+2
c

(
N2

c − 1
)

(2π)3n+2

×
∫ n∏

i=1

(
dρi
ρi

d2ki

)
dρn+1 d

2kn+1ρ
ℓ−1
n+1

1

k2
1(q − k1)2

(
1

ρ1

)α(k2
1)+α((q−k1)2)

×(−1)n
n∏

i=1

(
q2 −

k2
i (q − ki+1)

2 + k2
i+1(q − ki)

2

(ki − ki+1)2

)

× 1

k2
i+1 (q − ki+1)

2

(
ρi
ρi+1

)α(k2
i+1)+α((q−ki+1)

2)
. (2.95)
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Next, we successively integrate over the ρ variables keeping in mind that the
domain of the integration for ρi is (ρi+1, ρi−1) and the MRK condition forces
us to drop contributions from the lower limit of the integral. The result of
this step is

Mℓ

(
q2
)

=
−t
2

∞∑
n=0

g2n+2Nn+2
c

(
N2

c − 1
)

(2π)3n+2

×
∫ n+1∏

i=1

d2ki
1

k2
i (q − ki)2

1

ℓ− α
(
k2
i

)
− α ((q − ki)2)

×(−1)n
n∏

i=1

(
q2 −

k2
i (q − ki+1)

2 + k2
i+1(q − ki)

2

(ki − ki+1)2

)
, (2.96)

= 2πq2αsN
2
c

(
N2

c − 1
) ∞∑
n=0

(−2αsN)n

×
∫ n+1∏

i=1

d2ki

(2π)2
1

k2
i (q − ki)2

1

ℓ− α
(
k2
i

)
− α ((q − ki)2)

×
n∏

i=1

(
q2 −

k2
i (q − ki+1)

2 + k2
i+1(q − ki)

2

(ki − ki+1)2

)
. (2.97)

Remarkably, this equation can be reexpressed simply as

Mℓ

(
q2
)
= 2πq2αsN

2
c

(
N2

c − 1
) ∫ d2k

(2π)2
1

k2(q − k)2
fℓ(k, q) , (2.98)

where fℓ(k, q) satisfies the integral equation

(
ℓ− α

(
k2
)
− α

(
(q − k)2

))
fℓ(k, q)

= 1− 2αsNc

∫
d2k′

(2π)2
fℓ
(
k′, q

)
k′2 (q − k′)2

(
q2 −

k2
(
q − k′)2 + k′2(q − k)2(

k − k′)2
)
.

(2.99)

It can be checked that this recursive relation generates the n-sum in the
expression for the Mellin transformed amplitude Mℓ in Eq. (2.97) by ex-
panding out in αs. Equation (2.99) is the celebrated BFKL equation, whose



11-A1.40 H. Raj, R. Venugopalan

kernel is the BFKL Hamiltonian13. As a consistency check, one can see from
a perturbative expansion of fℓ in αs that one obtains Eq. (2.41) for the first
two orders in the perturbative expansion.

We end this subsection with few remarks about Eq. (2.99). Firstly, the
solutions of the BFKL equation are free of any IR divergences. The IR
divergence coming from the phase space integral of the kernel (the term in
the parenthesis in the right-hand side) is canceled by IR divergence of the
one-loop gluon Regge trajectory. Secondly, for q = 0, this equation computes
the total cross section for two-gluon scattering. A significant consequence
is that the solution of the BFKL equation (which we will discuss shortly)
predicts a rapid growth of deeply inelastic scattering (DIS) electron–hadron
scattering cross section at high energies such as those accessed at the HERA
collider and the future Electron–Ion Collider (EIC) [33]. This growth in the
cross section is far more rapid than observed at HERA. It is tamed both by
including next-to-leading-logarithmic contributions and by gluon saturation
effects [34] as we will discuss further in Section 2.6 and at length in Section 4.

2.5. Solution of the BFKL equation

We will now outline the solution of Eq. (2.99). We first reexpress the
equation as

ℓfℓ(k, q)− 1 = −αsNc

∫
d2k′

(2π)2

×

[
2

k′2 (q−k′)2
(
q2 −

k2
(
q − k′)2 + k′2(q − k)2(

k − k′)2
)
fℓ
(
k′, q

)
+

(
k2

k′2 (k′ − k
)2 +

(k − q)2

k′2 (k′ − q + k
)2
)
fℓ(k, q)

]
, (2.100)

where we used the expression for the one-loop gluon trajectory in Eq. (2.81).
Defining k̃ = q − k and k̃

′
= q − k′, this becomes

13 The BFKL Hamiltonian describes the evolution in rapidity of color singlet com-
pound states of two reggeized gluons, with remarkably properties such as holomor-
phic separability and conformal SL(2, C) invariance. A particular generalization to
multi-reggeon compound states is the Bartels–Kwiecinski–Praszalowicz (BKP) equa-
tion [28, 29]. In the large-Nc limit, this Hamiltonian is that of an SL(2, C) Heisenberg
magnet [30, 31]. For a review, see [32].



QCD–Gravity Double Copy in Regge Asymptotics . . . 11-A1.41

ℓfℓ(k, q)− 1 = −αsNc

∫
d2k′

(2π)2

[
2

k′2k̃
′2

(
q2 − k2k̃

′2
+ k′2k̃

2(
k − k′)2

)
fℓ
(
k′, q

)

+

 k2

k′2 (k′ − k
)2 +

k̃
2

k′2
(
k′ − k̃

)2
 fℓ(k, q)

]
. (2.101)

In order to handle the divergences in the integral when k′ → k and k′ → k̃,
we replace [10]

1

k′2 (k − k′)2 → 2(
k − k′)2 (k′2 +

(
k − k′)2) , (2.102)

and after a change of integration variables, one finds

ℓfℓ(k, q)− 1 = −2αsNc

∫
d2k′

(2π)2
1(

k − k′)2
×

[(
q2
(
k − k′)2
k′2k̃

′2 − k2

k′2 − k̃
2

k̃
′2

)
fℓ
(
k′, q

)
+

 k2(
k′2 +

(
k − k′)2) +

k̃
2(

k̃
′2
+
(
k − k′)2)

 fℓ(k, q)

 .
(2.103)

A possible IR divergence arises when k′ → k. However, we see that the
terms in the square brackets cancel completely in this limit for any value
of q. This result shows that the imaginary part of 2 → 2 gluon scattering is
free of IR divergences.

As previously mentioned, the solution of this equation at q = 0 gives the
total cross section. The equation at q = 0 reads (dropping the argument q
in the partial amplitudes fℓ)

ℓfℓ(k)−1 = 4αsNc

∫
d2k′

(2π)2
1(

k − k′)2
[
k2

k′2 fℓ
(
k′)− k2

k′2 +
(
k − k′)2 fℓ(k)

]
.

(2.104)
This is an integral equation with a self-adjoint kernel and can be solved by
recasting it into an eigenvalue problem. We first write

fℓ(k) ≡
∫

d2p

(2π)2
k2

p2
gℓ(k,p) , 1 =

∫
d2p

(2π)2
(2π)2δ(2)(k − p) . (2.105)
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Equation (2.104) in these variables becomes

ℓgℓ(k,p)− (2π)2δ(2)(k − p)

= 4αsNc

∫
d2k′

(2π)2
1(

k − k′)2
[
gℓ
(
k′,p

)
− k2

k′2 +
(
k − k′)2 gℓ(k,p)

]
. (2.106)

One seeks a solution of the form

gℓ(k,p) =
1√
p2k2

∞∑
n=−∞

∞∫
−∞

dν aℓ(ν, n) e
iν(λk−λp) ein(ϕk−ϕp) , (2.107)

motivated by the δ-function representation,

δ(2)(k − p) =
1

2π2
√
p2k2

∞∑
n=−∞

∞∫
−∞

dν eiν(λk−λp) ein(ϕk−ϕp) , (2.108)

where λk = log(k2/µ2), λp = log(p2/µ2), with µ being an arbitrary IR scale,
and ϕk,p are the azimuthal angles of the vectors k,p, respectively. To deal
with the convolution, we write the r.h.s. of Eq. (2.106) as

4αsNc

∫
d2k′

(2π)2
1(

k − k′)2
[
gℓ
(
k′,p

)
− k2

k′2 +
(
k − k′)2 gℓ(k,p)

]

=
1√
p2k2

∞∑
n=−∞

∞∫
−∞

dνaℓ(ν, n)ω(ν, n) e
iν(λk−λp) ein(ϕk−ϕp) , (2.109)

allowing us to express the solution of Eq. (2.106) for the unknown coefficients
aℓ(ν, n) in terms of the BFKL eigenvalue ω(ν, n) as

ℓaℓ(ν, n)− 2 = a(ν, n)ω(ν, n) =⇒ aℓ(ν, n) =
2

ℓ− ω(ν, n)
. (2.110)

All that remains now is to compute the BFKL eigenvalue ω(ν, n). Sim-
plifying Eq. (2.109), we find

ω(ν, n) = 4αsNc

∫
d2k′

(2π)2
1(

k − k′)2
×

[(
k2

k′2

)1/2

eiν(λk′−λk) ein(ϕk′−ϕk) − k2

k′2 +
(
k − k′)2

]
. (2.111)
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In order to handle the singularities near k′ = k, we can rewrite this equation
as

ω(ν, n) = 4αsNc

∫
d2k′

(2π)2

[
ein(ϕk′−ϕk)(
k − k′)2

(
k2

k′2

)iν+ 1
2

− k2

k′2

(
1(

k − k′)2 − 1

k′2 +
(
k − k′)2

)]
. (2.112)

The next step is to carry out the angular integrals. These need to be per-
formed in the regions of k′2 < k2 and k′2 > k2 separately. First, define the
variable x as

x =

{
k′2/k2 for k′2 < k2

k2/k′2 for k′2 > k2 . (2.113)

Carrying out the (somewhat involved) angular integrals in Eq. (2.112) and
adding the result from the two regions, one gets

ω(ν, n) =
αsNc

π

1∫
0

dx

[
2Re

(
x

|n|−1
2

+iν

1− x

)

−
(

1

x(1− x)
+

1

1− x
− 1

x
√
4x2 + 1

− 1√
x2 + 4

)]
. (2.114)

In Eq. (2.114), inside the square brackets, the term in the first parenthe-
sis comes from the angular integral of the first term in square brackets in
Eq. (2.112). The reason we get the real part is because the angular integrals
in the k′2 < k2 and k′2 > k2 regions give complex conjugate terms with the
same sign. The four terms in the second parenthesis of Eq. (2.114) come
from the second set of terms in the square brackets of Eq. (2.112). The
first and the third of these four terms come from the k′2 < k2 region, while
the others come from the k′2 > k2 region. Finally, we need to perform the
integration in x.

Rearranging Eq. (2.114) a bit further, one gets via a partial fraction
decomposition

ω(ν, n) =
αsNc

π

×
1∫

0

dx

[
2Re

(
x

|n|−1
2

+iν −1

1− x

)
−
(
1

x
− 1

x
√
4x2+1

− 1√
x2+4

)]
. (2.115)
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One can check that the integral of the second parenthesis vanishes! This is
a consequence of the UV and IR finiteness of the k′ integral of the BFKL
equation. One finally gets for the BFKL eigenvalue the following result:

ω(ν, n) = −2αsNc

π
Re

(
ψ

(
|n|+ 1

2
+ iν

)
+ γE

)
, (2.116)

where ψ is the digamma function and γE ∼ 0.577 is the Euler constant. A
plot of the eigenvalues for different values of n is shown in Fig. 18. The
maximum value of ω∗(ν, n) is attained for ν = 0, n = 0, given by

ω∗(ν = 0, n = 0) =
4

π
αsNc ln 2 . (2.117)

Plugging this result back into the expression for the partial waves, we can
determine the 2 → 2 cross section,

σ =
1

2s
ImA2→2(s, t = 0) , (2.118)

with the leading contribution to the imaginary part of the forward amplitude
given by ImA2→2(s, t = 0) ∼ s1+ω∗ . One therefore obtains the LLx BFKL
contribution to the total cross section to be

σ ∼ sω
∗
= s

4
π
αsNc ln 2 ≈ s0.5 for αs = 0.2 and Nc = 3 . (2.119)

Here, αs = 0.2 provides a rough estimate of the running coupling in the
small-x kinematics of the HERA DIS data, where the rapid growth in cross
sections was first observed, providing the segue for the discussion below of
small-x evolution in DIS.

n=0

n=1

n=2

n=3

n=4

n=5

-4 -2 2 4 6
ν

-1.5

-1.0

-0.5

0.5

1.0

ω (ν, n)

αS N

Fig. 18. Plot of the BFKL eigenvalues in Eq. (2.116) for n = 0, 1, 2, 3, 4, 5. The max-
imum is attained for n = 0 at ν = 0, with the maximum value ω∗ = 4αsNc ln(2)/π.
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2.6. Leading and next-to-leading log xBj DIS cross sections
and gluon saturation

It is useful to connect our prior discussion of 2 → N gluon scattering to
a specific underlying process in QCD for which it is relevant. The simplest
example is deeply inelastic scattering (DIS) which we alluded to previously
at the end of Section 2.4 and shall discuss further here as well as in Section 4
in the context of the CGC EFT. Much of the DIS discussion is worked out
in textbooks [12], so we will provide here the briefest of primers sufficient
for nonexperts to follow the material of relevance to us.

The DIS process corresponds to a high-energy electron scattering off
a proton or heavier nuclei, exchanging a spacelike virtual photon with high
resolution q2 = −Q2 > 0, that probes the structure of matter inside the
hadron. In the DIS “dipole” frame, qµ = (−Q2/2q−, q−,0⊥), the proton
four momentum Pµ = (P+, 0,0⊥) and the DIS center-of-mass energy is
s = 2P · q. A key kinematic variable is Bjorken xBj = Q2/(2P · q), which in
the quark–parton model is xBj ≡ x, the fraction of the light-cone fraction of
the momentum P+ of the hadron carried by the struck quark or antiquark.
The cross section for the scattering (where only the incoming plus outgoing
electron energies, and their relative scattering angle are measured) can be
expressed as the convolution LµνW

µν , where the former is the lepton tensor
corresponding to the product of the lepton current in the amplitude with
its complex conjugate amplitude, while the latter is the product of the am-
plitude of the electromagnetic current Jµ in the hadron (due to the struck
quark within) and its complex conjugate. It can be expressed as

Wµν = 2Disc. Tµν ≡ 1

2π
Im

∫
d4y eiq·y ⟨P |T (Jµ(y)Jν(0))|P ⟩

=
1

2π
Im

∫
d4y eiq·y Tr (γµGA(y, 0)γ

νGA(0, y)) , (2.120)

where Tµν is the DIS forward Compton scattering amplitude and GA(y, 0) =
−i⟨ψ(y)ψ̄(0)⟩A is the Green function for the struck quark that is weakly
coupled to the QCD background field A in the proton. The last expression
is obtained using Wick’s theorem14. One can further decompose Wµν as

MNW
µν = −

(
gµν − qµqν

q2

)
F1 +

(
Pµ − qµ(P · q)

q2

)(
P ν − qν(P · q)

q2

)
F2 ,

(2.121)

14 Note that a product of tadpole terms Tr(γµGA(y))Tr(γ
νGA(0)) present in the de-

composition of the product of currents does not appear in the above equation because
it lacks an imaginary part.
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whereMN is the nucleon mass, and F1 and F2 are the DIS form factors of the
hadron measured in experiment. (In the QCD parton model, F2 is the sum
of the quark and antiquark distributions in the proton and FL = F2−2xBjF1

is proportional to the gluon distribution inside the proton.) Following this
decomposition, one can write the DIS cross section as kinematic factors times
the total cross section for the virtual photon to scatter off the proton/nucleus

σγ∗A
(
xBj, Q

2
)
=

4π2αem

Q2
F2

(
xBj, Q

2
)
. (2.122)

Regge asymptotics in this DIS context corresponds to P+ → ∞, with
xBj ≈ Q2/s → 0, for fixed Q2. In this kinematics, and for Q2 ≫ Λ2

QCD
where parton degrees of freedom are manifest, the cross section above can
be factorized as [35]

σγ∗A
(
xBj, Q

2
)
=

1∫
0

dz

∫
d2r⊥

∣∣Ψ (z, r⊥, Q2
)∣∣2 σdipole (xBj, r⊥) , (2.123)

where |Ψ(z, r⊥, Q2)|2 is the probability for the virtual photon to split into
a quark–antiquark “dipole” at relative separation r⊥, with the quark (anti-
quark) carrying a longitudinal momentum fraction z (1− z) of the photon’s
momentum, and σdipole(xBj, r⊥) is the cross section for the qq̄-dipole of size
r⊥ ≪ 1/ΛQCD to scatter off the hadron/nucleus.

This factorized expression is valid in the eikonal approximation, where
the dynamics of the QCD gauge fields in the hadron are localized static con-
figurations in light cone on the time scales of the interaction with the dipole
probe. (We have also assumed that the gauge field configurations probed
are homogeneous and isotropic.) Indeed, an explicit realization of this ex-
pression is obtained by computing the quark propagators in Eq. (2.120) in
such semi-classical backgrounds [36, 37].

The DIS process is illustrated in Fig. 19. The inclusive cross section
contains within the 2 → N gluon amplitude we have been discussing. In
particular, the dipole cross section can be expressed as

σdipole (xBj, r⊥) = −
∫

d2k⊥
2π

eik⊥·r⊥ ∇2
k⊥ϕ

(
xBj, k

2
⊥
)
, (2.124)

where the BFKL amplitude15 ϕ(xBj, k
2
⊥) is the inverse Mellin transform of

Ml(k
2
⊥), defined simply in Eq. (2.98) in terms of the solution to the BFKL

15 In the literature, ϕ(xBj, k
2
⊥) is called the Weizsäker–Williams gluon distribution,

which can be distinguished in general [38] from a dipole gluon distribution we will
introduce in Section 4. At large transverse momenta k⊥ ≫ QS, the two distributions
agree.
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equation given in Eq. (2.99). The LLx energy dependence of ϕ is given
by the maximal eigenvalue in Eq. (2.117): ϕ(xBj, Q

2) ∼ ( s
Q2 )

ω∗ ≡ x−ω∗
Bj

with ω∗ = 4
παsNc ln 2. The full solution of the LLx BFKL equation [10],

reexpressed in terms of the dipole cross section, gives

σdipole (xBj, r⊥) ≈
√
r2⊥Q

2
0

eω
∗Y

√
2πβᾱsY

exp

(
−
ln2
(
r2⊥Q

2
0

)
2βᾱsY

)
, (2.125)

where Y = ln(1/xBj), β = 28 ζ(3) ∼ 33.67, and ᾱs = αsNc/π. Further,
Q2

0 ∼ Λ2
QCD is the initial nonperturbative scale in the proton. This BFKL

solution leads to a very rapid rise (ω∗ ∼ 0.5 for αs = 0.2 and Nc = 3) in
the DIS cross section. It mirrored the rapid rise in the DIS data observed at
HERA, and revitalized interest16 in the BFKL framework beginning in the
mid-1990s.

ℓ1

ℓ2
...
ℓn

y⊥

x⊥

e

e′

proton

P+

1− z

z

q−

γ∗
r⊥

Fig. 19. Illustration of the underlying 2 → N structure of deeply inelastic scattering
(DIS) at small x (high energies).

The next-to-leading logarithmic in x (NLLx) BFKL equation, that re-
sums contributions of the form (αn+1

s lnn(1/xBj)) beyond the LLx BFKL
resummation of (αn

s ln
n(1/xBj)) contributions, was derived in [40, 41]. The

principal elements of the NLLx BFKL formalism are the same as the LLx
BFKL. The new ingredients are the next order αs correction to the gluon
Regge trajectory and to the Lipatov vertex. The Regge trajectory is ex-
tended to two-loop, while the central emission vertex gets corrections from

16 The papers [39] and [8], cited on the order of 4000 citations each in the INSPIRE
data base, had received only approximately 100 citations prior to 1991.
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two gluons which are not strongly ordered in rapidity. The NLLx BFKL
equation still has the structure of an integral equation, with the kernel
now including enhancements such as gluon-and-quark pair emissions and
radiative corrections to the central emission vertex, enriching the iterative
structure of the equation. The resulting NLL BFKL is again free of IR di-
vergences and the solution of this equation is characterized by eigenvalues
(ωνn) that receive higher-order corrections in αs.

The results in strict MRK for the NLLx BFKL eigenfunctions and eigen-
values have unphysical solutions, leading to the realization that finite energy
constraints are important even in multi-Regge kinematics. In other words,
for physical processes, one needs to impose lifetime ordering in addition to
rapidity ordering to obtain sensible results. This requirement leads to large
double logs in transverse momenta (αs ln

2(Q2/Q2
0)) at NLO that when re-

summed give sensible results for the NLLx BKFL cross section [42–44] and
phenomenological results that are closer to the values seen in data. Beyond
NLLx, the gluon reggeization framework we discussed breaks down; despite
a significant body of work, a complete picture of the NNLx extension of
BFKL is lacking. A review of the status of this work can be found in [13].

The great simplifications described here to 2 → n scattering follow, as
we showed, from implementing MRK, corresponding to strict x (or rapidity)
ordering in the amplitude. This simplicity however comes at a price. Already
at LLx, the full solution of the BFKL equation for the DIS case in Eq. (2.125)
reveals a diffusive property in r⊥ with increasing Y , to the UV and IR, where
the theory is strongly coupled, leading to a breakdown of the framework at
large rapidities. The diffusion in rapidity is not surprising since the BFKL
equation has the structure of a reaction-diffusion equation where the spatial
coordinate is the log of the transverse momenta and time is the rapidity [45].
This diffusive property is not cured at NLLx [46] and is only cured by the
phenomenon of gluon saturation [47] which we now discuss.

The BFKL ladder construction, as is transparent in the DIS case, is
obtained within a leading twist framework, where the rapidity evolution
is of leading twist transverse-momentum-dependent operators, with contri-
butions of more nontrivial higher-twist operators (in operator product ex-
pansion (OPE) language) suppressed by powers of 1/Q2. However, with
increasing rapidity, as xBj → 0, the rapid growth in the dipole cross section
can lead to increasingly large contributions from higher-twist operators. An
example of such a contribution is illustrated by the fan diagram in Fig. 20,
corresponding to twist-four operators in the hadron, whose evolution with
rapidity is still determined by multi-Regge kinematics.



QCD–Gravity Double Copy in Regge Asymptotics . . . 11-A1.49

γ∗

Fig. 20. A twist-four 1 → 2 pomeron “fan” diagram contributing to the DIS dipole
cross section.

As first discussed in [24, 48], there are several cuts of the fan diagram
contributing to a given final-state multiplicity. The cut shown by the dotted
line is a so-called “diffractive cut” where particles are produced for rapidi-
ties above that of the gray blob in Fig. 20, but the two ladders below are
uncut color singlet “pomerons”, corresponding to a rapidity gap in the phase
space of the DIS scattering. On one side of the cut, this diagram allows for
two gluons at lower rapidities fuse to produce a gluon at a higher rapidity.
There are other contributions where both ladders are cut, or an interfer-
ence contribution where only one ladder below the blob is cut, while the
other is not. As noted in [48], such contributions involve a two-gluon dis-
tribution F(x1, x2, k

2
⊥,1, k

2
⊥,2); for large nuclei, and large Nc, this two-body

distribution factorizes into the square of the momentum-dependent gluon
distribution ϕ(Y, k2⊥). As we will discuss further in Section 4, one obtains
the Balitsky–Kovchegov (BK) equation [49–51], which in momentum space17

takes the form [55]

∂ϕ
(
Y, k2⊥

)
∂Y

= ᾱs

(
KBFKL ⊗ ϕ

(
Y, k2⊥

))
− ᾱs ϕ

2
(
Y, k2⊥

)
, (2.126)

17 The equivalent equation for the dipole distribution (see footnote 15) was obtained
previously in [52–54]. We thank Krzysztof Kutak for reminding us of this work.
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where KBFKL ⊗ ϕ is the integral equation we obtained in Eq. (2.104) with
its kernel represented by KBFKL. The linear version of this equation gener-
ates the BFKL ladder and the solution to the BFKL equation we discussed
earlier. However, for any k2⊥ ≈ Q2, there is always a value of the rapidity
(or xBj) for which the r.h.s. of the equation is zero, leading to a saturation of
the growth of ϕ with rapidity. The line in the xBj–Q2 corresponding to this
saturation of the gluon distribution is characterized by a saturation scale

Q2
S (xBj) = Q2

0 e
λsȲ , (2.127)

where Ȳ = ln(1/xBj), and λs is a constant that can be computed analytically.
Both the BK equation and the saturation scale will be discussed at length
in Section 4.3.

A few comments are in order here. Firstly, the most general observation
is that the OPE breaks down in the sense that higher-twist operators become
important [56] and cannot be ignored even if Q2 is very large, when one
takes Y → ∞. Secondly, the factorization of multi-point gluon distributions
is not guaranteed — however, as argued previously [57–59], it is justified for
large nuclei, where the dominant higher-twist contributions come from fans
emanating from separate nucleons coherently scattering off the DIS probe.
In this case, Q2

S ∼ A1/3Λ2
QCD. Not least, the nonlinearities manifest in the

BK equation, prevent the diffusion of the solution to the infrared, leading
to a self-consistent weak coupling solution.

We end this section with a discussion of the spacetime picture of gluon
saturation. For a dipole of fixed size r⊥ ∼ 1/Q, the BFKL driven exponen-
tial growth in the gluon distribution in the hadron, with increasing rapidity,
leads to a large phase space occupancy at a critical rapidity Ȳ . This corre-
sponds to the largest possible squared field strengths in QCD, of O(1/αs).
The physical picture is one of close packing of gluons on the distance scale
1/QS(x) much smaller than the size of the hadron. Since the large field
strength is driven by large occupancy, the corresponding gauge fields that
couple to the quark dipole are classical configurations: A→ Aclassical ∼ 1/g.
In the rest frame of the dipole, the phase space inside the boosted hadron
is that of a collection of “hot spots” with squared field strengths 1/αs, and
size 1/QS(xBj). If a dipole at fixed impact parameter has a size r⊥ ≪ 1/QS,
it interacts very weakly with the hadron, as dictated by perturbative QCD.
On the other hand, dipoles of size r⊥ ≥ 1/QS interact with unit probability.
Thus, classicalization and unitarization of cross sections are both features of
gluon saturation. This picture is realized quantitatively when the hadron is
a large nucleus in the Color Glass Condensate effective field theory that we
will discuss at length in Section 4.
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We note finally that the presence of a large color charge density in a nu-
cleus at high energies provides an additional scale that suppresses fluctua-
tions that can potentially drive the system away from unitarization at fixed
impact parameter. These are so-called “pomeron loop” configurations. In-
stead of the fusion of two ladders from the target shown in Fig. 20, they cor-
respond to a pomeron from the target that splits into two or more pomerons
which can then merge with the fan diagrams to form a closed loop — begin-
ning at the projectile with one ladder and ending at the target with another.
For a nice introductory discussion of this physics, see [60]. It has been ar-
gued in a toy model computation that such loops are suppressed by running
coupling effects; the full story remains to be understood [61].

3. 2 → 2 + n scattering in Einstein gravity

In the previous section, we discussed the building blocks of the 2 →
2 + n scattering of gluons in the regime in Eq. (2.1) which is dominated by
the multi-Regge kinematics. The main elements are the nonlocal Lipatov
vertex, the effective vertex of the 2 → 3 amplitude, and the reggeized gluon
propagator, obtained by resumming the IR divergent pieces of the virtual
contributions to the 2 → 2 amplitude. In [16, 17], Lipatov demonstrated
a similar construction of the 2 → 2+ n amplitude in Einstein gravity (GR).
After providing some relevant background material, and a brief overview of
relevant works in the literature, we will elaborate upon Lipatov’s work in
GR in some detail, highlighting various subtle points in his derivation.

In gravity, unlike QCD, the coupling constant G is dimensionful. Its
relation to the Planck mass and Planck length (in ℏ = c = 1 units) is
given by

κ2

8π
= G =

1

M2
Pl

= ℓ2Pl . (3.1)

The latter can be combined with MPl to give the dimensionless gravitational
coupling

λGR(Q) =
Q2

M2
Pl

, (3.2)

which is more analogous to the QCD case, where the strength of the cou-
pling also depends (via dimensional transmutation) on the resolution scale
of a probe. An additional important scale in gravity is RS, the characteristic
Schwarzschild radius, which is set by the center-of-mass energy

√
s

RS ≡ G
√
s =

√
s

M2
Pl

. (3.3)
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The so-called trans-Planckian scattering regime is specified by taking the
center-of-mass energy

√
s ≫ MPl, corresponding to ℓPl ≪ RS. This separa-

tion of scales ensures that quantum gravity effects (characterized by correc-
tions sensitive to ℓPl) are small at the Schwarzschild scale RS. For incoming
particles with impact parameter smaller than O(RS), by classical arguments
we expect that the final state will be dominated by a black hole [62], plus
radiation in the form of gravitational waves [63]. Since the region b ∼ RS

is dominated by strong gravity that captures all the nonlinearities of GR,
we will start our discussion in the weak coupling regime where the impact
parameter b is much larger than the Schwarzschild radius b≫ RS.

It is well known that at large impact parameters b ≫ RS, the 2 → 2
gravitational amplitude eikonalizes in the Regge limit [64–66]. The dia-
grams that contribute to eikonalization comes from resumming the hori-
zontal ladder and cross-ladder terms in the series shown in Fig. 21. In
these diagrams, the eikonal approximation requires that the momenta of the
exchanged gravitons are small with respect to those of the external lines,
namely, (p1 − k)2 ≈ −2p1 · k, where p1 is the momentum of one of the
external lines and k is the momentum of the exchanged graviton. This re-
placement is illustrated by the crosses in Fig. 21. The resummation of this
series generates the eikonal amplitude:

iMeik = 2s

∫
d2b e−iq·b

(
eiχ(b,s) − 1

)
, (3.4)

where the IR divergent eikonal phase χ(b, s) is given by

χ(b, s) =
κ2s

2ℏ

∫
d2k

(2π)2
1

k2 e
ib·k = −2Gs

ℏ
log

(
|b|
L

)
, (3.5)

where L is a long distance cutoff scale.
The eikonal approach to gravitational amplitudes has become one of the

central tools to compute classical observables via the scattering amplitude
formalism where the classical terms undergo an exponentiation. This was
also the main theme in the works of Amati, Ciafaloni, and Veneziano (ACV)
[64, 67–71] that addressed the problem of trans-Planckian gravitational scat-
tering in Einstein gravity as well as string theory. It is evident however from
Eqs. (3.4) and (3.5) that an amplitude-based approach for computing the
eikonal is problematic since perturbation theory breaks down already at
leading order, since the expansion is effectively in Gs ≫ 1. One therefore
needs to find a way of resumming certain infinite sets of diagrams, as for
instance represented in Fig. 21.
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+ + +

+ . . .

Fig. 21. The eikonal scattering series comprised of horizontal-ladder and crossed-
ladder diagrams. The crosses denote that the propagators of the high-energy lines
are approximated as 1/(p− k)2 ∼ −1/(2p · k).

This resummation is in the form of an exponentiation where the cou-
pling constant sits in the exponent. To obtain this form, it is then crucial
that contributions from entire classes of loop-level diagrams appear with the
appropriate power of the coupling and with the right combinatoric factors
to all-loop orders. The validity of the eikonal approximation and exponen-
tiation thus needs to be checked on a case-by-case basis. For the leading
eikonal in Eq. (3.5), this resummation was performed in [66], where expo-
nentiation was explicitly demonstrated in impact parameter space. From
the resummed amplitude corresponding to the eikonal in Eq. (3.4), one can
then compute leading-order classical observables such as the deflection angle
[72, 73], and the Shapiro time delay [74].

To obtain higher-order correction to the classical observables, one needs
to compute higher-order corrections to the leading eikonal. In the ACV
framework18, the elastic 2 → 2 S-matrix is written in the exponentiated form
as 1 + iM(s, b) = e2iδ(s,b) with the phase δ(s, b) admitting an expansion in
the gravitational coupling G: δ(s, b) = δ0 + δ1 + δ2 + . . . , where δj is an
order O(Gj+1) term in the post-Minkowski expansion. The leading eikonal
is δ0 = χ that was given in (3.5) is a universal term in the ultrarelativistic

18 In a more modern presentation, the elastic 2 → 2 S-matrix in the classical limit can
be expressed as

1 + iM(s, b) = (1 + i∆(s, b)) e2iδ̃(s,b) . (3.6)

This way of writing the S-matrix distinguishes purely classical terms that should
exponentiate (and therefore contribute to the phase δ̃ ∝ 1/ℏ) from purely quantum
terms (contributing to ∆) that appear with non-negative powers of ℏ and may not
exponentiate. Though one can write (1+ i∆(s, b)) = e2iδquantum , the form in Eq. (3.6)
is preferred since it isolates the purely classical terms that are completely captured
by δ̃ that can then be used to compute classical observables. See [75] for a thorough
discussion.
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limit in that it is not sensitive to the details of the theory. On the other
hand, the subleading terms in δ are generically not universal. In Einstein
gravity, the term δ1 was computed by ACV [68, 69]

δ1 =
6

π

G2s

b2
log
(
sb2
)
. (3.7)

This term is of O(ℏ0). In the ultrarelativistic limit, it does not receive
any classical contributions (terms proportional to ℏ−1). However, for mas-
sive colliding particles at finite velocities, there are nonvanishing classical
contributions at this order. (See, for instance, [76].) Note that the above
expression of δ1 is of the order ℓ2p/b2 with respect to the leading eikonal δ0
since G ∼ ℓ2p. Therefore, in the regions b ≫ RS, the contribution from such
a term is not important for computing physical observables.

The next term δ2 is [68]

δ2 =
2G3s2

b2ℏ

[
1 +

i

π
log
(
sb2
)(

log
L2

b2
+ 2

)]
, (3.8)

which is a classical contribution and is of the order G2s/b2 ∝ R2
S/b

2 w.r.t. the
leading eikonal. The real part of this term is universal in the ultrarelativistic
limit [77]. Its imaginary part encodes the leading inelastic contribution that
starts to contribute from two-loop order. Such contributions are obtained by
gluing together two effective 2 → 3 graviton emission diagrams, computed
in the multi-Regge kinematics we discussed previously for QCD in Section 2.
As we will discuss in Section 3.1, there are several such diagrams that sum up
into the effective graviton emission diagram, with an effective vertex which
is the gravitational analog of the QCD Lipatov vertex. This gravitational
Lipatov vertex takes the form

Cµν(k1, k2) =
1

2
Cµ(k1, k2)C

ν(k1, k2)−
1

2
Nµ(k1, k2)N

ν(k1, k2) , (3.9)

where Cµ(k1, k2) is the QCD Lipatov vertex we discussed at length in Sec-
tion 2. Further,

Nµ(k1, k2) =
√
k21k

2
2

(
pµ1
p1 · ℓ

− pµ2
p2 · ℓ

)
, (3.10)

which contains the QED bremsstrahlung factor within the parenthesis. Thus,
the effective gravitation emission amplitude remarkably is a bilinear com-
prised of their counterparts in QCD and QED.
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Gluing two such 2 → 3 diagrams results in the so-called H-diagram [68],
depicted in Fig. 22. This diagram contributes to both the real and imaginary
parts of δ2 in Eq. (3.8). The ACV Regge EFT results for δ1 and δ2 have been
confirmed independently in an explicit computation of two-loop four-point
massless amplitudes in Einstein gravity using powerful numerical unitarity
methods [78, 79].

Fig. 22. The H-diagram gives the leading inelastic correction to the eikonal scat-
tering series. The black blobs represent the gravitational Lipatov effective vertices.

In the previous section, for gluon scattering in the LLx approximation,
both the Lipatov vertex and the reggeized gluon trajectory were crucial in
the construction, and are the key elements in Lipatov’s 2-D reggeon EFT. As
discussed in [80], this is also the case of gravity. Indeed, both contributions,
as in the QCD case, are crucial for the cancellation of the IR divergence in
the computation of the 2 → 2 cross section, as we shall see below. Reggeiza-
tion at leading-logarithmic order in gravity also arises from the iteration of
Sudakov double logs that appears in the calculation of the one-loop gluon
scattering amplitude. Since in gravity classical contributions from loop-level
diagrams dominate (genuine quantum contributions are hugely suppressed),
one should carefully analyze whether the terms in the one-loop diagram
contributing to the graviton trajectory are classical or quantum. For an ex-
ample of such a discussion, see [81]. As we will discuss further in the follow-
ing sections, both in the context of QCD and gravity, one can alternatively
formulate this problem cleanly within the Schwinger–Keldysh formalism.

Putting aside this issue for now, it is important to understand graviton
reggeization in gravity relative to QCD. Recall that in the latter, one resums
logarithmic IR divergent contributions that arises in the horizontal-ladder
and cross-ladder series to all-loop order. In this resummation, the propagator
of the gluon exchange is dressed by a factor of (−s/t)α(t) with α(t) being the
gluon Regge trajectory. However, in the analogous computation in gravity
(see Fig. 21), graviton reggeization is not manifest.

Why is this the case? In order to address this disparity, let us look at
the full one-loop four-point amplitude in gravity. Specifically, we examine
terms in the Regge limit that contain an IR divergence and are not sensitive
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to details of the theory19. There are two contributions,

M(1) ∼ κ2

8π2

(
−iπs log

(
−t
Λ2
IR

)
+ t log

(
s

−t

)
log

(
−t
Λ2
IR

))
, (3.11)

where ΛIR is an IR cutoff. Since both terms have an identical IR divergence
in the Regge limit, the first term dominates over the second term by a factor
of (−s/t). The latter term (which is the Sudakov double log) is subleading
as −t/s ∼ R2

S/b
2 and therefore not relevant for the large impact parameter

regime b≫ RS [83]. This is the origin of the difference from the perturbative
QCD case where the double logs dominate over the eikonal phase contribu-
tion because the (color) prefactor of the former is not suppressed relative to
the latter.

A color-kinematic double-copy perspective of this difference between
QCD and gravity is discussed in [84]. If instead of the leading MRK contri-
bution in Eq. (2.81) one keeps the full result, one observes that it is of the
same structure as Eq. (3.11), with the s and t prefactors of the logs replaced
by T 2

s = (Ta + Tb)
2 and T 2

t = (Ta + Ta′)
2, respectively, with Ta and Tb

being the color factors associated with the two incoming gluons, and Ta′ is
the color factor associated to one of the outgoing gluons. Clearly then, the
term responsible for gluon reggeization (ln( s

−t) ln(
−t
Λ2
IR
)) dominates over the

eikonal term (−iπs) in QCD. For gravity in the Regge limit, the kinematical
replacements T 2

s → s, T 2
t → t are what result in the graviton reggeization

term being t/s suppressed relative to the eikonal term.
Nevertheless, the double logs are important at impact parameters ap-

proaching RS, indeed when inelastic radiation à la Lipatov is becoming im-
portant. They play a similarly crucial role, as in QCD, in the construction of
the 2 → 2 + n inelastic amplitude. This is because the IR divergences from
the loop terms are what cancel the contributions from the real emission am-
plitude in the scattering cross section. This cancellation is identical to the
QCD case and therefore important for the same reason as in multi-particle
production in perturbative QCD (and in QED). Further, reggeization goes
through in the same manner as in QCD, and along with the gravitational Li-
patov vertex, provide the building blocks for the construction of the 2 → 2+n
amplitude to all orders to leading-logarithmic accuracy.

In [16, 17], Lipatov computed the one-loop graviton Regge trajectory20

and the gravitational Lipatov vertex. In the following subsections, we will
give a streamlined derivation of these quantities and we will then use these
to derive the gravitational Lipatov equation. Our presentation will mirror
the derivation of the BFKL equation in QCD discussion in the previous

19 For the complete expression, see for instance Eqs. (14) and (18) in [82].
20 See [85] for earlier work on graviton reggeization in pure Einstein gravity.
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section. In particular, we will discuss throughout the double-copy relations
to the QCD case. We will also discuss the infrared structure of the GR
Lipatov equation and outline its solution, and comment on the similarities
and differences to the QCD discussion of the same. We will next demon-
strate explicitly the little appreciated fact that the soft limit of the Lipatov
result gives the ultrarelativistic limit of the soft graviton theorem derived
by Weinberg [86]. This connection is especially relevant to our discussion
above since the Weinberg derivation also relies on the cancellation of real
and virtual soft divergences in the cross section.

In Section 3.6, we will show how the gravitational emission amplitude
containing the Lipatov vertex can be obtained as a classical double copy of
the gluon emission amplitude obtained in the scattering of classical scalar
color charges employing so-called Yang–Mills + Wong equations [87]. One
similarly obtains Weinberg’s result from this classical double copy in the
soft limit. When b → RS, copious gravitational radiation driven by the
Lipatov RG, and coherent multiple scattering, can in principle, as in QCD,
lead to the formation of high occupancy states. We will discuss this issue
further in the QCD context in Section 4 and in GR in Section 5. A general
discussion of black hole formation in the S-matrix approach was given in
[88, 89]. In Section 3.7, we will outline an alternative derivation [90, 91] of
2 → n scattering that does not employ MRK, and discuss the connection of
this framework to that of ACV, as spelt out in [90].

3.1. Gravitational Lipatov vertex

We will work in the Regge limit of gravity, where the appropriate modi-
fication of Eq. (2.1) in the QCD case is

λGR(t) log

(
s

−t

)
∼ O(1) , κ2t ≡ λGR(t) ≪ 1 , (3.12)

where λGR(t) is the dimensionless gravitational coupling defined in Eq. (3.2).
This is the limit in which we will construct the 2 → 2 + n amplitude in
gravity21.

21 This limit corresponds to s ≫ |t| ≫ M2
Pl. Unlike QCD, this corresponds to a much

narrower window of applicability in gravity. We will address this point further in
Section 3.7 and Section 5.
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As opposed to QCD, gravity contains infinitely many higher-order con-
tact interaction terms involving graviton lines22, as shown in Fig. 23. As
a consequence, more diagrams contribute to the construction of the effective
2 → 2+n ladder relative to the QCD case. As a relevant example, as shown

. . .

Fig. 23. In general relativity, there are infinitely many higher point interactions
that are suppressed by higher powers of the gravitational coupling.

in Fig. 24, there are two more diagrams contributing to the gravitational
Lipatov vertex than in QCD. These additional diagrams are of the contact
type, and one can expect many more such terms with increasing n.

p1 ℓ0

ℓ1

p2 ℓ2

+

p1 ℓ0

ℓ1

p2 ℓ2

+

p1 ℓ0

ℓ1

p2 ℓ2

+

p1 ℓ0

ℓ1

p2 ℓ2

+

p1 ℓ0

ℓ1

p2 ℓ2

+

p1 ℓ0

ℓ1

p2 ℓ2

+

p1 ℓ0

ℓ1

p2 ℓ2

=

p1 ℓ0

ℓ1

p2 ℓ2

Cµν(k1, k2)

k1

k2

Fig. 24. Feynman graphs for the 2 → 3 tree-level graviton scattering that sum up
to the gravitational Lipatov vertex in MRK. There are two additional diagrams
relative to the QCD case since the four-point vertex in gravity is not suppressed in
energy.

22 While every vertex in Fig. 23 carries two powers of the momenta of the participating
legs, they are suppressed by a power of coupling κ for every additional leg. The
explicit Feynman rules for the three-point and four-point interaction vertices were
first computed in [92–94]. See also [95].
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In [96] (see also [97]), an explicit derivation shows that the sum over
the graphs in Fig. 24 in multi-Regge kinematics sums up to the effective
gravitational emission vertex introduced by Lipatov in [16, 17]. However,
such a diagrammatic technique, with increasing n, is even more cumbersome
to work with in gravity than in QCD due to the appearance of higher point
vertices. The dispersive techniques we discussed in the QCD context, which
avoid explicit computation of Feynman graphs, are therefore especially useful
here.

In order to use these techniques, we need to first compute the 2 → 2 pro-
cess in the Born approximation with a graviton exchange in the t-channel. In
particular, we need the expression for the (off-shell) three-point graviton ver-
tex. This expression in the de Donder gauge (specified by ∂µh

µ
ν − 1

2∂νh
λ
λ = 0,

where hµν is the graviton field) is [98] (this corresponds to rule for the Feyn-
man diagram shown in Fig. 25)

V ρσ
µνµ′ν′(p1, q) =

iκ

2

{
Pµνµ′ν′

[
pρ1p

σ
1 + (p1 − q)ρ(p1 − q)σ + qρqσ − 3

2
ηρσq2

]
+2qλqσ

[
IλσµνI

ρσ
µ′ν′ + Iλσµ′ν′I

ρσ
µν − IλρµνI

σσ
µ′ν′ − IσσµνI

λσ
µ′ν′
]

+
[
qλq

ρ
(
ηµνI

λσ
µ′ν′ + ηµ′ν′I

λσ
µν

)
+ qλq

σ
(
ηµνI

λρ
µ′ν′ + ηµ′ν′I

λρ
µν

)
−q2

(
ηµνI

ρσ
µ′ν′ + ηµ′ν′I

ρσ
µν

)
− ηρσqλqσ

(
ηµνIµ′ν′,λσ + ηµ′ν′Iµν,λσ

)]
+
[
2qλ

(
IσσµνIµ′ν′,λσ(p1 − q)ρ + IσρµνIµ′ν′,λσ(p1 − q)σ

−Iσσµ′ν′Iµν,λσp
ρ
1 − Iσρµ′ν′Iµν,λσp

σ
1

)
+q2

(
IσρµνIµ′ν′,σ

σ + Iµν,σ
σIσρµν′

)
+ ηρσqλqσ

(
Iρσµ′ν′Iµν,λρ + IρσµνIµ′ν′,λρ

)]
+

[ (
p21 + (p1 − q)2

)(
IσρµνIµ′ν′,σ

σ + IσσµνIµ′ν′,σ
ρ − 1

2
ηρσPµν,µ′ν′

)
−p21ηµ′ν′I

ρσ
µν − (p1 − q)2ηµνI

ρσ
µ′ν′

]}
. (3.13)

Here, the tensors Pµνµ′ν′ and Iµνµ′ν′ are identity operators in the space of
symmetric traceless and symmetric matrices, respectively,

Pµνµ′ν′ =
1

2

(
ηµµ′ηνν′ + ηµν′ηνµ′ − ηµνηµ′ν′

)
,

Iµνµ′ν′ =
1

2

(
ηµµ′ηνν′ + ηµν′ηνµ′

)
. (3.14)

While the expression in Eq. (3.13) is complicated to work with, it sim-
plifies considerably in the eikonal approximation, and as a result of p1 and
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µν µ′ν′

ρσ

p1 ℓ0
q

Fig. 25. Three-point graviton vertex.

ℓ0 being on-shell — as in the discussion in the QCD case in Section 2.1.
Under these approximations, the graviton three-point vertex is (deleting all
occurrence of q and setting p21 = 0 in Eq. (3.13))

V ρσ
µνµ′ν′(p1, q) ≈ iκPµν,µ′ν′p

ρ
1p

σ
1 , (3.15)

which is a remarkable simplification of Eq. (3.13). With this result, and the
expression for the graviton propagator in the de Donder gauge

Gρσρ′σ′
(q) =

P ρσρ′σ′

q2
, (3.16)

the four-point graviton scattering amplitude is23

MBorn
µνµ′ν′αβα′β′(s, t) =

(
iκPµν,µ′ν′p

ρ
1p

σ
1

) P ρσρ′σ′

q2

(
iκPαβα′β′pρ

′
2 p

σ′
2

)
,

=
1

4

κ2s2

t
Pµνµ′ν′Pαβα′β′ . (3.18)

Here, s = (p1 + p2)
2 = 2p1 · p2 and t = −q2 = −(p1 − l0)

2. Contracting
Pµνµ′ν′ with the graviton polarization tensors ϵµνζ (in the helicity eigenstate),
one gets

Pµνµ′ν′ϵ
µν
ζ (p1)ϵ

µ′ν′
ζ′ (ℓ0) ≡ Pµνµ′ν′ϵ

µν
ζ (p1)ϵµ′ν′,ζ′(p1−q) = δζζ′ +O(q) , (3.19)

23 Graviton scattering amplitudes will be denoted M to differentiate them from the
QCD case where they were denoted A. The four-point amplitude of massive identical
scalars interacting via gravity in the Born approximation is

MBorn
p1+p2→ℓ0+ℓ1 =

κ2

t

(
1

2

(
s2 + u2)− 6m4

)
, (3.17)

which is identical to the four-point graviton scattering amplitude in Eq. (3.18) in
the high-energy limit −u ≈ s ≫ m2. In the nonrelativistic limit s → 4m2, u → 0,
corresponding to the Born scattering amplitude of a massive scalar particle of mass m,
one obtains MBorn

p1+p2→ℓ0+ℓ1
→ 4

∫
V (r) eiq·rd3r with q2 = −t. For the gravitational

potential V (r) = −Gm2/r, equating the two expressions gives κ2 = 8πG.
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where we made use of their orthonormality property, ϵµν(p)ζϵµν,ζ′(p) = δζζ′ .
Upon contracting the Born amplitude with the polarization tensor of the
external gravitons, one finds

MBorn
ζ1ζ′1ζ2ζ

′
2
(s, t) =

1

4

κ2s2

t
δζ1ζ′1δζ2ζ′2 +O(q) . (3.20)

From this expression, we see that the helicity of the scattered gravitons is
preserved in the small-t limit of the Born amplitude.

In the next subsection, we will need this expression for the Lorentz co-
variant Born amplitude to construct the 2 → 2 + n MRK gravitational am-
plitude. We will follow the same line of reasoning as was done for QCD in
Section 2.2.2. The first thing to note is that one can construct gravitational
polarization tensors from the gluon polarization vectors as follows:

ϵµνλλ′ =
1

2

(
ϵµλϵ

ν
λ′ + ϵµλ′ϵ

ν
λ − ϵµωϵ

ν,ωδλλ′
)
. (3.21)

The helicity eigenstate polarization tensor ϵµνζ is a linear combination of ϵµνλλ′

(for different values of λ and λ′) constructed as a bilinear product of gluon
polarization vectors. Next, we project the polarization tensor of the in-
coming and outgoing external graviton to the gauge, where ϵµν(p1)p2µ =

ϵ
′µν(ℓ0)p2µ = 0. These conditions can be imposed on Eq. (3.21) using

the gauge constraint on the gluon polarization vector we introduced in
Eq. (2.50). Further, for the graviton carrying the momentum transfer p1−ℓ0,
the associated polarization tensor is 2pρ2p

σ
2/s

2. The three-point graviton ver-
tex contracted with the respective polarization tensors is then

V ρσ
µνµ′ν′ ϵ̃

µν(p1)ϵ̃
µ′ν′(ℓ0)

2p2ρp2,σ
s2

, (3.22)

where ϵ̃µν is obtained from ϵµν by replacing ϵµ with ϵ̃µ in Eq. (3.21) with ϵ̃µ
as defined in Eq. (2.50). Straightforward algebra gives

V ρσ
µνµ′ν′ ϵ̃

µν
λ1λ′

1
(p1)ϵ̃

µ′ν′

λ2λ′
2
(ℓ0)

2p2ρp2,σ
s2

=
iκ

2
ϵ̃µν
λ1λ′

1
(p1)ϵ̃µν,λ2λ′

2
(ℓ0)

= 2iκ

[
Γµµ′
p1,ℓ0

Γ νν′
p1,ℓ0 + Γµν′

p1,ℓ0
Γ νµ′
p1,ℓ0

−
(
δµν − pµ1p

ν
2 + pν1p

µ
2

p1 · p2

)
×

(
δµ

′ν′ − ℓµ
′

0 p
ν′
2 + ℓν

′
0 p

µ′
2

ℓ0 · p2

)]
ϵµν
λ1λ′

1
ϵµ

′ν′

λ2λ′
2
. (3.23)

The tensor Γµµ′
p1,ℓ0

in this expression was constructed in Eq. (2.51), with the
form

Γµµ′
p1,ℓ0

= −ηµµ′
+
pµ2p

µ′
1 + pµ

′
2 ℓ

µ
0

p2 · p1
+ (p1 − ℓ0)

2 pµ2p
µ′
2

2(p2 · p1)2
.
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In deriving the second line of Eq. (3.23), we used ϵ̃µλ1
ϵ̃µ,λ1 = Γµµ′

p1,ℓ0
ϵµλ1
ϵµ′,λ1

obtained from Eq. (2.51), the completeness relation for the polarization vec-
tor ∑

ω

ϵµω(p1)ϵ
ν
ω(p1) = ηµν − pµ1p

ν
2 + pν1p

µ
2

p1 · p2
= δµν⊥ , (3.24)

and the transversality properties p1,µ′Γµµ′
p1ℓ0

= ℓ0,µ′Γµµ′
p1ℓ0

= 0, Γµµ′
p1ℓ0

Γ νν′
p1ℓ0

ηµ′ν′ =

δµν⊥ . We further made the approximaton that O(q) terms are small.
We will now denote the rank-four tensor24 corresponding to the argument

of the square bracket in the second line of Eq. (3.23) as G̃µνµ′ν′
p1,ℓ0

. With this,
the Born amplitude can equivalently be expressed as

MBorn
p1+p2→ℓ0+ℓ1 = Vp1,ℓ0

κ2s2

t
Vp2,ℓ1 , (3.28)

where the vertex Vp1,ℓ0 is given by

Vp1,ℓ0 = 2 G̃µνµ′ν′
p1,ℓ0

ϵµν(p1)ϵµ′ν′(ℓ0) ≡ 4 ϵµν(p1)ϵµ′ν′(ℓ0)

×1

2

[
Γµµ′
p1,ℓ0

Γ νν′
p1,ℓ0 + Γµν′

p1,ℓ0
Γ νµ′
p1,ℓ0

−
(
δµν − pµ1p

ν
2 + pν1p

µ
2

p1 · p2

)
×

(
δµ

′ν′ − ℓµ
′

0 p
ν′
2 + ℓν

′
0 p

µ′
2

ℓ0 · p2

)]
. (3.29)

The Born amplitude in Eq. (3.28), with Eq. (3.29) as its principal feature,
results from a projection of the 2 → 2 graviton scattering amplitude onto
the physical two-dimensional subspace spanned by the gravitational polar-
ization vectors, in complete analogy to the QCD case. As we will now show
explicitly, this structure will enable us to compute the 2 → 3 amplitude.
This computation will then be generalized to determine the 2 → n inelastic
gravitational amplitude in MRK kinematics.

3.1.1. Reconstructing the 2 → 3 amplitude from the Born amplitude

The construction of the 2 → 3 amplitude is identical to that used in
the previous section, a result being its expression in terms of the Lipatov

24 This tensor has the following properties:

p1,µG̃µνµ′ν′

p1,ℓ0
= ℓ0,µ′ G̃µνµ′ν′

p1,ℓ0
= 0 , (3.25)

ηµν G̃µνµ′ν′

p1,ℓ0
= ηµ′ν′ G̃µνµ′ν′

p1,ℓ0
= 0 , (3.26)

and
G̃µνµ′ν′

ℓ,ℓ′ G̃µ′′ν′′

µ′ν′;ℓ,ℓ′ =
1

2

(
δµµ

′′

⊥ δνν
′′

⊥ + δµν′′

⊥ δνµ
′′

⊥ − δµν⊥ δµ
′′ν′′

⊥

)
, (3.27)

where δ⊥ is the two-dimensional Kronecker delta.
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vertex in gauge theory. We will similarly compute the 2 → 3 amplitude
by reconstructing the simultaneous residue of the 1/(k21k

2
2) pole. As briefly

mentioned earlier, this procedure leaves some ambiguity in the amplitude
due to the freedom of adding terms proportional to k21k

2
2. However, as

discussed below, this ambiguity is fixed by the unitarity of the amplitude.
Denoting the residue of the pole in k2i (i = 1, 2) of the 2 → 3 amplitude

by Pk2i
M2→2+1 gives

Pk21
M2→2+1 = Vp1,ℓ0κs

2Mk1+p2→ℓ1+ℓ2 ,

Pk22
M2→2+1 = Mp1+(−k2)→ℓ0+ℓ1κs

2Vp2,ℓ2 . (3.30)

As we showed in Eq. (3.28), the 2 → 2 amplitudes in these formulas can be
expressed as

Mk1+p2→ℓ1+ℓ2 = Vk1,ℓ1
κ2(p2 + k1)

4

k22
Vp2,ℓ2 ,

Mp1+(−k2)→ℓ0+ℓ1 = Vp1,ℓ0
κ2(p1 − k2)

4

k21
V−k2,ℓ1 . (3.31)

As a next step, we will simplify the vertices Vk1,ℓ1 and V−k2,ℓ1 by replacing the
polarization tensors as ϵµν(k1) → 2pµ1p

ν
1/s

2 and ϵµν(−k2) → 2pµ2p
ν
2/s

2. This
follows from the replacement rule for gluon polarizations we discussed previ-
ously towards the end of Section 2.2.2, coupled with the fact that the polar-
ization tensors for gravitons and gluons are related by ϵµν(k) ∼ ϵµ(k)ϵν(k).
We see already at this step a glimpse of the double-copy relation between
QCD and gravity.

Performing some straightforward algebra, one finds that the residue of
the 1/k2i poles can be reexpressed as

Pk21
M2→2+1 = κ3

s2

k22
Vp1,ℓ0C

µν
1 (k1, k2)ϵµν(ℓ1)Vp2,ℓ2 ,

Pk22
M2→2+1 = κ3

s2

k21
Vp1,ℓ0C

µν
2 (k1, k2)ϵµν(ℓ1)Vp2,ℓ2 , (3.32)

where
Cµν
i (k1, k2) =

1

2
Cµ
i (k1, k2)C

ν
i (k1, k2) , (3.33)

and Cµ
i (k1, k2) is proportional to the residue of the 1/k2i pole that we en-

countered previously

Cµ
1 (k1, k2) = 2

p2 · ℓ1
p1 · p2

pµ1 − (k1 + k2)
µ − 2

ℓ1 · p1
p1 · p2

pµ2 − k22
p2 · ℓ1

pµ2 ,

Cµ
2 (k1, k2) = −2

p1 · ℓ1
p1 · p2

pµ2 − (k1 + k2)
µ + 2

ℓ1 · p2
p1 · p2

pµ1 +
k21

p1 · ℓ1
pµ1 . (3.34)
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Since our goal is to construct the 2 → 3 inelastic amplitude from the residues
of the 1/k2i poles, inspecting the above formulas, one can read off the simul-
taneous residue of the 1/(k21k

2
2) pole to be

Mp1+p2→ℓ0+ℓ1+ℓ2 = κ3
s2

k21k
2
2

Vp1,ℓ0C̃
µν(k1, k2)ϵµν(ℓ1)Vp2,ℓ2 , (3.35)

where C̃µν(k1, k2) is

C̃µν(k1, k2) =
1

2
Cµ(k1, k2)C

ν(k1, k2) . (3.36)

Here, Cµ(k1, k2) is the QCD Lipatov vertex whose covariant form was given
in Eq. (2.60).

However, the result in Eq. (3.35) has unphysical terms corresponding to
overlapping poles ∝ 1/((p1 · ℓ1)(p2 · ℓ1)), which violate the unitarity of the
amplitude [17, 99–103]. Therefore, to obtain an amplitude that respects uni-
tarity, we need to get rid of such unphysical poles. Towards this end, we are
reminded that there is an ambiguity in the reconstruction of Eq. (3.35) hav-
ing to do with the freedom to add terms proportional to k21k22. Lipatov used
this ambiguity to construct a unitarity preserving amplitude by subtracting
from the amplitude a double copy of the vector

Nµ(k1, k2) =
√
k21k

2
2

(
pµ1
p1 · ℓ

− pµ2
p2 · ℓ

)
, (3.37)

which straightforwardly gets rid of the unphysical contributions. As a result,
one obtains the gravitational analog of the QCD Lipatov vertex which is
instead

Cµν(k1, k2) =
1

2
Cµ(k1, k2)C

ν(k1, k2)−
1

2
Nµ(k1, k2)N

ν(k1, k2) , (3.38)

allowing us to express the physical 2 → 3 gravitational Regge amplitude in
terms of this vertex as

Mp1+p2→ℓ0+ℓ1+ℓ2 = κ3
s2

k21k
2
2

Vp1,ℓ0C
µν(k1, k2)ϵµν(ℓ1)Vp2,ℓ2 . (3.39)

3.2. Graviton reggeization and generalization to the 2 → n amplitude

The construction of the Lipatov ladder in gravity proceeds analogously
to the BFKL case in QCD with the fundamental ingredients being the gravi-
tational Lipatov vertex that we discussed already at length and the reggeized
graviton propagator, which will be the focus of the discussion here. Before
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we do so, we should state that at tree-level our discussion of the recon-
struction of the Lipatov vertex from the poles of 2 → 3 graviton scattering
amplitude in the MRK regime can similarly be generalized25 to 2 → n + 2
graviton amplitude in the MRK regime using precisely the same methodol-
ogy as that used in Section 2.2.2. The result of the (tree-level) 2 → n + 2
amplitude is

Mtree
2→n+2 = κn+2 s

2

k21
Vp1,ℓ0

n∏
i=1

Cµiνi(ki, ki+1)ϵµiνi(ℓi)
1

k2i+1

Vp2,ℓn+1 , (3.40)

which can be compared to Eq. (2.73).
With this construction of the tree-level 2 → 2 + n MRK graviton scat-

tering amplitude in hand, we will now examine the virtual corrections that
will generate the reggeized graviton propagator [16, 17]. To calculate the
contribution of a single virtual graviton to the tree-level 2 → n+2 graviton
amplitude, we start with a 2 → n + 2 + “2” tree-level graviton amplitude
in the MRK regime, with the specification that the two additional gravi-
tons be emitted between final-state gravitons of momenta ℓi−1 and ℓi. We
denote the momenta of these gravitons to be ℓ and −ℓ. Next, instead of
putting their momenta on-shell, we make them virtual by replacing the on-
shell δ(ℓ2) function propagator between them with the off-shell propagator
1/ℓ2, as illustrated for the QCD case in Fig. 16. The result of this proce-
dure, similarly to the QCD case, leads to the modification of the 2 → n+ 2
tree-level graviton scattering amplitude by the factor

σ
(
k2i
)
=
κ2

4

∫
d4ℓ

(2π)4
i

(ki − ℓ)2
i

ℓ2
i

k2i
Cµν(ki, ki − ℓ)Cµν(ki − ℓ, ki) . (3.41)

The next step is to decompose ℓ in terms of the Sudakov parameters:
ℓ = ρp1+λp2+ℓ, where ρ and λ satisfy the multi-Regge kinematic condition:
. . . ρi−1 ≫ ρ ≫ ρi . . . and . . . λi−1 ≪ λ ≪ λi . . . . Multiplying the Lipatov
vertices, and keeping terms that are singular in ρs and λs (the other terms
give subleading contributions in log s), we get26

σ
(
k2i
)

=
κ2s

(2π)4

∫
dρdλ d2ℓ

i

(ki − ℓ)2
i

ℓ2
ik2i

×
(

s2(ki − ℓ, ℓ)2

(−sλ+ iϵ)2(sρ+ iϵ)2
− sk2i

(−sλ+ iϵ)(sρ+ iϵ)

)
. (3.42)

25 The generalization to the 2 → 4 amplitude in the next-to-multi-Regge-kinematics
was done recently in [104].

26 The notation (A,B) we use here represents the scalar product of the vectors A and B.
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We next write ℓ2 = sρλ − ℓ2 and (ki − ℓ)2 ≈ sρλ − (ki − ℓ)2 (employing
MRK to approximate (ρi − ρ)(λi − λ) ≈ ρλ), and performing the integral
over λ, its residues provide the structure

σ
(
k2i
)

= − κ2s

(2π)3

∫
dρd2ℓk2i

×
(

(ki − ℓ, ℓ)2

ℓ2(ki − ℓ)2sρ

[
1

ℓ2
+

1

(ki − ℓ)2

]
+

k2i
ℓ2(ki − ℓ)2sρ

)
. (3.43)

The terms in the square bracket (within the parenthesis above) are from the
first term in the parenthesis of Eq. (3.42), and likewise, the remaining terms
in Eq. (3.43) from the second term in the parenthesis of Eq. (3.42). Finally,
the integral in ρ between ρi−1 and ρi gives

σ
(
k2i
)

= − κ2k2i
(2π)3

log

(
ρi−1

ρi

)∫
d2ℓ

1

ℓ2(ki − ℓ)2

×
(
(ki − ℓ, ℓ)2

[
1

ℓ2
+

1

(ki − ℓ)2

]
− k2

i

)
. (3.44)

Recalling from Section 2 (see the discussion below Eq. (2.87)) that ln(ρi−1

ρi
) ≈

ln( si
k2 ), to leading-logarithmic accuracy, the contribution of a single soft

graviton insertion between the ℓi−1 and ℓi emitted gravitons takes the form

σ
(
k2i
)
= log

(
si

k2

)α(k2i )
, (3.45)

where the exponent α(k2i ) is the one-loop graviton Regge trajectory

α
(
k2i
)
=
κ2k2

i

(2π)3

∫
d2ℓ

1

ℓ2(ki − ℓ)2

(
(ki − ℓ, ℓ)2

[
1

ℓ2
+

1

(ki − ℓ)2

]
− k2

i

)
.

(3.46)
The contribution of an arbitrary number of virtual gravitons is obtained

by exponentiating σ(k2i ); this corresponds to multiplying every (internal)
graviton propagator going down the tree-level 2 → 2 + n MRK graviton
ladder by the factor (

si

k2

)α(k2i )
. (3.47)
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Thereby, incorporating the virtual leading “reggeized” corrections, we obtain
for the 2 → 2 + n MRK graviton amplitude

M2→n+2 = κn+2 s
2

k21

(
s1

k2

)α(k21)
Vp1,ℓ0

×
n∏

i=1

Cµiνi(ki, ki+1)ϵµiνi(ℓi)
1

k2i+1

(
si+1

k2

)α(k2i+1)
Vp2,ℓn+1 . (3.48)

This result for the 2 → n+2 amplitude for graviton scattering in the MRK
that encodes both the real and virtual contributions is structurally identical
to the QCD case in Eq. (2.88).

Using the form in Eq. (3.48) of the 2 → 2 + n amplitude, we can now
compute the s-channel discontinuity in the 2 → 2 amplitude due to the
exchange of n intermediate gravitons employing the formula in Eq. (2.2)

ImsM2→2(s, q) =
1

2

κ4

4
s4Vp1,p′1Vp2,p′2

∞∑
n=0

κ2n

2n+1 (2π)3n+2

×
∫ n∏

i=1

(
dρi
ρi

d2ki

)
dρn+1 d

2kn+1δ
[
sρn+1 − k2

n+1

]
× 1

k2
1(q − k1)2

(
1

ρ1

)α(k2
1)+α((q−k1)2)

×
n∏

i=1

1

k2
i+1(q − ki+1)2

(
ρi
ρi+1

)α(k2
i+1)+α((q−ki+1)

2)

×Cµiνi(ki, ki+1)Cµiνi(q − ki, q − ki+1) . (3.49)

Expressing this as a ratio relative to the 2 → 2 Born amplitude MBorn
p1+p2→p′1+p′2

in Eq. (3.28), we get

ImsM2→2(s, q)

MBorn
p1+p2→p′1+p′2

= κ2s2t

∞∑
n=0

κ2n

2n+4 (2π)3n+2

×
∫ n∏

i=1

(
dρi
ρi

d2ki

)
dρn+1 d

2kn+1δ
[
sρn+1 − k2

n+1

]
× 1

k2
1(q − k1)2

(
1

ρ1

)α(k2
1)+α((q−k1)2)

×
n∏

i=1

1

k2
i+1 (q − ki+1)

2

(
ρi
ρi+1

)α(k2
i+1)+α((q−ki+1)

2)

×Cµiνi(ki, ki+1)Cµiνi(q − ki, q − ki+1) . (3.50)
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Note that this expression has an extra factor of the center-of-mass energy s
relative to Eq. (2.93), the analogous expression in the QCD case, reflecting
the spin-2 nature of the graviton.

We now perform the Mellin integral transform of this expression

M̃ℓ(t) ≡
∞∫
1

d

(
s

k2

)
ImM2→2(s, q)

κ2sMBorn
p1+p2→p′1+p′2

(
s

k2

)−ℓ−1

. (3.51)

In doing so, we first divided the expression by a factor of κ2s to make the
integral over s manifestly identical to the QCD case. As in the QCD case,
this will greatly simply our manipulations, and subsequently, we can recover
the total cross section by performing the inverse Mellin transform27

ImM2→2(s, q)

κ2sMBorn
p1+p2→p′1+p′2

=
1

2πi

i∞∫
−i∞

dℓM̃ℓ(t)

(
s

k2

)ℓ

. (3.52)

Performing the integral in Eq. (3.51), followed by integration over the ρ vari-
ables with the domain of integration for ρi being (ρi+1, ρi−1), gives

M̃ℓ(t) =
t

16

∞∑
n=0

(
κ2

4π

)n

×
∫ n+1∏

i=1

d2ki

(2π)2
1

k2
i (q − ki)2

1

ℓ− α
(
k2
i

)
− α ((q − ki)2)

n∏
i=1

KG(ki, ki+1) ,

(3.53)

where the Regge pole structure of the amplitude is now manifest. Further,
KG(ki, ki+1) represents the contraction of the gravitational Lipatov vertices,

KG(ki, ki+1) = Cµiνi(ki, ki+1)Cµiνi(q − ki, q − ki+1) . (3.54)

As in the QCD case, this equation can be written as

M̃ℓ(t) =
t

16

∫
d2k

(2π)2
1

k2(q − k)2
fℓ(k, q) , (3.55)

27 This expression follows from the identities:

1

2πi

i∞∫
−i∞

dν
(s
s̃

)ν

= δ
(
log

s

s̃

)
,

∞∫
1

dx f(x)δ

(
log

x

y

)
= yf(y) (y > 1) .
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where the amplitude fℓ(k, q) satisfies the integral equation

(
ℓ−α

(
k2
)
−α

(
(q−k)2

))
fℓ(k, q) = 1+

κ2

4π

∫
d2k′

(2π)2
fℓ
(
k′, q

)
k′2 (q−k′)2KG

(
k,k′) .
(3.56)

Since the structure and derivation of this equation is exactly analogous to the
BFKL equation in QCD, we will henceforth call it the gravitational BFKL
equation, albeit with the understanding that it was derived solely by Lipatov
more than 40 years ago [16, 17, 80]. For a recent related discussion within
the framework of Soft Collinear Effective Theory (SCET) [105], see [97].

3.3. Divergences in the gravitational BFKL equation

A quick inspection of the gravitation BFKL equation reveals that there
are possible divergences that arise from both the |k′| → ∞ and |k′| → 0
limits. In this subsection, we will analyze these limits of the k′ integral in
the gravitational BFKL equation carefully and conclude that there are no
actual divergences. This is similar to the situation in gauge theory although
there are some differences that we will uncover below.

We first rewrite Eq. (3.56) explicitly, where we collect the virtual terms
(from the one-loop Regge trajectory) and the real terms (from the square of
the Lipatov vertex) under a single integral

ℓfℓ(k, q) = 1 +
κ2

4π

∫
d2k′

(2π)2

 1(
k−k′)4

k′2k̃
′2
(

k̃
2

k̃
′2 +

k2

k′2 − q2
(
k−k′)2
k′2k̃

′2

)2

+4

(
k2k̃

2 − k2

k̃
′2

(
k̃ · k̃′)2 − k̃

2

k′2
(
k · k′)2)} fℓ (k′, q

)
+

4(
k − k′)2

{
k2

k′2 +
(
k − k′)2

[(
k′ ·

(
k − k′))2( 1

k′2 +
1(

k − k′)2
)

− k2

]

+
k̃
2

k̃
′2
+
(
k − k′)2

[(
k̃
′ ·
(
k − k′))2( 1

k̃
′2 +

1(
k − k′)2

)
− k̃

2

]}
fℓ(k, q)

]
.

(3.57)

Here, k̃ = q − k and k̃
′
= q − k′. In writing this equation, we made use

of the identity in Eq. (2.102) under the integral sign, which facilitates the
analysis of divergences that we shall discuss next.
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In Eq. (3.57), possible divergences arise when k′ → k or |k′| → ∞. First
we analyze the k′ → k integration region. Due to the quartic and quadratic
denominators in (k − k′) we need to expand out the respective terms in
the curly parenthesis to quadratic and zeroth order in (k − k′)2. Denoting
k−k′ ≡ δ, the contribution of the k′ → k region to the integral, after Taylor
expansion, is

κ2

4π

∫
d2δ

(2π)2

4k2

δ2
+

4k̃
2

δ2
− 6q2

δ2
+ 8

(k · δ)
(
k̃ · δ

)
δ4


−4

k2

δ2
+

k̃
2

δ2
− (δ · k)2

δ4
−

(
δ · k̃

)2
δ4


 fℓ(k, q)

=
κ2

4π

∫
d2δ

(2π)2

[
−6

q2

δ2
+ 4

(q · δ)2

δ4

]
fℓ(k, q) ∼

κ2

4π2
q2fℓ(k, q) logΛ

2
IR . (3.58)

In the first line of the above equation, the terms in the first parenthesis
follow from the first two lines in Eq. (3.57) whereas the terms in the second
parenthesis follows from the last two lines in Eq. (3.57). To obtain the result
in Eq. (3.58), we further needed to open up the squared parenthesis in the
first line in Eq. (3.57) and replace under the k′ integral28

f
(
k′)(

k − k′)4 k′2 →
f
(
k′)(

k − k′)4 (k′2 +
(
k − k′)2)

+
f
(
k′)+ f

(
k − k′)(

k − k′)2 (k′2 +
(
k − k′)2)2 . (3.59)

We observe that for q ̸= 0 this integral has a logarithmic divergence,
reflecting the fact that gravity in 4 dimensions is IR divergent29. However
for q = 0, provided the amplitude fℓ(k, q) is well-behaved as q → 0, the k′

integral in Eq. (3.57) is free of IR divergences. This should indeed be the case
since for q = 0 the amplitude fℓ(k, q) computes the inclusive cross section
which, as shown by Weinberg in [86], is free from any IR divergence. We note
that Weinberg’s analysis involved using the soft graviton emission vertex for
computing real and virtual divergences. We have here a generalization of

28 Alternatively, one can integrate Eq. (3.57) explicitly term-by-term, using a cut-off
prescription, to obtain Eq. (3.58).

29 For general spacetime dimensions, the relevant integral has the form
∫
dD−2δ 1

δ2 ,
which is manifestly IR finite for D > 4.
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that analysis to hard graviton emissions where instead of using the soft
graviton emission vertex one uses Lipatov’s gravitational vertex. Later, in
Section 3.5, we will demonstrate that these vertices smoothly connect to
each other in the appropriate kinematic regimes.

The gravitational BFKL equation also suffers from UV divergences when
|k′| → ∞, originating from virtual contributions. (Inspecting Eq. (3.57),
we see that the real contribution does not contain this UV divergence.)
Evaluating the integrals, one finds that the one-loop Regge trajectory in
Eq. (3.46) depends on the UV and IR cutoffs as

α
(
k2
)
=
κ2k2

8π2

[
2 log

(
Λ2
UV

k2

)
− log

(
k2

Λ2
IR

)]
. (3.60)

While the dependence on ΛIR drops out the case of q = 0 as shown above,
the dependence on ΛUV does not. However, when evaluating the virtual con-
tributions in the ladder, the domain of the transverse momentum integration
(see Eq. (3.41)) should not violate the assumption of multi-Regge kinemat-
ics. The upper limit on squared transverse momentum should therefore be
the center-of-mass energy. Then, from Eq. (3.41) we see that the inclu-
sion of a virtual graviton gives a term that is proportional to log2(s2/k2).
One of the factors come from log(ρi−1/ρi) (see below Eq. (3.44)) and the
other one comes from the upper limit of the transverse momentum integral.
Such doubly-logarithmic terms in s were already discussed by Lipatov in [16]
and later by Bartels, Lipatov, and Sabio Vera in [82], where universal in-
frared sources of these double logs that come from the integration region
|k′| < |k| were identified and resummed via an evolution equation in Mellin
space [106]. The gravitational BFKL equation does not captures the latter
source of these double logs and a careful inclusion of these terms requires
further work perhaps along the lines of [107] — see also [43, 44, 108, 109].
In the next subsection, we will solve the gravitational BFKL equation for
q = 0 analytically in terms of its eigen values, which are structurally quite
similar to the gauge theory case.

3.4. Analytical solution of the gravitational BFKL equation for q = 0

Let us first simplify Eq. (3.57), denoting fℓ(k,0) ≡ fℓ(k):
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ℓfℓ(k) = 1 +
2κ2

π

∫
d2k′

(2π)2

[
1(

k − k′)4
(
k4 − k2

k′2
(
k · k′)2) fℓ (k′)

+
k2(

k − k′)2 (k′2 +
(
k − k′)2)

×

((
k′ ·

(
k − k′))2( 1

k′2 +
1(

k − k′)2
)

− k2

)
fℓ(k)

]
. (3.61)

Following the methodology from the previous section, defining

fℓ(k) ≡
∫

d2p

(2π)2
gℓ(k,p) , and using 1 =

∫
d2p

(2π)2
(2π)2δ(2)(k − p) ,

(3.62)
allows us to write Eq. (3.61) as

ℓgℓ(k,p) = (2π)2δ(2)(k − p) +
2κ2

π

×
∫

d2k′

(2π)2

[
1(

k − k′)4
(
k4 − k2

k′2
(
k · k′)2) gℓ (k′,p

)
+

k2(
k − k′)2 (k′2 +

(
k − k′)2)

×

((
k′ ·

(
k−k′))2( 1

k′2 +
1(

k−k′)2
)

− k2

)
gℓ(k,p)

]
. (3.63)

As previously, we seek a solution of the form

gℓ(k,p) =
1

p2

∞∑
n=−∞

∞∫
−∞

dν aℓ(ν, n) e
iν(λk−λp) ein(ϕk−ϕp) . (3.64)

Here, λk = log(k2/µ2), λp = log(p2/µ2) (µ being an arbitrary small scale),
and ϕk,p are the azimuthal angles of the vectors k,p, respectively. The above
ansatz is motivated by the delta-function representation
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δ(2)(k − p) =
1

2π2p2

∞∑
n=−∞

∞∫
−∞

dν eiν(λk−λp) ein(ϕk−ϕp) , (3.65)

with which one can write the r.h.s. of Eq. (3.63) as

2κ2

π

∫
d2k′

(2π)2

[
1(

k − k′)4
(
k4 − k2

k′2
(
k · k′)2) gℓ (k′,p

)
+
k2

2

1(
k − k′)2 k′2

((
k′ ·

(
k − k′))2( 1

k′2 +
1(

k − k′)2
)

− k2

)
gℓ(k,p)

]

=
1

p2

∞∑
n=−∞

∞∫
−∞

dν aℓ(ν, n)ω(ν, n) e
iν(λk−λp) ein(ϕk−ϕp) , (3.66)

where ω(ν, n) is the eigenvalue of the BFKL integral operator on the l.h.s.
Using this eigenvalue equation, along with the ansatz Eq. (3.64), in Eq. (3.63),
we find that the coefficients aℓ(ν, n) of the ansatz are given in terms of the
BFKL eigenvalue by

aℓ(ν, n) =
2

ℓ− ω(ν, n)
. (3.67)

Hence, the solution to Eq. (3.63) is given by

gℓ(k,p) =
2

p2

∞∑
n=−∞

∞∫
−∞

dν
1

ℓ− ω(ν, n)
eiν(λk−λp) ein(ϕk−ϕp) . (3.68)

Inserting the ansatz Eq. (3.64) for gℓ(k,p) into Eq. (3.66), the gravita-
tional BFKL eigenvalues can be expressed as

ω(ν, n) =
2κ2

π

∫
d2k′

(2π)2

[
1(

k−k′)4
(
k4− k2

k′2
(
k · k′)2) eiν(λk′−λk) ein(ϕk′−ϕk)

+
k2

(k − k′)2
(
k′2 + (k − k′)2

)
×

((
k′ ·

(
k − k′))2( 1

k′2 +
1(

k − k′)2
)

− k2

)]
. (3.69)
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To regulate the divergence near k′ = k, we split the prefactor in the last
two lines as follows:

ω(ν, n) =
2κ2

π

∫
d2k′

(2π)2

[
1(

k−k′)4
(
k4− k2

k′2
(
k · k′)2) eiν(λk′−λk) ein(ϕk′−ϕk)

+
k2

k′2

(
1

(k − k′)2
− 1(

k′2 + (k − k′)2
))

×
(
(k′ · (k − k′))2

(
1

k′2 +
1

(k − k′)2

)
− k2

)]
. (3.70)

Carrying out the angular integrals, we find

ω(ν, n) = −κ
2k2

4π2
Re

1∫
0

dx eiν log x

[
x

|n|
2
−1

(
|n| − 1 + x

1− x

)
+
δn,0
x

]

−κ
2k2

4π2

1∫
0

dx

[(
1

x
+

1

1− x

)
+

(
1

x
− 2

x
√
4x2 + 1

)

−
(
4

x
+

1

x− 1
− 1

)
−
(

2√
x2 + 4

− 2

x
+ 1

)]
, (3.71)

where the variable x is given by

x =

{
k′2/k2 for k′2 < k2

k2/k′2 for k′2 > k2 . (3.72)

The origins of the various terms that appear in Eq. (3.71) are as follows.
The first line in Eq. (3.71) comes from the first line in Eq. (3.70). The fact
that we only have the real part follows from evaluating the k′ integration in
the domains (0, k) and (k,∞) separately. In the last two lines of Eq. (3.71),
there are four parenthesis within the square brackets: (a) the terms in the
first parenthesis come from the 1/(k − k′)2 term in Eq. (3.70) and the in-
tegration region k′ ∈ (0, k), (b) the terms in the second parenthesis are
from the 1/(k′2 + (k − k′)2) term in Eq. (3.70) and the integration region
k′ ∈ (0, k), (c) the terms in the third parenthesis are from the 1/(k − k′)2

term in Eq. (3.70) and the integration region k′ ∈ (k,∞), and finally (d)
the terms in the last parenthesis come from the 1/(k′2 + (k − k′)2) term in
Eq. (3.70) and the integration region k′ ∈ (k,∞). We should note here the
terms (particularly those from k′2 > k2) that diverge in the x → 0 limit.
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These are present in the two parenthesis in the last line of Eq. (3.71). They
diverge in the argument as 4/x and −2/x, giving a net −2/x contribution,
whose logarithmic divergence can be regulated with the cut-off ΛUV.

Isolating the divergent terms, we obtain

ω(ν, n) = −κ
2k2

4π2
Re

1∫
0

dx eiν log x

[
x

|n|
2
−1

(
|n| − 1 + x

1− x

)
+
δn,0
x

+
2

1− x

]

−κ
2k2

4π2

1∫
0

dx

[
2

x
− 2

x
√
4x2 + 1

− 2√
x2 + 4

]
+
κ2k2

4π2

1∫
k2/Λ2

UV

dx
2

x
.

(3.73)

Thanks to the cancellation of IR divergences, the result of integral in the
first line is finite and the net contribution from the terms within the square
bracket in the second line vanishes. As a result,

ω(ν, n) = −κ
2k2

2π2

[
Reψ

(
iν +

|n|
2

+ 1

)
+ γE +

n2 − |n|
4ν2 + n2

+ log

(
k2

Λ2
UV

)]
,

(3.74)
where γE is Euler’s constant and ψ(x) is the digamma function.

The GR BFKL eiegnvalues are plotted in Fig. 26. It is evident that the
largest eigenvalue is attained for ν = 0 and n = 0, just as in the gauge
theory case. However, unlike the latter, the maximal value here depends on
the UV cut-off. At n = 0, the eigenvalue has the small ν expansion

ω(ν, n = 0) = −κ
2k2

2π2

[
log

(
k2

Λ2
UV

)
+

∞∑
k=1

(−1)kψ(2k)(1)

(2k)!
ν2k

]

=
κ2k2

2π2

[
log

(
Λ2
UV

k2

)
− ν2ζ(3) +O

(
ν4
)]

. (3.75)

Having computed the BFKL eigenvalues, one can now work backwards
and compute the total 2 → 2 cross section of graviton–graviton scattering.
However, there is a subtlety in our derivation of the eigenvalues. Notice
that in deriving the eigenvalues we had to regulate the k′ integral by ΛUV.
In the QCD case, there was no need of such a cut-off30 since the BFKL
equation there had no UV divergences. In gravity though, because the grav-
itational Regge trajectory has a UV divergence, the handling of the trans-
verse momentum integrals are trickier. As noted, the natural cut-off is the

30 This is true only for the BFKL equation at leading-logarithmic accuracy. At NLLx
order, the transverse momenta integral has

√
s as the upper bound [108] — see the

discussion in Section 2.6.
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Fig. 26. Plot of ω̃(ν, n) = 2π2

κ2k2ω(ν, n) + log( k2

Λ2
UV

), where ω(ν, n) are the gravita-
tional BFKL eigenvalues in Eq. (3.74) for n = 0, 1, 2, 3, 4, 5. ω̃(ν, n) is therefore
independent of Λ2

UV. As in the gauge theory case, the maximum is attained for
n = 0 at ν = 0, with maximal value ω̃∗ = 0.

center-of-mass energy
√
s instead of ΛUV. However, simply replacing ΛUV

with
√
s in the expression for the BFKL eigenvalue is an inconsistent proce-

dure because one then takes the Mellin transform w.r.t. s before performing
the transverse momentum integrals, whose upper bound is dependent on s.
Therefore, one needs to go back and reanalyze the BFKL ladder diagram
prior to performing the Mellin transform.

To appreciate this further, let us have a closer look at the expression for
the gravitational one-loop Regge trajectory in Eq. (3.46). This provides the
source of the UV divergence in the gravitational BFKL equation. In light
of the above discussion, and replacing Λ2

UV with s, from Eq. (3.46), and
the expression for the insertion of a soft graviton line σ(k) in Eq. (3.44),
we see that in addition to the Sudakov log (log(−s/t) log(−t/ΛIR)), we also
get a double log of the form log2(−s/t) that needs to be resummed as well.
There are two sources of this double log, one from virtual graviton lines
along the ladder, and the other from virtual graviton lines that are emitted
and absorbed by external legs.
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It was pointed out in [16] that the resummation of the ladder-type
log2(−s/t) contributions sum up to the modified Bessel function,

ML2

2→2,ladder ∼

√
− 8π2

3κ2tξ2
I1

(
2

√
−3κ2tξ2

8π2

)
,

= 1−
3 log2

(
− s

t

)
16π2

κ2t+
3 log4

(
− s

t

)
256π4

κ4t2 + . . . , (3.76)

where ξ = log(− s
t ). On the other hand, the resummation of the non-ladder-

type log2(−s/t) terms (involving soft virtual graviton exchanges between
external legs) was discussed in [103] building upon a similar analysis in the
context of quark–quark scattering in QCD [106, 110].

The upshot of the analysis in [103] is that the complete (ladder + non-
ladder) log2(−s/t) contributions can be neatly expressed as a contour inte-
gral

ML2

2→2 ∼
δ+i∞∫

δ−i∞

dω

2πi

(
−s
t

)ω f(ω, t)
ω

, (3.77)

where the contour is along the imaginary axis anchored at δ that is to the
right of all the singularities of f(ω, t). The latter satisfies the Riccati equa-
tion

f(ω, t) = 1− κ2t

8π2
d

dω

(
f(ω)

ω

)
− 3κ2t

8π2
f(ω)2

ω2
. (3.78)

On the r.h.s., the last term corresponds to the purely ladder contribution,
whereas the derivative term corresponds to the non-ladder contributions31.
Such equations also appear in the double-log contributions in quark–quark
scattering [106, 110]. Equation (3.78) admits an exact solution given by

f(ω) = 1− 2κ2t

3κ2t+ 8π2ω2
. (3.79)

We observe that the ratio f(ω)/ω in Eq. (3.77) has simple poles in ω at
ω = {0,±

√
−3κ2t/8π2}. Computing the contour integral in Eq. (3.77)

therefore gives

ML2

2→2 ∼ 1

3

[
1 +

(
−s
t

)√−3κ2t/8π2

+
(
−s
t

)−√−3κ2t/8π2
]

= 1− κ2t

8π2
log2

(
−s
t

)
+

κ4t2

256π4
log4

(
−s
t

)
+ . . . . (3.80)

31 The solution of Eq. (3.78) in the absence of the derivative term recovers the resummed
result of purely ladder-type ln2(−s/t) contributions in Eq. (3.76). We thank Anna
Stasto for a discussion on this point.
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The resummed result in the above equation shows that in the Regge limit,
the ln2(−s/t) contribution to the growth of the amplitude behaves as
s
√

−3κ2t/8π2 . We remark that this resummation decouples from the resum-
mation of the Sudakov double logs (log(−s/t) log(−t/ΛIR)). The latter re-
sums to (−s/t)κ2t log(−t/ΛIR)/8π2 , as previously discussed in Eq. (3.47).

In summary, taking into account both the resummation of Sudakov logs
and log2(−s/t) contributions, the complete 2 → 2 elastic graviton amplitude
can be expressed as

MSudakov+L2

2→2 ∼ MBorn
(
−s
t

)κ2t log(−t/ΛIR)/8π2

×1

3

[
1 +

(
−s
t

)√−3κ2t/8π2

+
(
−s
t

)−√−3κ2t/8π2
]
,

= MBorn

(
1 +

κ2

8π2
t log

(
−s
t

)
×
[
log

(
− t

ΛIR

)
− log

(
−s
t

)]
+ . . .

)
. (3.81)

Here, MBorn is the Born amplitude in Eq. (3.18). We note that since t < 0,
the growth of the 2 → 2 amplitude is slightly slower than s2.

3.5. The Weinberg regime

We will discuss here the relation between Lipatov’s (hard) graviton emis-
sion vertex and the Weinberg (soft) graviton emission vertex. Its key feature
is that the soft momentum limit (of the emitted graviton) from the Lipa-
tov vertex is the same as Weinberg’s expression for gravitational radiation in
the high-energy limit. For complementary discussions, we refer the reader to
[68, 111, 112], where the matching of the Lipatov and the Weinberg regimes
were discussed previously.

We first analyze the Lipatov vertex given by Eq. (3.38)

Cµν(q1, q2) =
1

2
Cµ(q1, q2)C

ν(q1, q2)−
1

2
Nµ(q1, q2)N

µ(q1, q2) .

Expanding out the first term, and keeping only the singular terms in the
soft momenta k, we find
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Cµ(q1, q2)C
ν(q1, q2) ∼

(
−qµ1 − qµ2 +

pµ1q
2
1

p1 · k
− pµ2q

2
2

p2 · k

)
×
(
−qν1 − qν2 +

pν1q
2
1

p1 · k
− pν2q

2
2

p2 · k

)
=

pµ1p
ν
1q

4
1

(p1 · k)2
+

pµ2p
ν
2q

4
2

(p2 · k)2
− (pµ1p

ν
2 + pν1p

µ
2 ) q

2
1q

2
2

(p1 · k)(p2 · k)

−
[
(qµ1 + qµ2 )

(
pν1q

2
1

p1 · k
− pν2q

2
2

p2 · k

)
+ (µ↔ ν)

]
. (3.82)

The third term in the r.h.s. on the third line is canceled by the contribution
from Nµ(q1, q2)N

µ(q1, q2), whose expansion gives

Nµ(q1, q2)N
ν(q1, q2) = q21q

2
2

(
pµ1p

ν
1

(p1 · k)2
+

pµ2p
ν
2

(p2 · k)2
− (pµ1p

ν
2 + pν1p

µ
2 )

(p1 · k)(p2 · k)

)
.

(3.83)
Note that when considering the k → 0 limit, the momenta q1 and q2 are also
constrained since k = q1−q2. This leads to a partial cancellation of the first
two terms in Eq. (3.82). As a result, we obtain

1

2
(CµCν −NµNν) ∼ q21

(
pµ1p

ν
1

(p1 · k)2
− pµ2p

ν
2

(p2 · k)2

)
(k · q1)

−q21

[
qµ1

(
pν1
p1 · k

− pν2
p2 · k

)
+ (µ↔ ν)

]
. (3.84)

We define now γµν as

Cµν(q1, q1 − k) ≡ q21γ
µν(q1, q1 − k) ,

∣∣k2
∣∣≪ q21 . (3.85)

where

γµν(q1, q1 − k) =

(
pµ1p

ν
1

(p1 · k)2
− pµ2p

ν
2

(p2 · k)2

)
(k · q1)

−
[
qµ1

(
pν1
p1 · k

− pν2
p2 · k

)
+ (µ↔ ν)

]
. (3.86)

Note that the emission vertex has a quadratic pole in (pi · k). Such poles
are not present in the Weinberg formula as discussed below and our goal is
to reconcile the presence of such poles in the two formulas.

Since the emitted graviton is on-shell, it is convenient to contract the
emission vertex with the graviton polarization tensor εµν . Noting the rela-
tion between the various momenta

q1 = p1 − p′1 , q2 = p′2 − p2 , k = p1 + p2 − p′1 − p′2 , (3.87)
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and fixing the polarization tensor to be in light-cone gauge

εµν(k)p
µ
1 = 0 , εµν(k)k

µ = 0 , (3.88)

the contraction of γµν with it gives

γµνε
µν = − kikj

(p−2 k
+)2

(
p−2
k−

)2

k · q1εij − 2
qµ1k

i

p−2 k
+

(
p−2
k−

)
εiµ

= −4

[
k · q1
k4 kikj +

kiqj1
k2

]
εij . (3.89)

In deriving this expression, we made use of the identities

εµνp
ν
2 = −p

−
2

k−
kiεiµ , εµνp

µ
2p

ν
2 =

(
p−2
k−

)2

kikjεij , 2k+k− = k2 .

(3.90)
Now let us analyze the high-energy limit of the Weinberg vertex. For

every insertion of a soft graviton line (carrying momentum k) to an external
leg of a nonradiative amplitude carrying momentum pi, one attaches a factor

Lµν
W =

∑
i

ηip
µ
i p

ν
i

pi · k
, (3.91)

to reconstruct the radiative amplitude. Here, ηi = ±1, depending on whether
the momenta are incoming to the vertex or outgoing from it. For 2 → 2 scat-
tering with momenta p1 + p2 → p′1 + p′2, we get

Lµν
W =

pµ1p
ν
1

p1 · k
+
pµ2p

ν
2

p2 · k
− p′µ1 p

′ν
1

p′1 · k
− p′µ2 p

′ν
2

p′2 · k
. (3.92)

Contracting this expression with the polarization tensor then gives

Lµν
W εµν = 0 +

(
p−2
k−

)2
kikj

p−2 k
+
εij −

qµ1 q
ν
1

k−p+1 − k · q1
εµν +X . (3.93)

The zero in the first term follows from the gauge condition Eq. (3.88). The
second term follows from the identity in Eq. (3.90). For the third term, in
the numerator, we used Eq. (3.87), whereas for the denominator we used the
approximation

p′1 · k = p1 · k − q1 · k ≈ p+1 k
− − q1 · k . (3.94)
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We replaced q1 · k → q1 · k because q1,2 can be written as

qµ1 = qµ1 +
k · p2
p1 · p2

pµ1 , qµ2 = qµ2 − k · p1
p1 · p2

pµ2 , (3.95)

which ensures k = q1 − q2 and k+ = q+1 , k
− = q−2 . Therefore, in the soft-k

limit,
qµ1 ≈ qµ1 , qµ2 ≈ qµ2 . (3.96)

In the high-energy limit, p+1 and p−2 are much larger than any other momenta.
Doing a Taylor expansion, the third term in Eq. (3.93) therefore becomes

− qµ1 q
ν
1

k−p+1 − k · q1
εµν ≈ − qi1q

j
1

k−p+1
εij +O

((
1

p+1

)2
)
. (3.97)

Finally, we come to the last term in Eq. (3.93) denoted by X and corre-
sponding to the last term in Eq. (3.92). To evaluate it, first note that

p′µ2 p
′ν
2 = pµ2p

ν
2 + qµ2 p

ν
2 + pµ2q

ν
2 + qµ2 q

ν
2

≈ pµ2p
ν
2 + qµ2p

ν
2 + pµ2q

ν
2 + qµ2q

ν
2 . (3.98)

The second line follows from the soft-k limit, as discussed above. When
contracted with the polarization tensor, it gives

p′µ2 p
′ν
2 εµν ≈

[(
p−2
k−

)2

kikj − 2p−2
k−

kiqj2 + qi2q
j
2

]
εij . (3.99)

Next, we analyze the denominator of the last term in Eq. (3.92), which can
be reexpressed as

1

p′2 · k
=

1

p2 · k + q2 · k
≈ 1

p−2 k
+ − q2 · k

≈ 1

p−2 k
+

(
1− q2 · k

p−2 k
+
+O

((
1

p−2

)2
))

. (3.100)

In the above, we expanded to first nontrivial order in p−2 because there
are terms upto (p−2 )

2 present in the numerator — see Eq. (3.99). Putting
everything together, we find

X = −p
′µ
2 p

′ν
2

p′2 · k
εµν = −

[(
p−2
k−

)2
kikj

p−2 k
+
−
(
p−2
k−

)2
q2 · k(
p−2 k

+
)2kikj

−2p−2
k−

1

p−2 k
+
kiqj2 +

qi2q
j
2

p−2 k
+

]
εij . (3.101)
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Note that the first term on the r.h.s. cancels against the second term in
Eq. (3.93). We therefore get

Lµν
W εµν =

[
4
q2 · k
k4 kikj + 4

1

k2k
iqj2 −

qi2q
j
2

p−2 k
+
− qi1q

j
1

k−p+1

]
εij . (3.102)

The last two terms are suppressed w.r.t. the first two terms in the high-
energy limit. Also, since k is small, we can replace q2 with q1 in the second
term above. After these manipulations, our final expression for the Weinberg
current in the high-energy limit is

Lµν
W εµν = −

[
4
q1 · k
k4 kikj + 4

kiqj1
k2

]
εij . (3.103)

This matches precisely with the soft limit of the Lipatov vertex we derived
in Eq. (3.89). Thus, the soft limit of Lipatov vertex is equivalent to the
high-energy limit of the Weinberg soft graviton emission vertex.

3.6. A classical double-copy relation for the Lipatov vertex

We will discuss here a double-copy relation between the Lipatov ver-
tices in gauge theory and gravity first observed in [113]. In order to estab-
lish this relation, we will begin with an expression derived for the classical
Yang–Mills radiation field produced in the collision of two massive colored
charges caα(τα), where a is the color index, with masses mα, and velocities
vα (α = 1, 2). The trajectories of the particles are parameterized by their
respective worldline parameters τα. Solving the Wong equations of motion
of the classical charged particles in a slowly varying Yang–Mills background
field, the result for the Yang–Mills radiation field is [114]

Aµ,a(k) = −g
3

k2

∑
α,β=1,2
α ̸=β

∫
µα,β(k)

[
cα · cβ
mα

q2α
k · vα

caα

×
{
−vα · vβ

(
qµβ −

k · qβ
k · vα

vµα

)
+ k · vαvµβ − k · vβvµα

}
+ifabccbαc

c
β

{
2 (k · vβ) vµα − (vα · vβ) qµα + (vα · vβ)

q2α
k · vα

vµα

}]
,

(3.104)

where g denotes the Yang–Mills gauge coupling. The four-momentum of the
emitted on-shell gluon is k and µα,β(k) is the integration measure
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µα,β(k) =
d4qα
(2π)4

d4qβ
(2π)4

[
(2π)δ (vα · qα)

eiqα·bα

q2α

]
[
(2π)δ (vβ · qβ)

eiqβ ·bβ

q2β

]
(2π)4δ4 (k − qα − qβ) . (3.105)

The timelike velocities of the massive particles are normalized to v2α = 1.
The spacelike vectors bα are for simplicity set to be purely transverse (per-
pendicular to the collision axis).

We will now show that Eq. (3.104) encodes the QCD Lipatov vertex
plus certain subeikonal corrections. To see this [113], one needs to first
take the ultrarelativistic limit of Eq. (3.104), achieved by parameterizing
the four-velocity v of the incoming particles with the boost parameter γ.
For finite γ, the particles are on a timelike trajectory; the ultrarelativistic
limit corresponds to γ → ∞. However, in order to keep the energies finite,
we need to simultaneously take m → 0 such that γm is finite. We next
perform the longitudinal integrals in q+ and q−, with the result [113]

Aµ,a(k) = −g
3

k2

∫
d2q2
(2π)2

e−iq1·b1

q21

eiq2·b2

q22

×
[
ifabccb1c

c
2

(
2
k · p2
p1 · p2

pµ1 − 2
k · p1
p1 · p2

pµ2 +
q21
k · p1

pµ1 − q22
k · p2

pµ2 − qµ1 − qµ2

)
+c1 · c2

{
q21c

a
1

p1 · k

(
qµ2 − k · q2

k · p1
pµ1 +

k · p1
p1 · p2

pµ2 − k · p2
p1 · p2

pµ1

)
+
q22c

a
2

p2 · k

(
−qµ1 +

k · q1
k · p2

pµ2 +
k · p2
p1 · p2

pµ1 − k · p1
p1 · p2

pµ2

)}]
. (3.106)

Here, p1 and p2 are the (lightlike) momenta of the colliding charges. Within
the square brackets, the terms in parenthesis in the first line constitute the
QCD Lipatov vertex obtained in Eq. (2.33) through dispersive techniques32.
The second line contains non-universal33 subeikonal 1/p+1 and 1/p−2 correc-
tions.

Next, we show that there is a “classical” color-kinematic replacement
prescription [114] that reproduces the gravitational Lipatov vertex starting
from Eq. (3.106). The replacement rules are as follows34

32 To be consistent with our notations, we flipped the sign of q2 here w.r.t. the corre-
sponding expressions in [113], such that k = q1 − q2.

33 These terms are nonuniversal because they are sensitive to the nature of the external
particles, for instance their spin.

34 These rules have been generalized to higher orders in perturbation theory [115].
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caα → pµα ,

ifa1a2a3 → Γ ν1ν2ν3 (q1, q2, q3)

= −1

2
(ην1ν3 (q1 − q3)

ν2 − ην1ν2 (q2 + q1)
ν3 + ην2ν3 (q3 + q2)

ν1) ,

g → κ . (3.107)

The motivation behind these replacements is the structural similarity be-
tween the classical equations of motion in QCD and gravity. Evidence for
these replacement rules also stems from analyzing the double-copy structure
of classical fields due to boosted sources [116], and from radiation in the soft
regime that reproduces Weinberg’s soft graviton theorem [117]. We note
there that the replacements in Eq. (3.107) are not strictly of the BCJ-type35

investigated in [96, 101, 102]. In these papers, the usual BCJ color-kinematic
replacement for obtaining the gravitational Lipatov vertex from the gauge
theory Lipatov vertex does not work fully. One only obtains the CµCν part
of the gravitational vertex but not the NµNν bit in Eq. (3.38). It was real-
ized later in [113] that the appropriate setup where there exists a manifest
color-kinematic relation for the full Lipatov vertex is that of the Wong +
Yang–Mills equations.

35 In the usual BCJ color to kinematic replacement [118, 119], one first writes a scat-
tering amplitude (generically m-points and L-loop order) as

A(L)
m = iLgm−2+2L

∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

njcj∏
αj

p2αj

. (3.108)

Here, the sum is over all distinct m-point L-loop graphs labeled j with only cubic
vertices and Sj is the symmetry factor associated to the graph. The denominator is
a product over all Feynman propagators in the graph and the ci are the color factors
that come from the structure constants appearing in the three-point vertices. The
nj are the kinematic numerators that depend on the momenta and polarizations. In
Eq. (3.108), the color factor triplet (ci, cj , ck) satisfy ci + cj = ck, stemming from the
Jacobi identity.
Equation (3.108) satisfies the BCJ duality if there exist three associated kinematic
numerators ni, nj , nk, also related by a Jacobi identity: ni + nj = nk. Furthermore,
the ni factors must satisfy an antisymmetry property that the color factors satisfy
upon an interchange of two external legs attached to the same three-point vertex:
ci → −ci =⇒ ni → −ni.
A consequence of the BCJ duality is that one can combine two gauge theory ampli-
tudes of the form Eq. (3.108) A(L)

m and Ã(L)
m , and obtain a gravity amplitude M(L)

m

M(L)
m = iL+1

(κ
2

)m−2+2L ∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

nj ñj∏
αj

p2αj

, (3.109)

where one replaces ci → ñi (the kinematic numerator in Ã(L)
m ) and g → κ/2 in the

formula of A(L)
m . We point the reader to the reviews in [120–123] for further details.
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Applying Eq. (3.107) to Eq. (3.106) gives Aµ,a → Aµν , the gravitational
wave amplitude

Mµν(k) = −κ
3

k2

∫
d2q2

(2π)2
e−iq1·b1

q21

eiq2·b2

q22[
− 1

2

(
−2pν2(k · p1) + 2pν1(k · p2)−

s

2
(q2 + q1)

ν
)

×
(
−qµ1 − qµ2 +

k · p2
p1 · p2

pµ1 − k · p1
p1 · p2

pµ2 − q21
k · p1

pµ1 +
q22
k · p2

pµ2

)
+
s

2

{
q21p

ν
1

p1 · k

(
qµ2 +

k · q2
k · p1

pµ1 − k · p2
p1 · p2

pµ1

)
+
q22p

ν
2

p2 · k

(
−qµ1 +

k · q1
k · p2

pµ2 − k · p1
p1 · p2

pµ2

)}]
. (3.110)

The first line in the square brackets comes from the kinematic replacement
of the structure constant fabc, where the momenta q1 (q2) are incoming
(outgoing) and k = q1 − q2 is outgoing. In writing this expression, we used
the constraint pα · qα = 0 that follows from the delta function in Eq. (3.105)
(after taking the ultrarelativistic limit) and replaced 2p1 ·p2 with the squared
center-of-mass energy s. The third line is simply the parenthesis in the
first line of Eq. (3.106), where we additionally used the identities qµ1 =

qµ1 + k·p2
p1·p2 p

µ
1 , qµ2 = qµ2 + k·p1

p1·p2 p
µ
2 to express qµα in terms of the transverse

momenta alone. When written in this way, the third line is identical to the
expression for the QCD Lipatov vertex in Eq. (2.33). The last two lines in
Eq. (3.110) follows from the last line in Eq. (3.106) but with the replacement
ca → pµ.

A straightforward algebraic simplification of the expression given in
Eq. (3.110) gives

Mµν(k) =
κ3s

2 k2

∫
d2q2
(2π)2

e−iq1·b1

q21

e−iq2·b2

q22

×1

2

[
CµCν −NµNν + kµ

(
pν1
p1 · k

q21 +
pν2
p2 · k

q22

)]
. (3.111)

The combination of the first two terms is precisely the gravitational Lipatov
vertex. The term in the bracket that is proportional to kµ is unphysical and
can be removed by a gauge transformation. This completes our demonstra-
tion of how one recovers the gravitational Lipatov vertex from a classical
color-kinematic duality.
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An important observation is that the terms in the second line of
Eq. (3.106) that were subleading for large p+1 , p−2 contribute at leading or-
der after the color-kinematic replacement ca → pµ. This also demonstrates
that the eikonal approximation does not commute with the double-copy pro-
cedure. One needs to keep the appropriate subeikonal terms in the gauge
theory result before performing the double-copy replacements to arrive at
the gravity answer.

3.7. Fractionation and classicalization in 2 → 2 + n scattering amplitudes

As we have discussed thus far, scattering processes in the Regge asymp-
totics of both QCD and gravity are characterized by the dominance of multi-
particle exchanges and large logarithmic enhancements resulting in struc-
tures comprised of Lipatov vertices and reggeized graviton propagators. Li-
patov developed a 2-D reggeon effective field theory (EFT) for both QCD
and gravity with these building blocks as the relevant degrees of freedom in
the MRK regime [80]. ACV significantly developed this 2-D EFT [70, 71]
to calculate semi-classical contributions to the (generalized) eikonal phase
in the 2 → 2 S-matrix which, as previously alluded to, can be organized as
an expansion in R2

S/b
2. This expansion is understood to be purely classical,

weighted by a factor of 1/ℏ. While the Lipatov vertex can be understood
as a tree-level classical quantity, this is not apparent for the reggeized gravi-
ton. Indeed, we saw earlier that reggeized gravitons are constructed from
all-loop contributions at leading-logarithmic accuracy. In this subsection,
we will address ℏ counting in scattering phase shifts, and the phenomena of
fractionation and classicalization in multi-particle production.

We first revisit the discussion of the 2 → 2 S-matrix from the introduc-
tion in this section. Recall that in the eikonal framework of ACV all the
classical contributions to the 2 → 2 S-matrix are exponentiated to give the
generalized eikonal phase e2iδ(b,E), with δ(b, E) admitting a nontrivial ex-
pansion in powers of (R2

S/b
2)n/ℏ. The results for n = 0, 1 were computed in

[64, 68], as noted earlier in Eqs. (3.7) and (3.8). These results were obtain
by ACV within the S-matrix framework in string theory [64, 65, 124, 125],
and taking the field theory limit.

Their results are also obtained36 from resumming the leading ℏ terms in
the loop expansion of the M2→2 amplitude in general relativity [128–132].
For example, in Einstein gravity, the one-loop correction to the 2 → 2 am-

36 Generically, loop-level amplitudes in QFT encode both classical (O(ℏ−1)) and quan-
tum (O(ℏ0) and higher) terms. See, for example, discussions in the context
of QED and gravity in [72, 73, 81]. In the latter, the Kosower, Maybee, and
O’Connell (KMOC) formalism connects classical observables to on-shell quantum
amplitudes [126]. For an application of this formalism to the classicaly double copy,
see [127].
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plitude (M1) receives contributions from not only box and the cross-box
diagrams but also from the triangle, inverted triangle, and bubble diagrams
— see, for instance, [130, 131]. In the eikonal framework, these diagrams
are computed with the propagators of the external particles between any
two virtual gravitons replaced by eikonal propagators. The classical ℏ ex-
pansion of M1 is then obtained by isolating the nonanalytical terms in the
small-q2 expansion, where q is the total momentum transfer. The leading
term in the expansion of M1 is 1/(2!ℏ2)(2iδ0)2 which contributes towards
the exponentiation of δ0. The subleading term proportional to 1/ℏ vanishes
for the case of massless external particles. Finally, the order ℏ0 term in the
expansion of M1 contributes to the exponentiation of δ1 in Eq. (3.7) which
is a quantum correction — such corrections do not necessarily exponentiate.
Similarly, higher post-Minkowskian (PM) contributions to the eikonal phase
can be extracted from the resummation of the relevant terms appearing in
the classical expansion of higher-loop diagrams. As noted previously, the
first subleading classical contribution, at 3 PM, to the eikonal phase con-
tributes to δ2 in Eq. (3.8). Much of the interest in quantum → classical
dynamics discussed above is in the context of computing the potential in
black hole inspirals to high-PM order [133, 134], while our interest is in the
Regge asymptotics of trans-Planckian scattering.

Returning to our discussion of 2 → 2 + n graviton scattering, how can
we understand reggeization and multi-particle production as semi-classical
features of an ab initio “quantum first” QFT picture in perturbative grav-
ity [135]. We will argue here that the key to this is t-channel “fractiona-
tion” [136] followed by s-channel “classicalization” [137, 138]. We will outline
these ideas here and flesh out the arguments later in Section 4 for the QCD
case and in Section 5 for gravity.

For the latter case, while there are many subtleties involved as artic-
ulated in [135], a reasonable “bottom up” approach is via Weinberg’s soft
graviton theorem, aspects of which we discussed previously in Section 3.5.
As pointed out there, the concept of infrared divergences in virtual graphs
and their cancellation, à la Block–Nordsiek, is an intrinsically quantum me-
chanical concept that involves ℏ. However, as Weinberg noted in his paper
as “Another remark”, the power spectrum itself is classical; an example of
such a semi-classical phenomenon is the classification of showers of partons
as jets in QCD [139]. Weinberg’s remark leads us to anticipate that reggeiza-
tion in MRK can be understood similarly. We saw explicitly in Section 3.5
that the Weinberg radiative factor in ultrarelativistic kinematics is the soft
limit of the Lipatov vertex; therefore, due to the required cancellation of IR
divergences, the virtual contributions must behave similarly in the Lipatov
and Weinberg regimes. Indeed, Addazi, Bianchi, and Veneziano (ABV) [90]
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showed that Weinberg’s soft factor or “cusp anomalous dimension”37 in the
massless limit has precisely the Sudakov double-log structure of Eq. (3.11).
Specifically, the factor σ(k2) in Eq. (3.45) along with Eq. (3.60) which is
associated to attaching a virtual line obtained in MRK38.

Further, as Weinberg showed, the infrared dynamics in QED and gravity
behave nearly identically, leading, respectively, to soft photon and soft gravi-
ton exponentiation. In QED, it was shown by Faddeev and Kulish (FK) [141]
that the IR divergent “Coulomb tail” contributions to the Hamiltonian can
be factored out and represent soft photon coherent state operators that act
on the asymptotic vacuum. The S-matrix corresponding to these incoming
and outgoing coherent states is infrared finite to all orders in perturbation
theory39. A recent significant development is the interpretation of these
QED coherent states as the eigenstates of charges corresponding to the bro-
ken asymptotic symmetry of large gauge transformations [144]. There exists
an analogous FK construction in gravity [145] due to the broken asymptotic
BMS symmetry of supertranslations and superrotations [146–148]; these FK
states are coherent states in gravity. The FK S-matrix was shown previ-
ously [149, 150] to be equivalent to Weinberg’s soft graviton theorem.

Unlike QED and gravity, QCD is a confining theory and the coherent
state description of even perturbative phenomena is not fully robust [151,
152]. Nevertheless, there is an emergent semi-classical picture in Regge
asymptotics. For the MRK discussed in Section 2, where αs ln(s/|t|) ∼ 1,
BFKL evolution leads to rapid growth in the phase space occupancy of pro-
duced gluons. In MRK, where the n-final-state particles have the same semi-
hard transverse momentum but are “angle ordered” in rapidity, the phase
space occupancy peaks at 90 degrees orthogonal to the collision axis. In this
gluon saturation regime we discussed in Section 2.6, one observes emergent
classicalization with phase space occupancies N ∼ 1/αs; the dynamics is
nonperturbative, albeit weakly coupled.

In particular, the power counting for multi-particle production in the
CGC EFT is significantly modified compared to power counting in perturba-
tive QCD, as we will discuss at length in the next section. In brief, the dom-
inant contribution to multi-particle production arises from cutting reggeons
exchanged in horizontal ladders, which one may call s-channel fractiona-
tion, and leads to the formation of shockwaves40. Further, ultrarelativistic

37 As we will see next in Section 4, in modern language the cusp factor in QCD can be
interpreted as a Wilson line [140]; the reggeized graviton, similarly, can be understood
to be the logarithm of the gravitational Wilson line [84].

38 This requires identifying the hard scale Λ in Weinberg (and in ABV Eq. (4.5) along
with Eq. (4.7)) with the momentum transfer t in the hard 2 → 2 amplitude separating
the Weinberg 2 → 2 + n regime from the Lipatov 2 → 2 + n regime.

39 See [142, 143] and references therein to some of the extensive literature on this topic.
40 In the CGC EFT, the transition from the gluon saturation region to the BFKL regime

is smooth for inclusive distributions.
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hadron and nuclear collisions in this regime can be treated as collisions
of shockwaves, with multi-particle production similarly obeying s-channel
fractionation. This process creates strongly correlated overoccupied matter
called the glasma [153–155] that we will discuss further in Section 4.5. Ove-
roccupancy in the CGC EFT is characterized by the saturation scale QS,
which screens color correlations of modes with momenta below QS.

The degrees of freedom in the EFT are strong classical color sources of or-
der O(1/g) and dynamical gauge and fermion fields (that begin to contribute
at NLO in the power counting). A very important feature is that the color
sources are stochastic on coherence times of interest, with the stochasticity
represented by nonperturbative gauge-invariant weight functionals that are
many-body density matrices encoding the ultrasoft ΛQCD-scale dynamics (to
be distinguished from the QS scale dynamics) of the theory at high ener-
gies. Remarkably, there is a concrete map of the CGC EFT to Lipatov’s 2-D
reggeon EFT, with the color sources identified as the reggeon fields. As we
will discuss at length in Section 4, loop corrections to LLx and NLLx accu-
racy can be absorbed in the renormalization of the sources, and of the weight
functionals, retaining its structure as a classical–statistical EFT. The color
sources/reggeized fields are semi-classical objects in this description. In the
Schwinger–Keldysh formulation of QFT, appropriate for describing strong-
field QFT, defined in terms of sum and difference fields, genuine quantum
effects only come in at cubic order in the difference fields; it is at this order
that the classical–statistical framework breaks down. In the CGC EFT, this
occurs starting at NNLLx accuracy and likely leads also to the breakdown
of reggeization.

In variance with the language of cut and uncut reggeons, the reinter-
pretation in the CGC EFT of multi-particle production as occurring in the
presence of coherent sources has the advantage of being a straightforward
extension of QFT to the strong-field regime with introductory discussions
available in classic QFT textbooks [156–158]. For instance, as we will dis-
cuss at length in Section 4.5, so-called AGK rules [159] for cut and uncut
reggeons have a simple interpretation in terms of Cutkosky’s rules in strong
time-dependent fields. The AGK rules were developed for QCD but were also
employed extensively by ACV in gravity. In the strong-field gluon saturation
regime, the dominant contributions in the power counting for multi-particle
production are not from cuts to the t-channel “vertical” gluon ladder, but
instead from s-channel cuts to horizontal ladders. The transition from the
one regime to the other was outlined in Section 2.6, reflecting the breakdown
of the OPE due to large power corrections. It is these n-gluon emissions that
lead to phase space overoccupancy (N ∼ O(1/αs)): In other words, it leads
to classicalization.
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Our QCD discussion provides useful insight into fractionation and clas-
sicalization in gravity. However first, as discussed above, the asymptotic
in–out states in the S-matrix picture of gravity can already be thought of as
FK coherent states absorbing the IR divergences manifest in the perturba-
tive Weinberg picture41; as noted, this formalism has powerful support when
one takes into account the BMS extension of the Poincaré group. Further
fractionation can occur via gravitational BFKL as discussed in the previ-
ous subsections in kinematics where λGR ln(s/|t|) ∼ 1, and will follow the
same patterns as outlined for QCD. However, for most practical applica-
tions42, the initial states of relevance to black hole formation and dynamics
are already classical corresponding to a huge overoccupancy of gravitons.

Thus, just as in the CGC EFT, the dominant contribution to multi-
graviton production when b → RS is from the s-channel “multi-reggeon”
cuts43 discussed by ACV [70, 71]. As we will discuss in Section 5, the S-ma-
trix problem in this context turns into the problem of multi-particle pro-
duction in shockwave collisions. The new element is the same as in QCD,
the nonperturbative weight functionals that naturally introduce stochastic
multi-graviton initial conditions at RS. Unlike the former though, the di-
rection in gravity is IR → UV. In [165], it is speculated that the physics
of these overoccupied semi-classical states is universal, with 1/RS playing
the role of QS in gravity. Indeed, as we will discuss further in Section 5,
the parallels are quite striking. One can however be agnostic about whether
there is an imprint of UV physics on this IR horizon scale; in Section 5, we
will briefly outline how our formalism can provide tests of different scenarios
at future gravitational wave detectors.

4. Color Glass Condensate approach
to high-energy scattering in QCD

As extensively discussed in Section 2, the outstanding achievement of
Lipatov and collaborators was to show that 2 → n scattering, which gives
the dominant contribution to the imaginary part of the 2 → 2 gluon am-
plitude in MRK, can be described as iterations of one rung of the ladder
containing reggeized gluons and the Lipatov vertex to NLLx accuracy. The

41 See [160, 161], where the same conclusion is reached. For a further interesting ap-
proach to the problem, we refer the reader to [162], which employs the BCFW recur-
sion relations [22, 23] and generalized unitary methods [163, 164]. These approaches
are complementary to the Schwinger–Keldysh framework we will follow in this review.

42 Nevertheless, our discussion of FK coherent states and gravitational BFKL addresses
the interesting gedankan problem of black hole formation in 2 → 2 + n scattering in
the QFT formulation of general relativity.

43 Very similar arguments were advanced by ABV to reconcile their work with that of
Dvali and collaborators [91].
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color singlet projection of the exchange of two reggeized gluons is the per-
turbative pomeron, the weak coupling counterpart of the soft pomeron often
invoked to describe the systematics of total cross sections. However, as dis-
cussed in Section 2.6, BFKL dynamics cannot be the complete story since
its solution shows that the unintegrated gluon distribution F(x,k) diffuses
to infrared and ultraviolet momenta with increasing rapidity. The former
is clearly troublesome since that is the nonperturbative regime k ∼ ΛQCD

where weak coupling computations are invalid. Further, the rapid growth
of the inclusive cross section for a fixed impact parameter violates unitarity
at large rapidites. Not least, the increasing phase space occupancy due to
the rapid proliferation of gluons at small x suggests that many-body (higher
twist) correlations are important and not captured by the BFKL evolution.
All of these issues persist at NLLx accuracy.

A solution to the aforementioned problems is the phenomenon of gluon
saturation [24, 48] that we also discussed at some length in the DIS context in
Section 2.6. Its principal feature is an emergent close packing scale QS(x) ≫
ΛQCD at maximal occupancy that unitarizes the inclusive cross section at
fixed impact pararameter. In other words, for a weakly interacting probe
of given fixed Q2 with α(Q2) ≪ 1, there is a corresponding value of x
for which the probe scatters of the hadron target with unit probability at
occupancy N ∼ 1/αs ≫ 1. We will now discuss gluon saturation within
the framework of the Color Glass Condensate effective field theory, and the
resulting shockwave picture of multi-particle production at high energies44.

4.1. Shockwave picture of DIS

We noted earlier that small-x physics at high occupancy is described
by the Color Glass Condensate (CGC) EFT [12, 45]. Figure 27 illustrates
the emergent shockwave picture of the DIS process from Fig. 19. In that
figure, in the rest frame of the dipole target, the fast moving nucleus with
momentum P+ → ∞ emits a large number of gluons which in the Regge limit
are ordered in rapidity. The fastest gluons (represented by the longest gluon
lines) co-move with the valence degrees of freedom on the light cone and
the slowest (small x) gluons scatter off the dipole projectile, with x ∼ xBj.
In the figure shown here, the dipole of size r⊥ ∼ 1/Q, at impact parameter
b≪ 1/ΛQCD, is shown exchanging a colored gluon with a lump (represented
by the dotted rectangle) of maximal size 1/QS consisting of static color
sources on the relevant time scale of the scattering.

44 Another almost exactly contemporaneous early discussion can be found in [166], and
was applied to the gravitational shockwaves we will discuss in [167].
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Fig. 27. The scattering of a quark–antiquark dipole in DIS off a boosted heavy
nucleus. The length of the emitted gluon lines indicate their distance in rapidity
from “valence” partons whose rapidities are close to the light cone of the heavy
nucleus. At high energies, partons inside the dashed box can be represented by
a coherent color charge density ρnucleus that is static on the times scales of the
interaction.

On the light front, the dynamics illustrated can be understood to have
a (2+1)-D Galilean structure [168–171]; the fast (large x) degrees of free-
dom are isomorphic to heavy masses, and conversely, the slow (small x) are
light dynamical degrees of freedom. This naturally suggests that a Born–
Oppenheimer EFT can be employed to describe small-x physics, which pro-
vides the essential kinematic motivation for the CGC EFT. A further key
element is that the quasi-static lump represents a quasi-classical state of
high occupancy45; further, since the lump contains a large number of color
charges, the most likely color charge representation is a high dimensional
classical representation of the SU(Nc) algebra [58, 59, 172].

Since the dipole perceives the lump as being Lorentz contracted in its
rest frame, this lumpy “shockwave” can be represented by a classical color
charge density distribution ρY0(x) which is a δ-function in x− with support
in spacetime rapidity η0 = ln(x−/x0) ≈ Y0, where Y0 is the corresponding
momentum space rapidity. The expectation values of operators in the hadron
in the CGC EFT corresponds to performing two sequential path integral
averages [173]:

45 The energy separations of the high occupancy screened gluons occupying a momentum
mode QS are ∼ QS/N , the characteristic decay time of the shock is ∼ 1

αsQS
which

is considerably longer than the typical resolution scale 1/Q of the probe but much
shorter than the eikonal time scale ∼ P+/Q2 [165].
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— The full path integral over dynamical gauge field modes (with Y > Y0)
in the presence of background gauge fields generated by a given con-
figuration of stochastic sources with Y ≤ Y0, where Y0 = ln(k+/Λ+).
Here, Λ+ is a scale in rapidity which corresponds to the large num-
ber of color sources generated either by BFKL-like evolution and/or
an initial condition (such as a large nucleus) containing these. The
action describing this dynamics is the full QCD action plus a gauge-
invariant term coupling the large-x current to the gauge fields in the
path integral.

— A classical path integral average over a gauge-invariant stochastic func-
tional of the distribution of the static color sources at the scale Y0.

The expectation value of an operator O in the CGC EFT (an example being
the time ordered product of electromagnetic currents in Eq. (2.120)) can be
expressed as [58, 174]

⟨O⟩ =

∫
[Dρ]WΛ+ [ρ]

∫
Λ+

[DA]O[A]

× exp

[
− i

4

∫
d4xF a

µνF
µν,a − 1

Nc

∫
d2x⊥Tr (ρ(x⊥) lnK(x⊥))

]
, (4.1)

where Fµν is the Yang–Mills field strength tensor and

K(x⊥) = Px− exp

(
i

∫
dx+A−

a

(
x⊥, 0, x

+
)
Ta

)
. (4.2)

Note that dynamical quark–antiquark degrees of freedom (so-called “sea
quarks”) are implicit in this small-x effective action; they are radiatively
generated from the gauge fields. Since the hadron has momentum P+ →
∞, the current represented by the large-x degrees of freedom is given by
Jµ = δµ+ρ(x⊥), with the contributions of the other components being sub-
leading in powers of 1/P+. The matrix V then represents the color rotation
of the sources in the background gauge fields. The structure of the ρ lnV
coupling term above is a gauge-invariant generalization of the J+ ·A− eikonal
coupling one obtains in QED — for an elegant discussion, see [35]. We note
further that the sources and fields are Lorentz contracted in x− when P+ is
large. In a careful treatment, one needs to smear out the source distribution
in x−, which for consistency, requires path ordering in V [175].

For a given distribution of classical color sources, the path integral in
Eq. (4.1) has a nontrivial saddle point solution in Lorenz gauge ∂µAµ = 0

A+(x⊥, x
−) =

∫
d2y⊥
4π

ln

(
1

(x⊥ − y⊥)2Λ2

)
ρ(y⊥, x

−) ; A− = A⊥ = 0 .

(4.3)
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Here, Λ is the IR cutoff in the solution of the two-dimension Poisson equation
∇2

⊥A
+ = −ρ. Note that this result can also be understood as the saddle

point solution in the “wrong” light-cone gauge A− = 0.
In the “right” light-cone gauge A+ = 0 corresponding to P+ → ∞, the

parton model interpretation of DIS is manifest. In this gauge, the saddle
point solution takes the form

A− = 0 ; A⊥(x⊥) =
−1

ig
U∇⊥U

† ,

where U = Px− exp

ig x−∫
−∞

dz−
ρ(x⊥, z−)

∇2
⊥

 . (4.4)

Here, the residual gauge freedom is fixed by imposing retarded boundary
conditions A⊥ → 0, as x− → −∞ — for a careful discussion, see [176].

Before we discuss this solution further, let us discuss the stochastic
weight WΛ+ [ρ] in Eq. (4.1), which is the other ingredient we need to com-
pute expectation values of operators in the gluon saturation regime. This
gauge-invariant functional clearly needs nonperturbative input on many-
body distributions and correlations of strong classical color sources ρ ∼ 1/g,
and in general, can be a very complicated quantity containing information
on n-body correlations inside the hadron.

It turns out however that for a large nucleus with atomic number A≫ 1,
the problem is greatly simplified46. At small x, the coherence length, or “Ioffe
time” [177] of the probe lc = 1/(2mNx) ≫ 2RA, where RA ∼ A1/3 is the
nuclear radius in Fermi. Hence, parametrically for x ≪ A−1/3, the small
sized quark–antiquark dipole in DIS scattering of the high-energy nucleus
will interact nearly simultaneously (lc ≫ lmfp, where lmfp is the mean free
path separating nucleons) with partons from the different nucleons it scatters
off at a given impact parameter. Since the partons in individual nucleons are
confined, their correlations with partons in the other nucleons that the probe
scatters off are strongly suppressed on the time scales of the scattering. Thus
the probe coherently scatters of a large color charge configuration generated
by random color charges in the A→ ∞ limit.

The problem of the distribution of a large number of random SU(Nc)
color sources was discussed at length in [172]. In the SU(3) case, for in-
stance, labeling representations by (m,n) where m and n are the integers
corresponding to the number of upper and lower tensor indices, and using

46 This may seem counterintuitive since the nuclear physics may be thought of as “com-
plicated” or “messy”. However here, as with many apparently complex problems,
careful consideration of time and length scales of interest, leads to unanticipated
simplicity.
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Young tableaux to represent these, one obtains recursion relations that can
be solved to determine the distribution of representations. One finds that
the typical representation is characterized by m ∼ n ∼

√
k, where k ∼ A1/3

is the number of SU(3) charges; for a large nucleus, this corresponds to a
classical color charge representation. As a consequence, one can express the
distribution of representations as the classical path integral in Eq. (4.1),
with

WΛ+ [ρ] = exp

(
−
∫

d2x⊥
ρaρa

2µ2A

)
, (4.5)

where a = 1, . . . , 8 and

µ2A =
g2A

2πR2
. (4.6)

Here, µ2A ∼ A1/3 fm−2 is the color charge squared per unit area, representing
the typical color charge in the nucleus seen by a nuclear probe. In the large-A
asymptotics that we introduced, µ2A is a large dimensionful scale. Note that
in writing this expression, we have assumed a strict δ(x−) distribution of
sources. In general, ρa ≡ ρa(x⊥, x−) and µ2A =

∫
dy−λ(y−), with λ here

denoting the mean squared color charge density per unit volume.
For SU(3) color charges, there is in addition a term proportional to

dabcρ
aρbρc, but it is parametrically suppressed at large A relative to Gaussian

term [178]. In the CGC framework, this provides the mechanism for the t-
channel exchange of a C-odd odderon, just as the Gaussian distribution
provides the mechanism for C-even pomeron exchange. We will discuss this
point further later.

For a large nucleus, the dipole scattering amplitude47 at leading order
in this EFT picture is then captured by the formula

〈
dσLOdipole

〉
= 2

∫
d2b

∫
[DρA] exp

(
−
∫

d2x⊥
ρaρa

2µ2A

)
×TLO

(
b+

r⊥
2
, b− r⊥

2

)
[ρA] , (4.7)

where

TLO(x⊥, y⊥) ≡ 1− SLO(x⊥, y⊥) = 1−D(x⊥, y⊥) ,

with D(x⊥, y⊥) =
1

Nc
Tr
(
V (x⊥)V

†(y⊥)
)
. (4.8)

Here, V is the counterpart in the fundamental representation of path ordered
exponential defined in Eq. (4.4) (replacing T a → τa), r⊥ = x⊥ − y⊥, and

47 Recall the discussion in Section 2.6 arriving at Eq. (2.123), and the subsequent dis-
cussion of the dipole cross section.
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TLO (SLO) denotes (the imaginary part) of the tree-level scattering ampli-
tude (real part of the S-matrix) of the quark–antiquark dipole scattering off
the classical “Coulomb” background field generated by the source distribu-
tion ρA(x). At LO, as we will discuss further in Section 4.3, the S-matrix is
equivalent to the “dipole correlator” D(x⊥, y⊥) of Wilson lines. The Gaus-
sian represents the stochastic distribution of color sources at some rapidity
scale Y0 = ln(P+/Λ+) (satisfying Y0 ≫ ln(A1/3)) separating these sources
from the classical fields that interact with the probe.

For this Gaussian distribution, one can compute Eq. (4.7) explicitly, with
the result (assuming for simplicity a homogeneous impact parameter profile)〈

dσLOdipole
〉
= 2πR2

A

[
1− exp

(
−
r2⊥Q

2
S

4

)]
, (4.9)

defining Q2
S = αsCF µ

2
A ln(1/r2⊥Λ

2), where CF = (N2
c − 1)/2Nc and Λ is an

infrared scale. In the large-A limit of QCD, we see thus already at LO in the
CGC EFT an explicit realization of the saturation phenomenon we discussed
earlier. Firstly, we note the emergence of the saturation scale QS ∼ µ2A ∝
A1/3 fm−2. For r⊥ ≪ 1/QS, we see that TLO = r2⊥Q

2
S; this LO perturbative

QCD result represents the weakly interacting “color transparency” of very
small sized probes. Conversely, for r⊥ ≫ 1/QS, SLO → 0, indicating that
the probe interacts very strongly, and is “color opaque”. In fact, for A→ ∞,
the LO cross section saturates the quantum “black-disc” limit allowed by
unitarity: σLOdipole = 2πR2

A.
As we outlined earlier, the reason one has strong interactions even when

the coupling is weak is because the phase space occupancy is large, of
O(1/αs). One can check explicitly that this is the case by computing
1

πR2
A

dN
d2k⊥

∝
∫
d2x⊥ eik⊥·x⊥⟨A⊥(x⊥)A⊥(0)⟩ in A+ = 0 gauge. In addition

to the multiplicity, one can analytically compute arbitrary many-body cor-
relators in the CGC EFT, which display nontrivial intrinsic n-body corre-
lations after subtracting off the trivial one-body distribution raised to the
appropriate nth-power.

Going beyond LO in the CGC EFT, the bremsstrahlung of gluons as well
as virtual self-energy and vertex corrections in the shockwave background
have to be taken into account. As the only dimensionful scale in the problem,
one anticipates that the QCD coupling must run as a function of this scale,
with αs(Q

2
S) ≪ 1 for Q2

S ≫ Λ2
QCD. A systematic computation of the higher-

order contributions requires knowledge of small fluctuation propagators in
the shockwave background. We will discuss these propagators in Section 4.2,
and employ them in Section 4.3 to compute the RG equations for n-point
Wilson line correlators. As we will discuss, the saturation scale in this case is
a dynamical scale QS ≡ QS(x) (that grows with decreasing x), characterizing
the nontrivial fixed point of the RG evolution.
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4.1.1. The CGC and color memory

A remarkable phenomenon in gravity is the gravitational memory effect
that corresponds to the physical displacement of gravitational wave inter-
ferometers due to the relative “kick” imprinted on them by the passage of
a gravitation wave [179–181]. This gravitational memory effect can be under-
stood [150] to be a consequence of a transition (a supertranslation) between
different degenerate classical vacua of the Bondi–Metzner–Van der Burg–
Sachs (BMS) extension of the Poincaré group in general relativity [146–148].
Since the different vacua differ by zero energy gravitons, the memory effect
is also directly related to the Weinberg soft graviton theorem [182] we dis-
cussed previously.

An exactly analogous color memory effect exists in the Yang–Mills the-
ory [183]. This color memory effect was first derived employing retarded
coordinates (u, r, z, z̄), where u = t − r is the retarded time, r is the radial
coordinate, and z and z̄ are stereographic coordinates on the celestial sphere
at null infinity, corresponding to r = ∞ at fixed u. The Minkowski metric
can then be reexpressed in these “Bondi coordinates” as

ds2 = −du2 − 2dudr + 2r2γzz̄ dz dz̄ , (4.10)

with the “round metric” on the celestial two-sphere γzz̄ = 2/(1 + zz̄)2. The
color memory effect in these coordinates is the relative color rotation ex-
perienced by a “test” quark–antiquark pair on the celestial 2-sphere at null
infinity after experiencing the passage of a “wave” of color flux in some fi-
nite retarded time interval ui < u < uf . Analogously to the gravitational
memory case, this can be interpreted as a transition between two degen-
erate classical vacua. The color rotation in the Yang–Mills theory can be
expressed as Wong’s equations [87] describing the color precession of colored
quarks experiencing the color flux; a gauge-covariant formulation of the net
color rotation is given by the closed loop around the color flux traced by the
colored quarks on the null 2-sphere.

On the surface, color memory appears to be a mathematical curiosity
since, unlike gravity, QCD is a confining theory and therefore the presence
of colored degrees of freedom (let alone classical flux) at null infinity is
impossible. However, as we just argued, there is a classical weak coupling
regime of the theory that emerges in the Regge limit. Indeed, the discussion
of color memory to the CGC EFT has a one-to-one map which becomes
apparent by translating Bondi coordinates to light-cone coordinates,

x+ =
1√
2

(
u+

2r

1 + zz̄

)
, x− =

1√
2

(
u+

2rzz̄

1 + zz̄

)
, x1+ ix2 =

2rz

1 + zz̄
,

(4.11)
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and taking the infinite momentum frame limit. This is achieved by scaling

(r, u, z, z̄) →
(
ζr, ζ−1u, ζ−1z, ζ−1z̄

)
,

where ζ parametrizes the boost operator, and taking ζ → ∞. In this limit,
γzz̄ = 2, and

x+ =
√
2r → ∞ , x− =

1√
2
(u+ 2rzz̄) → 0 , x1 + ix2 = 2rz .

(4.12)
Thus, in the IMF, the celestial sphere at null infinity maps onto the CGC
shockwave kinematics, where the gauge fields are independent of x+, are
strongly localized around x− = 0, and have nontrivial dynamics in the trans-
verse plane. With this map, we understand the trace over Wilson lines in
Eq. (4.8) as the net color rotation acquired by the qq̄ dipole as it crosses
the shockwave. The solution in Eq. (4.4) represents distinct vacua under
large gauge transformations at every point on the transverse plane that are
separated by the shockwave. Further, one has a gauge-invariant analog to
the “kick” experienced by the gravitational wave detectors, in the form of
the saturation scale QS; an unambiguous extraction of QS would therefore
be equivalent to measuring the color memory effect [184].

The map we have established between the CGC and color memory is po-
tentially powerful since it allows us to formulate scattering in the CGC in the
language of soft theorems and asymptotic symmetries [185]. The latter may
be particularly useful when one moves away from A→ ∞ asymptotics, where
the Gaussian approximation breaks down and strongly correlated gluon dy-
namics on the celestial sphere is not analytically tractable any more. In
particular, this strongly correlated dynamics should be represented by Gold-
stone modes reflecting the broken global Poincaré symmetry and those of
large gauge transformations representing the CGC shockwave [165].

4.2. Propagators in gluon shockwave backgrounds

We have argued thus far that perturbation theory breaks down in the
gluon saturation regime of QCD with the strong color fields nevertheless
described by a weakly coupled classical EFT. It is important to establish
whether this EFT description is robust when quantum fluctuations are taken
into account, and further, to establish where such a description breaks down.
As the first step, we will discuss here shockwave propagators in the classical
CGC background that are necessary to compute NLO corrections to opera-
tors in the CGC EFT.
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The computation of shockwave propagators in the light-cone gauge
A+ = 0, where P+ denotes the large longitudinal momentum component, is
technically involved, as was demonstrated in [186]. This is due to the pres-
ence of P+ = 0 modes that require careful treatment of boundary conditions
at spatial x− = ±∞. By contrast, the formulation in the other light-cone
gauge A− = 0 is more tractable [187]. This gauge admits the same clas-
sical background field configuration as the Lorenz gauge solution given in
Eq. (4.3), and moreover, this background exhibits a manifest double-copy
correspondence with gravitational shockwave solutions [116]. We will there-
fore adopt the A− = 0 gauge for our analysis here.

Before computing the gluon propagator, it will be instructive to first
compute the (retarded) propagator of an adjoint scalar field coupled mini-
mally to this background48. The derivation of quark and gluon propagators
follow similarly. Our starting point is to obtain the solution to the small
fluctuation equations of the scalar field, given by

∂µ∂
µϕ− 2ig [A−, ∂+ϕ] = 0 . (4.13)

Noting that [A,B]a = ifabcAbBc = −
(
T b
)
ca
AbBc = [(A · T )B]a, one can

write the above equation as

□ϕ(x)− 2ig (A−(x) · T ) ∂+ϕ(x) = 0 . (4.14)

The equation for the retarded Green’s function GR(x, y) is then

□xGR(x, y)− 2ig(A−(x) · T )∂x+GR(x, y) = δ(x− y) , (4.15)

supplemented by boundary data specified at a fixed x− slice in the region
x− < 0.

Expressing the solution for the field in terms of the retarded Green’s
function, one can show that the latter generically satisfies the recursion
relation [188, 189]

GR(x, y) =

∫
d4z GR(x, z) δ(z

− − z−0 ) 2 ∂
−
z GR(z, y) , (4.16)

where the surface z− = z−0 is the spacetime slice where the initial data is
defined. The shockwave background is pure gauge everywhere except at
x− = 0. Therefore, the propagators GR(x, y) in this background are free
propagators everywhere, except for the paths corresponding to x− > 0,

48 A more detailed analysis is provided in [188], which for completeness is summarized
here.
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y− < 0 or x− < 0, y− > 0. The propagator crosses the shockwave back-
ground for these configurations and is therefore nontrivial. We can compute
GR(x, y) for x− > 0, y− < 0 using the identity in Eq. (4.16), and writing it as

GR(x, y) =

∫
d4z d4wG0

R(x, z) δ(z
− − z−0 )

×2 ∂−z GR(z, w) δ(w
− − w−

0 ) 2 ∂
−
w G

0
R(w, y) . (4.17)

We set here z−0 = δ, w−
0 = 0, where δ specifies the shockwave width in the

x− direction — we will set it to zero at the end of the calculation. These
choices of z−0 and w−

0 allows us to replaceGR(x, z) andGR(w, y) byG0
R(x, z),

G0
R(w, y) in Eq. (4.17), where

G0
R(x, y) = −

∫
d4k

(2π)4
e−ik·(x−y)

k2 + iϵk−
=

1

2π
Θ(x− − y−)Θ(x+ − y+)δ

(
(x− y)2

)
.

(4.18)
An explicit derivation of the last equality is given in [188, 189].

To determine GR(z, w) in Eq. (4.17), we first express it as

GR(x, y) = −
∫

d4k

(2π)4
1

k2 + iϵk−
ϕk(x)ϕ

∗
k(y) , (4.19)

where ϕk(x) denotes eigenfunctions of the small fluctuation equation in
Eq. (4.14); in the absence of the shockwave background, these are simply
plane waves and one recovers Eq. (4.18). The solution of Eq. (4.14) to deter-
mine ϕk(x) simplifies greatly if we employ the eikonal approximation, where
transverse gradients of order P⊥ are negligible compared to those of order P+

in the longitudinal direction when crossing the shockwave. Equation (4.14)
then simplifies to

2∂+∂−ϕ(x)− 2ig(A−(x) · T )∂+ϕ(x) = 0 . (4.20)

With the input from the scalar field solution in the region x− < 0, the
solution for x− > 0 is

ϕa(x− > 0) = U(x)abϕ
b(x− < 0) , with ϕa(x− < 0) = e−ikxca . (4.21)

Here, ca is a pointlike color charge and U(x) is a lightlike Wilson line, path
ordered in x−

U(x) = P exp

(
ig

∫
dz−A+(z−,x) · T

)
. (4.22)

Thus, the result of the scattering of the colored scalar with the shockwave
is to rotate it in color space. The full solution is

ϕak(x) = Θ(−x−) e−ikxca +Θ(x−) e−ikxUa
b(x)c

b . (4.23)
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This gives the free propagator in Eq. (4.19) for θ(−x−)θ(−y−) or the color
rotated free propagator for θ(x−)θ(y−). For the nontrivial component of the
Green function in the r.h.s. of Eq. (4.17), we obtain

Gab
R (z− > 0, w− < 0) = −

∫
d4k

(2π)4
e−ik·(z−w)

k2 + iϵk−
ca [U(z)]bd c

d , (4.24)

where we need to take the limit δ → 0. This gives

lim
δ→0+

Gab
R

(
z− = δ, w− = 0

)
=

1

2
Θ
(
z+ − w+

)
δ(2)(z −w)ca [U(z)]bd c

d .

(4.25)
We obtained the r.h.s. by first performing the k+ integral closing the contour
from below, taking δ → 0+, and employing the identity∫

dk−

2π

e−ik−(z+−w+)

−ik−
= Θ

(
z+ − w+

)
. (4.26)

Substituting this result back into Eq. (4.17), we obtain

GR(x, y) =

∫
d4z G0

R(x, z) δ(z
−)U(z) 2 ∂−z G

0
R(z, y) , (4.27)

which agrees with Eq. (9) of [190].
The Fourier transform

G̃R

(
p, p′

)
=

∫
d4x d4y GR(x, y) e

ipx e−ip′y , (4.28)

of the propagator then takes the compact form

G̃R

(
p, p′

)
= G̃0

R(p)(2π)
4δ(4)

(
p− p′

)
+ G̃0

R(p)T
(
p, p′

)
G̃0

R

(
p′
)
, (4.29)

where G̃0
R(p) is the free propagator in momentum space,

G̃0
R(p) =

∫
d4x eipxG0

R(x) = − 1

p2 + iϵp−
, (4.30)

and the effective vertex is

T
(
p, p′

)
≡ −4πi

(
p′
)−
δ
(
p− −

(
p′
)−)(∫

d2z ei(p−p′)·z (U(z)− 1)

)
.

(4.31)
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The dressed propagator can be represented pictorially as shown in Fig. 28.
Recall that from the classical field solution in Eq. (4.4)

U(x⊥) = Px− exp

ig x−∫
−∞

dz−
ρ(x⊥, z−)

∇2
⊥

 ,

where the argument of the exponent, as shown in Eq. (4.3), represents the
Coulomb propagator in Lorentz gauge. The corresponding gauge field A+

in this gauge is sometimes called a Glauber gluon in the literature [191];
specifically, the momentum exchange corresponding to the shockwave there-
fore corresponds to the coherent (path ordered) product of Glauber gluon
operators. Since this A+ field is independent of x+ and has delta-function
support in x−, its Fourier modes have k− = 0, are independent of k+, and
satisfy k−k+ ≪ k2⊥ ≪ Q2, where Q2 is the resolution scale of the exter-
nal probe. In perturbative QCD, the Glauber regime is power suppressed
for inclusive observables. However, as we have argued, in the saturation
regime, all-order Glauber contributions are contained in the path ordered
exponentials that describe the classical EFT.

= +
∑∞

n=1
· ·
n
·

Fig. 28. Dressed propagator of a scalar field in the shockwave background of ove-
roccupied gluons. The first term on the r.h.s. is the free scalar propagator cor-
responding to the no-scattering “1” term in the expansion of the Wilson line in
Eq. (4.31). The other terms in the expansion of the Wilson line are represented
by the coherent multiple scattering of the scalar field off color charges within the
shockwave.

The results for the colored scalar propagator in the gluon shockwave
background can be straightforwardly extended to fermion and gluon prop-
agators [36, 49, 187, 192]. For the retarded gluon shockwave propagator in
A− = 0 gauge e obtain the result

G̃R,µν

(
p, p′

)
= (2π)4δ(4)

(
p− p′

)
G̃0

R,µν(p) + G̃0
R,µρ(p)T

ρσ
R

(
p, p′

)
G̃0

R,σν

(
p′
)
,

(4.32)
with the gluon-shockwave effective vertex [192–195]

T µν
R

(
p, p′

)
= −4πiΛµνp−δ

(
p− − (p′)−

) ∫
d2z eiz·(p−p′) (U (z)− 1) .

(4.33)
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Here, G̃0
R,µν(p) = ΛµνG̃

0
R(p) and Λµν = ηµν − pµnν+pνnµ

p·n . As noted pre-
viously, computations in A− = 0 gauge should be distinguished from the
light-cone gauge A+ = 0, where the parton interpretation of DIS structure
functions in the IMF with large hadron P+ is more transparent.

Likewise, for the momentum space quark propagator in the shockwave
background, we obtain

Sij(k, l) = S0
im(k) T q

mr(k, l)S
0
rj(l) , (4.34)

where S0
ij is the free quark propagator with color indices i (j) for the outgoing

(incoming) quark, and the effective quark-shockwave vertex is

T q
mr(k, l) = 2πδ(k− − l−)γ−sgn(l−)

∫
d2x⊥ e−i(k−l)·x⊥V sgn(l−)

mr (x⊥) . (4.35)

Here, Vmr(x⊥) is the counterpart in the fundamental representation to the
adjoint Wilson line in Eq. (4.22), as noted previously in Eq. (4.8).

In Section 2, we introduced the phenomenon of reggeization that be-
comes manifest in MRK, and the concept of the reggeized gluon. As we saw
further, the pomeron can be understood as the color singlet projection of
the exchange of two reggeized gluons in the forward scattering amplitude.
In [196, 197], Lipatov discussed a reggeon EFT that captures the BFKL
dynamics of high-energy QCD and beyond; for a discussion of the Feyn-
man rules in this EFT, see for instance [198]. What is the relation of this
framework with the language of Wilson lines and the CGC EFT that we
outlined? Because the two frameworks address the small-x problem from
different perspectives, a map between the two formalisms is not straight-
forward. Specifically, the reggeon EFT is formulated in the limit where
perturbation theory is applicable, while the CGC EFT has as its starting
point the gluon saturation regime, and is most robust for large nuclei for the
reasons we discussed previously.

Nevertheless, there are regimes where the two frameworks overlap and
there is much value in exploring this more deeply as we discussed in the GR
context in Section 3.7. An interesting suggestion [199] is that the reggeized
gluon field Ra(x⊥) can be thought of as the logarithm of the adjoint Wilson
line49

Ra(x⊥) = fabc ln
(
U bc
)
=

∫
dx−A+,a(x−, x⊥)

≡
∫

dx−d2y⊥
4π

ln

(
1

(x⊥ − y⊥)2Λ2

)
ρa(y⊥, x

−) . (4.36)

49 It was also shown previously in [174] in the context of a worldline EFT that the
logarithm of Wilson line is the relevant quantity in the EFT derivation of the BKFL
equation.



11-A1.104 H. Raj, R. Venugopalan

If we assume ρa(x−, x⊥) = ρ̃a(x⊥)δ(x−), we see then the reggeized gluon
field is the convolution of the 2-D Coulomb propagator with the classical
color charge density, which is the key element in the CGC EFT. As we
will discuss shortly, one can interpret reggeization as the modification of ρa
induced by quantum fluctuations at small x. A further important connection
was pointed out in [200] — see also [201, 202] — where it was shown that the
reggeized gluon–gluon vertex and the reggeized gluon–quark–quark vertex
are identical to corresponding effective vertices in the CGC EFT given in
Eqs. (4.33) and (4.35), respectively.

4.3. Renormalization group evolution in the Color Glass Condensate

As we have discussed thus far, the physics of gluon saturation is the
physics of high phase space occupancy of partons, for which a classical EFT
description is a natural starting point. We have argued that the rapid growth
of the 2 → n cross section creates classical closely packed lumps of size 1/QS

corresponding to maximal occupancy. It is these strongly correlated lumps
that make up the shockwave that the DIS probe scatters off. It is important
to ascertain how robust this picture is under quantum evolution. As a first
step, in Section 4.2, we discussed the computation of adjoint color scalars,
gluons, and fermions in the shockwave background. We will now discuss
NLO computations in the CGC, and outline how they lead to a renormal-
ization group treatment that resums leading-logarithmic contributions at
small x to all-loop order in the shockwave background.

This RG framework was developed in a series of papers resulting in the
Balitsky–JIMWLK hierarchy for n-point Wilson line corrrelators and corre-
sponding RG equation [49, 175, 203–208], as well as the Balitsky–Kovchegov
equation describing specifically the RG evolution of the dipole Wilson line
corelator we introduced in Eq. (4.8) [49–51] that describes the inclusive DIS
cross section. The less inclusive the process, the more sensitive it is to
higher-point Wilson line correlators. For instance, employing Eq. (4.34), an
explicit computation of the scattering amplitude for the LO DIS inclusive
cross section for a quark–antiquark pair of jets in the shockwave background
reveals [209]

dσγ
∗A→qq̄X

LO ∝
〈
Q
(
x⊥, y⊥; y

′
⊥, x

′
⊥
)
−D(x⊥, y⊥)−D

(
y′⊥, x

′
⊥
)
+ 1
〉
Y0
.

(4.37)
In addition to the dipole correlator D that appeared in the DIS inclusive
cross section in Eq. (4.7), the cross section is sensitive to the “quadrupole”
4-point Wilson line correlator [189, 210]

Q
(
x⊥, y⊥; y

′
⊥, x

′
⊥
)
=

1

Nc
Tr
(
V (x⊥)V

†(y⊥)V
(
y′⊥
)
V †(x⊥)

′
)
. (4.38)
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It is easy to see from the identity V (x⊥)taV †(x⊥) = tbUab(x⊥) that fur-
ther gluon emission from the quark dipole (as would be the case for tri-jet
production at LO, or di-jet production at NLO) leads to more nontrivial
combinations of Wilson line correlators. The latter is illustrated in Fig. 29.
Remarkably, the RG evolution of all such correlators with rapidity is de-
scribed in the CGC EFT by the Balitsky–JIMWLK hierarchy, or more com-
pactly by the JIMWLK Hamiltonian, which we will now discuss.

γ∗

q

(a)

γ∗

q

(b)

γ∗

q
p

p′

(c)

γ∗

q

pp′

(d)

Fig. 29. Real and virtual diagrams for a dipole interacting with a shockwave. (a)
Real gluon emission from the quark after scattering off the shockwave; (b) Real
gluon emission from quark before scattering from shockwave; (c) Vertex correction
from the gluon crossing the shockwave; (d) Gluon self-energy with gluon crossing
the shockwave.
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The RG evolution in the CGC EFT follows from Eq. (4.1), where taking
the classical saddle point Acl ≡ Acl(ρ) as we discussed previously, gives for
a generic observable, the leading order expression

⟨O⟩Y0 =

∫
[dρ]WY0 [ρ]OLO[ρ] , (4.39)

where Y0 = ln(P+/Λ+) is the rapidity separating the shockwave sources ρ
from the classical field. Equation (4.7) is a specific example of Eq. (4.39) for
inclusive DIS scattering, with WY0 corresponding to the Gaussian distribu-
tion of sources. At next-to-leading order in the CGC EFT, including only
the leading O(αsδY ), imposing αsδY ∼ O(1) real and virtual corrections to
the shockwave generated with the change of rapidity δY = Y1 − Y0, can be
expressed formally as

⟨δO⟩Y0+∆Y = αsδY

∫
[Dρ]WY0 [ρ] (HLOOLO) . (4.40)

Here, HLO is the JIMWLK Hamiltonian which can be expressed as the
functional operator

HLO =
1

2

∫
u⊥,v⊥

δ

δA+,a(u⊥)
χab(u⊥, v⊥)

δ

δA+,a(v⊥)
, (4.41)

with the (cut) propagator

χab(u⊥, v⊥) =
1

π

∫
z⊥

1

(2π)2
(u⊥ − z⊥) · (v⊥ − z⊥)
(u⊥ − z⊥)2(v⊥ − z⊥)2

×
[
1 + U †

u⊥Uv⊥ − U †
u⊥Uz⊥ − U †

z⊥Uv⊥

]ab
. (4.42)

The Uxs here are the path-ordered exponentials of the classical field A+ in
the Lorenz gauge that we defined in Eq. (4.22), where we have, for brevity,
written their arguments as subscripts, as we have for the integral measures
(
∫
x =

∫
d2x). Further, A+(x⊥) =

∫∞
−∞ dz−A+(z−, x⊥).

It was shown in the original JIMWLK papers that the functional expres-
sion for the Hamiltonian in Eq. (4.41) is a combination of two contributions,
one arising from the leading one-loop correction50 to the classical field in the
interval ∆Y ∼ 1/αs, and the other from the small fluctuation cut propagator

50 The subleading “pure” αs contribution is nothing but the QCD polarization tensor in
the background field, which in the UV generates the one-loop beta function [211].
Thus, running coupling corrections to JIMWLK only appear at next-to-leading-
logarithmic accuracy.
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in the classical background field. However, to leading-logarithmic accuracy,
the former, represented as νa(x⊥), satisfies the identity [176, 212]

νa(x⊥) =
1

2

∫
y⊥

δ

δA+,b(y⊥)
χab(x⊥, y⊥) , (4.43)

allowing one to combine the two contributions51 in the form shown in
Eq. (4.41).

Combining Eqs. (4.39) and (4.40), and performing a (functional) inte-
gration by parts, one obtains

⟨O + δO⟩Y1 =

∫
[dρ] ([1 + αsδYHLO]WY0 [ρ])OLO . (4.44)

Defining
WY1 [ρ] = [1 + αsδYHLO]WY0 [ρ] , (4.45)

one obtains
δ

δY
WY1 [ρ] = HLOWY1 [ρ] . (4.46)

Thus, to LLx accuracy, the small-x evolution of arbitrary operators, to all-
loop order is captured by a functional RG — that describes the universal
evolution of the weight functional WY [ρ] convoluted with the corresponding
leading-order operator. This requires an appropriate nonuniversal initial
condition that incorporates the nonperturbative many-body correlations in
hadron wavefunctions. We argued earlier that for a large nucleus with atomic
number A, this initial condition is given by the Gaussian weight functional
in Eq. (4.5), where the typical scale of the color correlations is given by its
variance µ2A ∝ A1/3. For protons and light nuclei, it is unclear what the
appropriate choice of W is, and indeed, even if the mean field picture of
large color charges is applicable. We will return to this point later.

A key question in the above discussion is the validity of Eq. (4.40). For
the simplest dipole operator in Eq. (4.7), this was confirmed in multiple
approaches [12, 49, 51, 176, 213, 214], in addition to the JIMWLK papers.
In particular, one finds that the dipole correlator in Eq. (4.8) satisfies the
evolution equation [49]

⟨D(x⊥, y⊥)⟩
∂Y

= − αs

2π2

∫
z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×⟨D(x⊥ − y⊥)−D(x⊥, z⊥)D(z⊥, y⊥)⟩Y , (4.47)
51 Since only χab(x⊥, y⊥) appears in Eq. (4.41), this has on occasion caused the mis-

leading impression that the evolution of the shockwave does not include contributions
from the polarization tensor in the background field.
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where

K̃BKFL =
(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2
(4.48)

is the coordinate space counterpart of the momentum space BFKL kernel
we derived in Eq. (2.106). Alternately, one can recover Eq. (4.47) by ap-
plying HLO in Eq. (4.41) to the dipole operator, and using the identities
δU(x⊥)

δA+,a(x⊥)
= −igδ(x⊥−z⊥)U(x⊥)T a and δU†(x⊥)

δA+,a(x⊥)
= igδ(x⊥−z⊥)T aU †(x⊥),

along with τ bUba = V (x⊥)τaV †(x⊥). Equation (4.47) reduces to a closed
form expression in terms of the S-matrix (= ⟨D⟩) in A → ∞ and Nc → ∞
because the second term on the r.h.s. can be replaced by the factorized form
⟨DD⟩ → ⟨D⟩⟨D⟩ in these limits. This closed form, albeit nonlinear, equation
is known as the Balitsky–Kovchegov (BK) equation [49–51].

Now, recall that in Eq. (4.8), we defined the dipole scattering amplitude
for a fixed configuration of color charges as T = 1−S ≡ 1

Nc
Tr(V (x⊥)V †(y⊥)).

If we further expand out V = P exp(ig ρ
∇2

⊥
) to lowest order (assuming

ρ/∇2
⊥ ≪ 1) and keep only terms up to quadratic order in ρ, one can further

simplify Eq. (4.47) and rewrite it in terms of the scattering amplitude as

∂⟨T (x⊥, y⊥)⟩
∂Y

= ᾱs

∫
z⊥

K̃BFKL [⟨T (x⊥, z⊥) + T (z⊥, y⊥)− T (x⊥, y⊥)⟩] ,

(4.49)
which is the coordinate space BFKL equation for the dipole scattering am-
plitude. Here, ᾱs =

αsNc
π . Indeed, identifying the ⟨T ⟩s in terms of quadratic

correlators of ρs, and defining ϕ̄(k⊥) = µ̃2Y (k⊥)/k
2
⊥ (where µ̃2Y (k⊥) is the

Fourier transform of µ2Y (r⊥) =
∫
d2X⟨ρa(X⊥+r⊥/2)ρa(X⊥−r⊥/2)⟩/(πR2

A)/
(N2

c −1), assuming a homogeneous color charge distribution in the nucleus),
the Fourier transform of Eq. (4.49) gives52

∂ϕ̄(k⊥)
∂Y

=
ᾱs

π

∫
p⊥

1

(k⊥ − p⊥)2

[
ϕ̄(p⊥)−

k2⊥
2p2⊥

ϕ̄(k⊥)
]
, (4.50)

which, replacing the r.h.s. of Eq. (2.102) by its l.h.s., is equivalent to
Eq. (2.106). It is striking to see how simply the BFKL equation for the
inclusive cross section is obtained in the CGC EFT.

The full BK equation (containing contributions to all orders in ρ/∇2
⊥)

includes an additional nonlinear term −T (x⊥, z⊥)T (z⊥, y⊥) on the r.h.s.
of Eq. (4.49). We noted previously the momentum space expression in

52 This unintegrated distribution is often called the “dipole” gluon distribution to dis-
tinguish it from the Weizsäcker–Williams gluon distribution of the nucleus — see also
footnote 15 in Section 2.
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Eq. (2.126). This term is responsible for generating interactions of the fan
diagram illustrated in Fig. 20. The BK equation also confirms the conjecture
of gluon saturation in [24, 48], based on the analysis of the leading power
suppressed Feynman diagrams. Specifically, we see that Eq. (4.49) has a non-
trivial IR fixed point for T = 1, which causes the growth of the scattering
amplitude with rapidity to saturate (at fixed impact parameter). Generi-
cally, the BK equation follows a reaction-diffusion process, and indeed, to a
good approximation, can be mapped onto the so-called Fisher–Kolmogorov–
Piscounov–Petrovsky (FKPP) equation describing the motion of traveling
wave fronts in statistical mechanics — for a comprehensive recent review,
see [215].

As a related feature, the BK equation exhibits the phenomenon of geo-
metric scaling, whereby the dipole scattering amplitude scales as r2⊥Q

2
S(Y ),

generalizing Eq. (4.9) to include the rapidity evolution of QS. Remark-
ably, the idea of geometric scaling came from the observation [216] that the
HERA inclusive cross-section data53 for x ≤ 0.01 (see Eq. (2.123)) scaled as
σγ∗A(xBj, Q

2) ∝ σγ∗A(Q
2/Q2

S(xBj)). The BK equation in full generality can
only be solved numerically but one can exploit the FKPP analogy to extract
analytic expressions for the saturation scale to good accuracy [217, 218].
Specifically, Eq. (2.126) can be approximated at LLx by [219]

ϕ
(
Y, k2⊥

)
= ϕ

(
ln

(
k2⊥

Q2
S(Y )

))
with

ln

(
Q2

S(Y )

Q2
0

)
= 2ᾱsY − 3

2γc
ln (ᾱsY )

+constant− 3

γ2c

√
2π

χ′′(γc)ᾱsY
+O

(
1

ᾱsY

)
, (4.51)

where γc ≈ 0.63 and χ′′(γ) is the second derivative of the BFKL eigenvalue
expressed as χ(γ) = 2Ψ(1) − Ψ(γ) − Ψ(1 − γ), with Ψ here the digamma
function. This expression is valid in a wide “geometrical scaling” rapidity
window k2⊥ ≪ Q2

S(Y ) exp
(√

2χ′′(γc)ᾱsY
)

that extends parametrically well
beyond k2⊥ ∼ Q2

S(Y ).
All of our discussion thus far of JIMWLK and BK LLx RG evolution

was for the DIS inclusive dipole cross section, or equivalently, the dipole
correlator. One can extend this to more nontrivial quantities, such as the

53 However, it is premature to claim discovery of gluon saturation on this basis since the
extracted saturation scales are not robustly in the weak coupling regime for which
the framework is applicable [33]. Due to the access to large nuclei, DIS at the EIC is
more promising in this regard.
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inclusive di-jet cross section illustrated in Fig. 29. As noted, the LO expres-
sion in Eq. (4.37) is sensitive to a 4-point quadrupole correlator in addition
to the 2-point dipole correlator. At NLO, the real and virtual Feynman
graphs contributing to the di-jet cross section were computed explicitly in
[209], employing the quark and gluon shockwave propagators given in Sec-
tion 4.2. In the slow gluon (small x) limit of the expressions, one observes a
large number of terms with dipole D, quadrupole Q, and bilinear operator
combinations DD, DQ. However, remarkably, one sees that this complex
structure is reproduced exactly54 by applying the JIMWLK Hamiltonian in
Eq. (4.41) to the leading order di-jet cross section in Eq. (4.37), thereby
providing a highly nontrivial confirmation of Eq. (4.40).

In Section 2.6, we discussed briefly the extension of the BFKL framework
to NLLx and the related small-x resummation of large double transverse
logarithms that improve the accuracy of the framework. Likewise, the BK
and JIMWLK RG equations have been extended to NLLx accuracy [221–
224], with the most recent progress in this direction being key pieces of
the NNLLx BK equation [225]. Similarly to the BFKL case, the small-x
resummation of large double transverse logarithms, so key to the stability of
NLLx BFKL, have been applied to the BK framework [226] and state-of-the-
art NLLx numerical simulations compared successfully to HERA data [227].
An interesting result is that the traveling wave structure of the BK equation
persists when NLLx running coupling effects are included; one can extract
an expression for the saturation scale analogous to the fixed coupling case in
Eq. (4.51). The leading term on the r.h.s. grows more slowly now as Y 1/2,
with further subleading contributions, as shown in [219].

We focused thus far on DIS observables in the CGC EFT. A powerful
feature of this shockwave framework, as we will discuss further in Sections 4.4
and 4.5, is that it can be applied to compute multi-particle production in
the glasma [153–155] formed in hadron–hadron/nucleus and nucleus–nucleus
collisions at high energies. A natural formalism implicit in our shockwave
discussion, but especially key to understanding shockwave collisions, is the
Schwinger–Keldysh (SK) closed time path formalism. In this formalism, the
path integral is expressed on an upper contour from an initial time to a fixed
time of interest, and then back to the initial time on a lower contour, with
“+” and “−” fields defined on the upper and lower contour respectively. For a
generic interacting field theory, one can denote the sum and difference fields
as φr (retarded) and φa (advanced) fields, respectively. Reexpressing the
path integral on the contour in terms of these fields, one find that one obtains

54 One can similarly compute the single jet cross section and arrive at the same conclu-
sion [220]; however, here one has only terms linear and bilinear in D. It can further
be confirmed that integrating over the single jet phase space in the slow gluon limit
recovers Eq. (4.47).
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an initial density matrix entirely in terms of the retarded field and its time
derivative (for the example of an interacting scalar theory). The classical
equations of motion and the small fluctuation equations of motion both
result from integrating out terms linear in φa; the next order φ3

a contains
the genuine O(ℏ) corrections which are suppressed when the leading classical
φr fields are large. Keeping only the leading linear contributions in φa is
called the classical–statistical approximation.

The LLx JIMWLK equations describing the RG evolution of a single
shockwave can be derived entirely in this formalism [176, 228], providing a
natural segue to more complex dynamics of shockwave collisions. Indeed,
Eq. (4.44) provides a specific illustration. The leading LLx quantum correc-
tions can be absorbed into evolution of the stochastic weight functional with
rapidity, which is then convoluted by the LO operator computed using the
classical Yang–Mills evolution. Genuine (subleading in ℏ) quantum effects
appear only at cubic order in the difference fields [228]. Many features of
the reggeon field theory can be understood in terms of the combinatorics55.

As a simple example, as we noted in the discussion following Eq. (4.5),
from the interpretation in Eq. (4.36) of the color charge density ρ as the
reggeon field, the pomeron and odderon can be understood, respectively, as
bilinear and trilinear gauge-invariant products of the ρs. Given this semi-
classical interpretation, it seems very plausible that one can understand
the phenomenon of reggeization that we discussed extensively, in the QCD
context in Section 2 and for gravity in Section 3, as a semi-classical phe-
nomenon despite the apparent multi-loop resummation. As has been noted
previously, identifying ℏ with loops can be fallacious [81]. This argument is
simply realized in the SK formalism.

A corollary to this question is whether the breakdown of reggeization,
shown to occur beyond NLLx accuracy due to cuts56 from multiple reggeized
gluon exchanges [233], can be understood as the breakdown of the classical–
statistical approximation, at NNLx accuracy. In the SK language, this would
occur when the back-reaction of the φ3

a fields in the action become important;
such contributions can be computed in simpler field theories using 2-particle
irreducible functional techniques [234]. In other words, can this phenomenon
be related to 1/n corrections that control the decay of the shockwave [165]?
We speculate that, if so, such corrections could be interpreted as arising
from the rescattering of the decay products of the shockwave with the NLO
emissions from the DIS probe shown in Fig. 29.

55 An example are the so-called Abramovksy–Gribov–Kancheli (AGK) rules [159] we
alluded to earlier in Section 3.7, that are employed extensively in the ACV frame-
work for shockwave collisions in gravity. We will discuss these connections further in
Section 4.5.

56 See [229–232] for discussions of such Regge cut contributions at NNLLx accuracy.
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4.4. Gluon shockwave collisions: derivation of Lipatov vertex

For strong sources comprising the large-x modes of the scattering nuclei
(which are of order ρnucleus ∼ 1/g), the leading term in the power counting
is the produced classical field Aµ

cl, which too is of order O(1/g); the single-
inclusive distribution in the produced glasma is therefore of O(1/αs). At
NLO in the SK formalism, just as for the DIS case, there are two sorts of
contributions: (a) the one-loop correction to the classical field aµquant, and (b)
the small fluctuation propagator ⟨aµquantaνquant⟩. As we discussed previously,
the logarithmic enhancements αs ln(1/x) ∼ O(1) to these contributions are
what contribute to the JIMWLK Hamiltonian, and are therefore absorbed
in the evolution of the single-inclusive gluon distribution. Thus, at each
step in the rapidity evolution of the individual nuclei before the collision, the
problem of n-particle inclusive gluon production at a given rapidity is simply
the solution of the QCD Yang–Mills equations in the presence of the static
source distributions of each of the nuclei evolved up to that scale. Note that
this assumes that the wee partons of each of the nuclei do not talk to each
other before the collision; in other words, the weight functionals W [ρnucleus]
of each of the nuclei factorize in the collision. This factorization holds to
LLx when ρnucleus ∼ 1/g [176, 235]. In Section 4.5, we will provide further
detailed context, and outline the steps that justify the above statements.

With this understood, the leading-order contribution to the problem
of shockwave collisions is given by the solution of the Yang–Mills (YM)
equations

DµF
µν = Jν

HI , (4.52)

where Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] is the field strength tensor and Jµ
HI

is the covariantly conserved current, DµJ
µ
HI = 0. For shockwave scattering

of nuclei (heavy-ion collisions at ultrarelativistic energies), the shockwave
currents can be represented as

Jν,a
HI = δν+ρaA(x⊥)δ(x

−) + δν−ρaB(x⊥)δ(x
+) . (4.53)

Here, ρaA(x⊥) and ρaB(x⊥) are the quasi-classical color charge distributions
of each of the nuclei corresponding to a higher dimensional representation
of the color charges depicted in Fig. 27, and distributed in the transverse
plane of the scattering. For A ≫ 1, the weight functional57 W [ρA,B] is
Gaussian distributed such that ⟨ρaA,B(x⊥)ρ

b
A,B(y⊥)⟩ = Q2

S δ
ab δ(2)(x⊥ − y⊥),

with Q2
S ∝ A1/3 Λ2

QCD. For simplicity, we will assume that the nuclei are
identical. The δ(x∓) terms represent eikonal currents, for which classical
subeikonal corrections are O(1/P±) respectively. The currents, to leading
order, are independent of the light cone times x±, respectively; this reflects

57 Unless required, we will not specify the rapidity Y of the inclusive radiation spectrum.
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the fact that the interaction of the two pure gauges corresponding to the
light-cone sources is not a pure gauge in QCD, and is sufficient to generate
finite field strength in the forward light cone.

The nucleus–nucleus scattering problem thus formulated [236, 237], can
in full generality only be solved numerically [238–240]. However, one can
identify the expansion parameters ρA/∇2

⊥, ρB/∇2
⊥ in the YM equations

that one can expand to obtain analytic solutions. These are the dilute–
dilute YM asympotics of ρA/∇2

⊥, ρB/∇2
⊥ ≪ 1 (corresponding to the regime

of large transverse momenta k⊥ ≫ QS) [236, 237, 241, 242] and dilute–dense
asymptotics ρA/∇2

⊥ ≪ 1, ρB/∇2
⊥ ∼ 1 [189, 243, 244], orQS,A ≪ k⊥ ≪ QS,B.

The dense–dense regime of ρA/∇2
⊥, ρB/∇2

⊥ ∼ 1, as noted previously, is not
analytically tractable and corresponds to fully nonlinear solutions of the YM
equations.

The dilute–dense scattering case is illustrated in Fig. 30 and the dilute–
dense case in Fig. 31. In the former case, since ρA/∇2

⊥, ρB/∇2
⊥ ≪ 1, coherent

multiple scattering is suppressed in both of the colliding nuclei. This is the
“BFKL regime” of high-energy scattering since in this limit, the rapidity
evolution of both “classical lumps” is described by the BFKL equation. In
the dilute–dense case, switching henceforth ρA,B → ρL,H , with ρL/∇2

⊥ ≪ 1
and ρH/∇2

⊥ ∼ 1, multiple scattering insertions on the emitted gluon, as we
will elaborate, can be absorbed into a Wilson line. In the “dense–dense” case

Gluon at rapidity y

ρA(x; yA)

ρB(y; yB)

Fig. 30. Dilute–dilute regime of shockwave scattering in QCD. The inclusive gluon
radiative distribution (depicted by the emission of a gluon line at rapidity y) is
insensitive to eikonal exchanges (depicted with dashed lines) within the color charge
densities ρA and ρB . The emission of reggeized gluons (in bold font) from these
sources interact via the effective Lipatov vertex.
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of ρL,H/∇2
⊥ ∼ 1, it is not feasible to factorize coherent multiple scatterings

from both nuclei into separate Wilson lines, and as noted, this configuration
can only be evaluated numerically.

Gluon at rapidity y

ρH(x; yH)

ρL(y; yL)

Fig. 31. Dilute–dense scattering (ρL/∇2
⊥ ≪ 1 and ρH/∇2

⊥ ∼ 1). For ρH/∇2
⊥ ∼ 1,

coherent multiple scatterings from the nucleus can be resummed into a lightlike
Wilson line.

The gluon shockwave with transverse source distribution ρH(x) moving
in the positive z direction is generated by the static current

Jµ = gδµ−δ
(
x−
)
ρH(x) (4.54)

and is given by

Āµ(x
−,x) = −gδµ−δ

(
x−
) ρH (x)

∇2
⊥

, (4.55)

with nonvanishing field strength only at x− = 0.
In the shockwave collision problem (see Fig. 32), one introduces the cur-

rent of the incoming shockwave with the transverse color charge distribution
ρL(x) moving in the negative z direction

Jµ = gδµ+δ(x
+)ρL (x) . (4.56)

For t > 0, in the dilute–dilute approximation, one simply linearizes the
YM equations to linear order in the sources ρH and ρL and solves for the
radiation field aµ. In light-cone gauge a+ = 0, the physical components of



QCD–Gravity Double Copy in Regge Asymptotics . . . 11-A1.115

the gauge field can be expressed as

□ai,c = −g3
(
Θ(x+)Θ(x−)∂i

(
ρH
∇2

⊥
ρL

)
− 2δ(x+)δ(x−)

ρH
∇2

⊥

∂iρL
∇2

⊥

)
T aT bfabc .

(4.57)
The Fourier transform of this equation (after putting the momenta of the
emitted gluons on-shell k2 = 2k+k− − k2 = 0) gives

ai,c(k) = − 2ig3

k2 + iϵk−

∫
d2q2
(2π)2

(
q2i − ki

q22
k2

)
ρH
q21

ρL
q22
T aT bfabc . (4.58)

Here, 1/k2 corresponds to the emitted gluon propagator, 1/q21 and 1/q22 are
the exchanged reggeized gluon propagators, and the Lipatov vertex is the
term in the parenthesis — see Fig. 30.

de
ns
e
so
ur
ce

x+

z

dilute
source

x−
t

IV

(radiation region)

I

(vacuum)

III

(pure gauge)

II

(pure gauge)

Fig. 32. Spacetime diagram of collision of two gluon shockwaves. Red and blue
lines represent the lightlike trajectories of the incoming shockwaves. The future
light cone of the collision point t = z = 0 is where gluon radiation occurs. Gauge
fields are pure gauges in regions I, II, and III.

To see the latter explicitly, we will recast the covariant expression for
the Lipatov vertex in Eq. (2.33) in light-cone gauge. We first partially
gauge-fix the gluon polarization vector ε+ = 0, which implies ε−k− = εiki,
εµp

µ
1 = 0, εµp

µ
2 = ε−p

−
2 since p1 = (p+1 , 0, 0, 0) and p2 = (0, p−2 , 0, 0). It is

then straightforward to deduce the form of Cµ in light-cone gauge [11]

ε∗µ(k)C
µ(q1, q2) = −2ε∗i

(
q2i − ki

q22
k2

)
≡ ε∗iCi(q1, q2) . (4.59)
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The light-cone gauge expression makes transparent the fact that the depen-
dence of this vertex is only on q1 and q2 and not the external momenta
p1, p2.

In [189], and later in [244], it was shown that the Lipatov vertex is
contained in the classical YM solutions in both dilute–dilute and dilute–
dense scattering regimes. For the dilute–dense case, one obtains

ai(k) = − 2ig

k2 + iϵk−

∫
d2q2
(2π)2

(
q2i − ki

q22
k2

)
×ρL(q2)

q22

(
U(k + q2)− (2π)2δ2(k + q2)

)
, (4.60)

where U(k) is the Fourier transform of

U(x−,x)δ
(
x+
)
= exp

ig x−∫
−∞

dz−Ā−(z−,x) · T

 , (4.61)

with Ā−(z−,x) defined in Eq. (4.55). The Wilson line encodes the coherent
multiple scattering of the emitted gluon off the dense source ρH in Fig. 31.
Expanding the above result to lowest order in ρH allows one to recover the
dilute–dilute result in Eq. (4.58). In summary, we see that the Lipatov
vertex we first encountered in Eq. (2.33) in our discussion of the 2 → 3
scattering amplitude in Section 2.1 can be obtained from solutions of the
classical YM equations in the presence of nontrivial classical color sources
that evolve with rapidity via the BFKL/BK/JIMWLK equations.

4.5. Multi-particle production in shockwave collisions

We established in the previous subsection that the gauge field produced
in dilute–dilute shockwave collisions is given by Eq. (4.58), where the r.h.s.
includes a convolution of the fields A+(k) = ρL(k

2)

k2 , A−(p−k) = ρH((p−k)2)
(p−k)2

,

and the Lipatov vertex in light-cone gauge, Ci(k, p−k) = (ki−pi k
2

p2 ). Here,
A+ and A−, as noted previously, can be interpreted as reggeon fields in Lipa-
tov’s EFT; they interact via the Lipatov vertex (the reggeon–regggeon–gluon
vertex in this language) to produce the on-shell gluon. This is illustrated in
Fig. 33.
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p

ρH

ρL

p− k

k

k − p

−k

Fig. 33. Illustration of Eq. (4.58) for dilute–dilute single inclusive gluon production
in the CGC EFT with classical fields/reggeized gluons (dark curly lines) and the
Lipatov vertex (black blobs). This contribution is the imaginary part of a two-loop
Feynman diagram, with the crosses representing the on-shell final states.

The average number of gluons produced in a dilute–dilute shockwave
collision is [189, 245]

n̄g =

∫
d3p

(2π)32Ep

〈
|Mc(p)|2

〉
ρL,ρH

, (4.62)

where
Mc(p) = p2aci (p) , (4.63)

with the expression for aci given in Eq. (4.58). Here,

⟨O⟩ρL,ρH =

∫
[dρL][dρH ]WYL+Y [ρL]WYH−Y [ρH ]O[ρL, ρH ] , (4.64)

where the l.h.s. is computed at rapidity Y . Equation (4.64) is a general-
ization of the DIS expression in Eq. (4.39) and is highly nontrivial. This
is because it is not clear that the leading-logarithmic (αY ∼ O(1)) quan-
tum corrections to this classical–statistical leading order result can be sim-
ilarly factorized, as in Eq. (4.40) for the DIS case. In [176], it was shown
that Eq. (4.64) is robust to leading-logarithmic accuracy in rapidity. In
other words, quantum corrections that are accompanied by large logarithms
ln(P±/Λ±) (where P± denotes the momenta of the ultrarelativistic nuclei
and Λ± the momentum modes specifying the rapidity of interest) can be
factorized to all-loop orders, and absorbed in the weight functionals W . As
in the DIS case, the rapidity evolution of each of these weight functionals
is governed by the JIMWLK RG equation. The computation of an oper-
ator O[ρL, ρH ] is then obtained from solutions of the classical Yang–Mills
equations.

The power counting in the CGC EFT underlying Eq. (4.64) is as follows.
The color sources ρL,H are O(1/g). The amplitude shown in Fig. 33 is there-
fore also of O(1/g) and the inclusive multiplicity is then O(1/g2). Further, as



11-A1.118 H. Raj, R. Venugopalan

noted previously, an expansion parameter is ρL,H/∇2
⊥, arising from expand-

ing Wilson lines, leading to our dilute–dilute, dilute–dense, and dense–dense
classification, depending on the kinematic regions of interest. Finally, as
outlined in our prior RG discussion, the leading logs in all orders preserve
the structure of this power counting. All further tree and higher-order dia-
grams are subleading either by powers of the coupling, in next-to-leading log
contributions, or subeikonal contributions in powers of the energy. Note that
Fig. 33 corresponds to a particular leading in ℏ contribution to a two-loop
Feynman diagram but is manifestly a tree-level contribution in the CGC
EFT.

Remarkably, Eq. (4.64) also holds for multiple-gluon emission in the
glasma58, and one can write the kth factorial moment of the multiplicity
distribution as [235]

⟨n(n− 1) . . . (n− k − 1)⟩ =

∫
d3p1

(2π)32Ep1

. . .
d3pk

(2π)32Epk

×
〈

dkN

d2p⊥,1 dy1 . . . d2p⊥,kµ dyk

〉
ρL,ρH

, (4.65)

where ⟨. . . ⟩ corresponds to Eq. (4.64). This contribution to multi-particle
production is illustrated in Fig. 34. It is valid for all the kinematic regimes

ρH ρH ρHρHρHρH

ρL ρL ρLρLρLρL

Fig. 34. Illustration of Eq. (4.65) for the n-gluon inclusive multiplicity in the
glasma, computed in the dilute–dilute limit of the CGC EFT, generalizing the
structure shown in Fig. 33. The dotted rectangles indicate stochastic averaging
over the sources.

58 One can alternatively straightforwardly instead discuss energy distributions and
energy–energy correlators. There is a significant revival of interest in such correlators
in the context of jet physics [246]. Nonperturbative contributions to energy–energy
correlators in the CGC EFT were first computed in [238], and can in the dilute–dilute
approximation, be mapped to recent computations in the DGLAP/BFKL overlap
regime [247, 248].
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in the power counting. This is inclusive of the dense–dense regime (at early
times t ≤ 1/QS) even though the factorized objects in Eqs. (4.58) and (4.60)
are not clearly identifiable in this case. Important caveats in this derivation
are (a) it is only valid when all the particles are produced in a window of
rapidity ∆Y ≤ 1/αs, and (b) it is only valid to LLx. The extension of this
framework to ∆Y > 1/αs, and to NLLx, will require significant conceptual
and technical developments.

This mechanism for multi-particle production, while highly subleading
at low gluon occupancies, becomes the dominant mechanism when occupan-
cies approach 1/αs. Nevertheless, it is important to keep in mind that the
approach to classicalization is driven by BFKL evolution, and similarly, is
made up of Lipatov vertices and reggeized propagators.

For the Gaussian weight functional59 in Eq. (4.5), the combinatorics of
the color charge densities in Eq. (4.64) can be worked out explicitly [249];
the n-particle probability distribution is the negative binomial distribution
(NBD) [250, 251]

Pn =
Γ (n+ q)

Γ (q)Γ (n+ 1)

n̄nqq

(n̄+ q)n+q
, (4.66)

where n̄ is the mean of the distribution and q is defined as

q = ζ

(
N2

c − 1
)
S⊥

2π
. (4.67)

Here, ζ is a nonperturbative O(1) constant and S⊥ is the transverse overlap
area of the shockwaves at a fixed impact parameter. The NBD distribu-
tion [251] was employed previously to fit multiplicity distributions with q as
a phenomenological parameter interpolating between a Bose–Einstein dis-
tribution for q = 1 and a Poisson distribution for q → ∞.

In the Gaussian approximation of the CGC, we see that q can be com-
puted ab initio. The structure of q in Eq. (4.67), in particular its dependence
on the saturation scale QS, is a result of the IR divergence of the single-
inclusive distribution, which is an artifact of the dilute–dilute approxima-
tion. Such divergences are absent in the full dense–dense case (all orders in
ρL,H/∇2

⊥), which is a more appropriate framework when transverse momenta
≤ QS are probed. However, in this fully nonlinear framework, shockwave
collisions have to be treated numerically employing classical–statistical real-
time lattice simulations [238]. Such simulations do not qualitatively alter the
NBD structure obtained in the analytical computations [252]. Multiplicity

59 This combinatorics also works for the RG evolved weight functional, which is a non-
local Gaussian, whose momentum-dependent variance satisfies the BK equation. See
the discussion following Eq. (4.49).
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distributions in the CGC EFT have been compared to the data in hadron–
hadron collisions at colliders [253, 254]. When such distributions are plotted
in terms of the Koba–Nielsen–Olesen (KNO) scaling variable n/n̄ [251], good
agreement is found at colliders [253, 254] for moderate values of this ratio,
but deviate significantly for larger values corresponding to rare events60.
This can signal the breakdown of the classical–statistical framework, requir-
ing modifications to the framework to treat such events. An example of
such configurations are the pomeron loops we mentioned previously that go
beyond our “mean field” treatment.

We will conclude this section by discussing the connections of this for-
malism with that of the AGK cutting rules in reggeon field theory we alluded
to previously in this section, and in the gravity context, in Section 3.7. In-
stead of formulating our discussion in terms of multiplicity moments, we can
directly formulate it in the language of 2 → n probabilities, where unitarity
constraints, for instance, are more transparent. In the SK closed time path
formalism, the n-particle probability for strong time-dependent sources can
be expressed as [245]

Pn = exp

(
−a
g2

) n∑
p=0

1

p!

∑
α1+...αp=n

bα1 . . . bαp

g2p
. (4.68)

In this compact expression, a is the imaginary part of the sum over all
connected vacuum–vacuum graphs in the presence of external sources. (In
the absence of such sources, it would be zero.) The sum in p is over the
number of disconnected graphs producing the n particles. Lastly, br is the
probability corresponding to the sum of all r-particle cuts that contribute to
a given multiplicity. With this definition, a =

∑∞
r br. As a simple example

illustrating this formula, b1 is the sum over all 1-particle cuts that contribute
to P1 but bn1/n! also contributes to Pn. Indeed, Pn = e−b1/g2 1

n!(
b1
g2
)n is just

the Poisson distribution if br = 0 for r ≥ 2. This is a good approximation
to Pn due to the power counting in g for strong sources O(1/g); however, it
leads to a significant error in the moments of the multiplicity. For instance,
n̄ = g−2

∑
r rbr can receive a significant quantitative correction depending

on the theory specific relative size of the multi-particle cuts br (r > 1) to b1.
Likewise, for the connected pth moments, ⟨np⟩conn = g−2

∑
r r

pbr.
The master formula in Eq. (4.68) contains a wealth of useful informa-

tion. For instance, one can expand out a (the sum of the imaginary part
of all connected vacuum–vacuum graphs) in the exponential and write the
formula as

60 The multi-particle production computation in the CGC EFT is valid parametrically
for ∆Y ≤ 1/αs. Some of the data is over wide ranges in rapidity where corrections
to these expressions may be of quantitative importance.
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Pn =

∞∑
m=0

Pn,m with Pn,m =
1

g2m

∑
p+l=m

(−a)l

l!

1

p!

∑
α1+···+αp=n

bα1 . . . bαp .

(4.69)
In the expression on the r.h.s., m represents the number of disconnected
vacuum-to-vacuum diagrams contributing to Pn (with each disconnected
diagram starting at O(1/g2)), l is the number of such “uncut” diagrams
from expanding out the exponential to lth order, and p denotes the number
of cut subdiagrams that contribute to the multiplicity. In contrast, the
l diagrams do not contribute to the multiplicity but are “shadowing” or
absorptive contributions. In the language of AGK [159], m represents the
number of reggeons, l the number of uncut reggeons, and p the number of
cut reggeons. From Eq. (4.69),

∞∑
n=1

nPn,m = 0 , ∀m ≥ 2 , and

∞∑
n=1

n(n− 1)Pn,m = 0 , ∀m ≥ 3 , etc .

(4.70)
In arriving at this relation, we implemented the unitarity condition Pn = 1,
which gives a =

∑
r br from Eq. (4.68). This result has a simple theory-

independent interpretation. Two or more disconnected subgraphs do not
affect the mean multiplicity, only the 1-particle irreducible graphs; likewise,
three or more disconnected graphs do not impact the variance, and similarly,
for the higher moments.

An equivalent statement one can extract from Eq. (4.68) [245] is that
diagrams with two or more cut disconnected subgraphs cancel in the com-
putation of the multiplicity, and so on. In particular, n̄ = ⟨ncut⟩⟨n⟩1: the
average multiplicity is the average number of cut subdiagrams (= a) times
the average multiplicity of an individual cut subdiagram. This is unsurpris-
ing since the multiplicity of cut subdiagrams (unlike the particle multiplicity)
is Poissonian; the disconnected graphs are by definition independent of each
other. The reason that one obtains these model-independent relations is
that one has summed over the multiplicity in obtaining them. A corollary is
that they contain limited information on the dynamics of the theory, which
instead is contained in the br in Eq. (4.68) specifying the magnitude of the
intrinsic rth connected subgraph squared amplitudes as an expansion in g.

For a more microscopic understanding of Eq. (4.62), recall the LSZ rela-
tion61

61 For this discussion, to avoid clutter with indices, we will work with a self-interacting
scalar theory. The arguments generalize straightforwardly to gauge theories.
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⟨p1 . . . pn out|0in⟩ =
1

Zn/2

[
n∏
i

d4xi e
ipi·xi

(
2xi +m2

) δ

iδJ(xi)

]
exp (iZ(J)) .

(4.71)
Here, Z is the wavefunction renormalization constant and Z(J) is the sum
over all connected vacuum–vacuum graphs. The probability to produce
n particles is

Pn =
1

n!

∫ n∏
i

d3pi
(2π)32Ei

|⟨p1 . . . pn out|0in⟩|2 , (4.72)

which can be reexpressed as [245]

Pn =
1

n!
Dn[J+, J−] exp (iZ[J+]− iZ∗[J−]) |J−=J+=J . (4.73)

Here, + and − denote the sources on the upper and lower parts of the SK
contour, which are set to the physical value J at the end of the computation,
and

D[J+, J−] =

∫
d4x

∫
d4y Z G0

+−(x, y)

×
(
2x +m2

)
Z

(
2y +m2

)
Z

δ

iδJ+(x)

δ

iδJ−(y)
, (4.74)

with the SK cut propagator (or Wightman function) defined to be

G0
+−(x, y) =

∫
d3p

(2π)32Ep
eip·(x−y) . (4.75)

Defining the generating function,

F(z) =
∑
n

znPn = ezD[J+,J−] eiZ[J+] e−iZ∗[J−] = eZSK[z,J+,J−] , (4.76)

we obtain

n̄ =

∫
d4x

∫
d4y Z G0

+−(x, y)

(
2x +m2

)
Z

(
2y +m2

)
Z

×
[
δiZSK[z = 1, J+, J−]

δJ+(x)

δiZSK[z = 1, J+, J−]
δJ−(y)

+
δ2iZSK[z = 1, J+, J−]

δJ+(x)J−(y)

]
J+=J−=J

. (4.77)
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We note that all moments of the multiplicity can similarly be generated
by further functional differentiation of ZSK with respect to J+/J−. These
generate in–in connected correlators in the strong-field vacuum as opposed
to the time-ordered in–out connected correlators that appear in the LSZ
computation of Pn.

The LO computation of n̄ is of order g−2(gJ)n and only involves the first
term in the brackets on the r.h.s. of Eq. (4.77). This contribution can be
understood as follows. Taking the functional derivative of ZSK with respect
to J+ and, likewise with respect to J−, amputates a source replacing it
with the fields ϕ+ and ϕ−, respectively, which are sewn together with the
cut propagator G0

+−. Each of these fields connects to arbitrary numbers of
sources summed over all possible ± signs for the intermediate vertices. Due
to the identities G0

++−G0
+− = G0

R = G0
−+−G0

−−, where G0
++(G

0
−−) are the

time ordered (anti-time ordered) Feynman propagators, the successive sum
over ++ and +− (or −− and −+) vertices converts all the intermediate
propagators into the retarded propagators G0

R. One then obtains

n̄LO =

∫
d4x

∫
d4y G0

+−(x, y)
(
2x +m2

) (
2y +m2

)
ϕcl(x)ϕcl(y) . (4.78)

For initial conditions at t = −∞, where the field and its first derivative
vanish, using integration by parts, this equation can be reexpressed as

n̄LO =

∫
d3p

(2π)32Ep

∣∣∣∣ limt→∞

∫
d3x eip·x(∂t − iEp)ϕcl(x)

∣∣∣∣2 . (4.79)

The expression | . . . |2 is nothing but ⟨0in|a†(p)a(p)|0in⟩, as one might antic-
ipate.

For the classical Yang–Mills, the equivalent expression is Eq. (4.62), with
the gauge field in the forward light-cone given by Eqs. (4.58) and (4.60), for
the dilute–dilute and dilute–dense solutions of the classical Yang–Mills equa-
tions. In the dense–dense case, as noted, the Yang–Mills equations can only
be solved numerically. Diagrammatically, this would correspond to having
arbitrary numbers of classical fields/reggeized gluons from both upper and
lower sources rescattering off the produced gluons. Their solution leads to
the overoccupied nonequilibrium glasma, which flows to a nonthermal fixed
point [255–257] before thermalizing to form a quark–gluon plasma (QGP).
Remarkably, one sees rapid thermalization at weak coupling αs(QS) ≪ 1 in
the Regge limit, as long as αsN ∼ O(1), where N here is the phase space
occupancy. A review of this nonequilibrium dynamics and interdisciplinary
connections is provided in [240].
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Going beyond LO, both terms in the bracket in Eq. (4.77) contribute.
The first term has the structure ϕquantϕcl and the second term is the cut
propagator G+− in the background field. We discussed the latter previously
in Section 4.2 for the background of a single shockwave. The computation
for the case of two shockwaves is similar and has been discussed previously in
[176, 235, 245]. One still has an initial value problem where instead of solving
the classical equations of motion for the classical field at LO, one has to solve
the small fluctuation equations of motion for the small fluctuation field, with
plane-wave initial conditions. A similar but more involved set of steps can
be employed to solve for ϕquant; in this case, one has UV divergences from
the closed loop that have to be regulated. However, to leading-logarithmic
accuracy, one simply obtains the result in Eq. (4.65).

In summary, to one-loop accuracy (and leading-logarithmic contributions
to all orders in a limited kinematic region in rapidity) one can compute
moments of the multiplicity as an initial value problem, solving classical
equations of motion and small fluctuation equations. This is equivalent to
a statement of the Feynman tree theorem [258]. As emphasized in [259],
the extension of this framework to two loops is nontrivial. This is because,
as we noted previously in Section 4.3, genuine ℏ corrections of order ϕ3a in
the difference fields contribute; this requires extensions of the Schwinger–
Keldysh framework beyond the classical–statistical approximation.

5. Trans-Planckian gravitational scattering of shockwaves

In Sections 2 and 3, we discussed 2 → 2 + n scattering in QCD and
in Einstein gravity, respectively, in the multi-Regge asymptotics within the
framework of perturbation theory around Minkowski spacetime. While this
was crucial for computing the n-particle contribution to the 2 → 2 scatter-
ing in the leading-log approximation, these methods encounter significant
limitations when applied to very high-energy regimes. The inherent nature
of these high-energy interactions, characterized by copious parton produc-
tion, drives the evolution of produced particles towards over-occupied dense
states. This extreme density (or over-occupancy) fundamentally challenges
the applicability of the perturbative framework, as its underlying assump-
tions, valid at weak coupling and small occupancies, break down under such
conditions.

The inability of conventional perturbation theory to accurately describe
these dense environments requires the exploration of nonperturbative tech-
niques. In Section 4, we discussed how this problem was tackled in the case of
gauge theory using semi-classical techniques that led to a shockwave picture
of high-energy scattering. In this semi-classical shockwave framework, we
showed that the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation, which
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drives the evolution of parton distributions towards high densities at high
energies, can be recovered by taking a low-density limit. Conversely, this
Color Glass Condensate EFT facilitated the derivation of nonlinear comple-
tions of the BFKL equation, providing a robust solution to the unitarity
problem that plagued earlier perturbative descriptions.

Further, we showed that the Lipatov vertex describing the single in-
clusive gluon radiation spectrum is recovered in so-called dilute–dilute and
dilute–dense occupancy semi-classical limits in the shockwave collisions. The
dense–dense single inclusive spectrum is fundamentally nonperturbative but
can be computed numerically. We discussed how one understands 2 → n
scattering in the shockwave framework, and provided a complementary QFT
understanding and generalization of the AGK rules employed in the reggeon
field theory literature. We showed that multi-particle production in strong
fields can be computed, to all orders in leading-logarithmic accuracy, in
a classical–statistical formalism; the spacetime evolution of operators, for
each configuration of sources, is described by solutions of classical equations
of motion with retarded boundary conditions. Due to the similarities be-
tween QCD and gravity developed in the previous sections, it appears likely
that insights from this EFT description of QCD in Regge asymptotics can
be applied to gravity.

Specifically, given the common dispersive techniques in the Regge limit,
and the emergent double-copy relations, a compelling objective is to estab-
lish an analogous ab initio EFT framework within Einstein gravity. The
purpose of this section is to take steps in this direction. A specific aim is to
show that the gravitational Lipatov vertex, a crucial element in describing
particle emission in multi-Regge kinematics, can be recovered through the
computation of radiation produced in gravitational shockwave collisions, as
was the case for gluon shockwave collisions. The subsequent subsections
will detail shockwave derivations, and discuss the implications of this semi-
classical CGC-inspired approach to high-energy scattering in gravity. We
will also discuss further its connections to the ACV framework for trans-
Planckian gravitational scattering.

5.1. Gravitational shockwave properties

Before addressing the problem of recovering the gravitational Lipatov
vertex in gravitational shockwave collisions, we will briefly review the prop-
erties of the shockwave. Gravitational shockwaves are exact solutions of
Einstein’s equations in the presence of delta-function sources that repre-
sent ultrarelativistic particles propagating at the speed of light. They are
described by the Aichelburg and Sexl (AS) metric [260] given by

ds2 = 2dx+ dx− − δijdx
i dxj + 8µH Gδ(x−) log(Λ|x|)(dx−)2 . (5.1)
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Here, Λ is an IR cutoff scale. This spacetime is a solution to Einstein’s
equation with a nonvanishing energy-momentum (EM) tensor given by

Tµν = µHδµ−δν−δ(x−)δ(2)(x) .

This is the EM tensor of a massless point particle moving in the positive
z direction carrying energy µH and located at the origin x = 0 in transverse
space.

The point particle approximation is accurate only in classical mechanics
where there is no particle production. This is problematic for shockwave
collisions since the classical spacetime in the post-collision region has large
curvature along the transverse collision plane; one therefore cannot ignore
quantum gravitational effects, in particular higher derivative corrections to
Einstein’s gravity [261, 262]. This argument nevertheless does not invalidate
the use of semi-classical frameworks of black hole formation in the scattering
of highly-boosted particles. If one smears the δ(x−) functions, giving it
some width (along the z direction), the curvatures remain small, allowing
the classical theory to remain applicable post-collision even at small impact
parameters [263].

While the longitudinal spread in the EM current is a desired property, it
is not crucial if impact parameters are large compared to RS where curva-
tures are small. There is however another feature of the EM current that one
would like to incorporate, which is the spread in the transverse direction.
Since the incoming particles are highly boosted, they form a large occu-
pancy cloud of gravitons resulting from bremsstrahlung across a wide range
of rapidities. This requires us to treat their dynamics as a static extended
mass distribution in the transverse directions. This point is analogous to the
discussion in the CGC where such nontrivial transverse source profiles are
automatically generated via the rapidity renormalization group equations.

Therefore, motivated by this discussion, we will generalize the above
form of the EM current to a source with a generic transverse spatial density
ρH(x) with the shockwave profile

Tµν = δµ−δν−µHδ(x−)ρH(x) , (5.2)

with a more general shockwave spacetime

ds2 = 2dx+ dx− − δijdx
i dxj + f(x−,x)(dx−)2 , (5.3)

where f(x−,x) is given by

f(x−,x) = 2κ2µHδ(x
−)
ρH(x)

∇2
⊥

=
κ2

π
µHδ(x

−)
∫

d2y lnΛ|x− y|ρH(y) .

(5.4)
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We used the Green function of the two-dimensional Laplacian ∇2
⊥ ≡ δij∂i∂j

in the second equality. This form of the metric is analogous to the classical
shockwave field A+ in Eq. (4.3).

As is apparent from Eq. (5.3), the spacetime is flat everywhere except at
x− = 0, where the curvature (field strength) is infinite. Further, the vacua
in the regions x− > 0 and x− < 0 are not identical but are related by a co-
ordinate transformation of the Minkowski vacuum. This is to be expected
intuitively since the passing shock should affect spacetime measurements
differently in these regions [264, 265]. Let us define a y-coordinate system,
related to the x-coordinate in which the metric (5.3) is written, by the dis-
continuous transformation

x− = y− , xi = yi − κ2µHy
−Θ(y−)

∂i
∇2

⊥
ρH(y) ,

x+ = y+ − κ2µHΘ(y−)
ρH(y)

∇2
⊥

+
1

2
κ4µ2H y−Θ(y−)

(
∂i
∇2

⊥
ρH(y)

)2

. (5.5)

This transformation follows from the solution of the null geodesics equation
for the spacetime (5.3). The metric in the y-coordinate system then takes
the form

ds2 = 2dy+ dy− − gijdy
i dyj , (5.6)

where gij now depends nonlinearly on the source density ρH

gij = δij − y−Θ(y−)

×
[
2κ2µH

∂i∂j
∇2

⊥
ρH(y)− κ4µ2H y−

(
∂i∂k
∇2

⊥
ρH(y)

)(
∂j∂k
∇2

⊥
ρH(y)

)]
.

(5.7)

The spacetime (5.6) is again an exact solution of Einstein’s equations
with the EM tensor in Eq. (5.2). This form of the shockwave metric makes
manifest that the region in front of the shock (y− < 0) is the Minkowski
vacuum, while the region after the shock (y− > 0) is a pure gauge transfor-
mation of the Minkowski vacuum. To confirm the latter, one can explicitly
compute the Riemann tensor Rµνρσ of the metric in the y− > 0 region,
which vanishes even though its connection coefficients do not vanish. This
discussion is analogous to the shockwave solution in the gauge theory case
for which the field strength tensor vanishes before and after the shockwave
even though the gauge fields do not vanish. They are distinct pure gauge
solutions separated by the gluon shockwave [58, 59].
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AS shockwaves can also be obtained from boosting a Schwarzschild black
hole of mass mH . To see this, one starts with the Schwarzschild metric in
the isotropic coordinate system

ds2 ≡ −
(
1−GmH/2r

1 +GmH/2r

)2
dt2+

(
1 +

GmH

2r

)4(
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
.

(5.8)
We then make an appropriate coordinate transformation [260] such that the
black hole is boosted in the positive z direction with the boost parameter
β = (1−γ2)−1/2 (γ being the boost factor). Keeping the energy of the black
hole (µH = γmH) fixed, and taking β → 1 limit, results in the shockwave
metric in Eq. (5.1).

The AS shockwave serves as a background metric for the eikonal ap-
proximation in high-energy scattering [116]. Further, the propagation of
a probe particle through the shockwave background induces a phase shift
(well-known in the GR literature as the Shapiro time delay), directly yield-
ing the eikonal amplitude [89]. This connection highlights the importance
of shockwaves in bridging classical gravitational physics to scattering ampli-
tudes in the ultrarelativistic limit. In the ensuing subsection, we will address
gravitational shockwave collisions and recover the gravitational Lipatov ver-
tex in the radiation spectrum.

5.2. Gravitational Lipatov vertex from shockwave collisions

The problem of gravitational shockwave collisions has been studied ex-
tensively in the literature. In particular, D’Eath and Payne [266–268] de-
veloped a perturbative framework for analytically computing the spacetime
metric in the future light cone following the collision of two AS shockwaves.
Their approach employs a perturbative ansatz for the metric, expressed as
gµν = ηµν +

∑∞
k=1 h

(k)
µν , where h(k)µν is the kth order contribution to the met-

ric perturbation. The initial data for this expansion are specified on a null
hypersurface of the background spacetime incorporating the exact solution
of Einstein’s equations before the collision. The vacuum Einstein field equa-
tions are then solved iteratively, order by order, as a tower of wave equations.
The source term for each order is generated by the lower-order perturbations,
allowing for a systematic solution using the Green function method.

A primary observable in these collisions is the inelasticity (ε), defined
as the percentage of the initial center-of-mass energy that is radiated away
as gravitational waves. D’Eath and Payne’s first-order perturbation theory
yielded ε = 20%. Their more precise second-order result gave ε2nd order =
16.4%, showing good agreement with subsequent numerical relativity results
[269]. These results are often compared against theoretical upper bounds
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on radiated energy, such as those derived from apparent horizons62 (ε ∼
29.3%) [270, 271]. Further, the hoop conjecture for black hole formation,
requiring that the energy in such collisions be compressed within a hoop of
circumference 2πR, where R ≤ RS, provides a critical γ above which black
hole formation must take place [272]. Numerical GR simulations of head-on
collisions of boosted bosonic stars show that this occurs already at boosts
about 1/3 the critical value [273]; see also [274–276].

A crucial aspect of black hole formation through gravitational shockwave
collisions is the appearance of large curvatures and large quantum fluctuation
on this apparent horizon [261, 262, 271]. As discussed previously, one may
question the validity of the classical approximation in this process. In [263],
the curvature invariant RµνρσR

µνρσ in the collision region was studied to
determine the regime of validity of the semi-classical computation. It was
established that the classical approximation is valid when b ≫ RS. In the
b ∼ RS region, relevant for black hole formation, it is important to treat
particles as wave packets/extended matter distributions; in this case, the
formation of trapped surfaces is accompanied by low curvatures and small
quantum fluctuations [263]. However, since in this section our focus will be
in the regime of b > RS, we can continue to work with the AS metric in
Eq. (5.1); one is then not sensitive to the black hole formation in the final
state. This simplification allows us to analytically compute gravitational
radiation produced in gravitational shockwave collisions thereby recovering
the gravitational Lipatov vertex. We will revisit this issue in subsequent
work.

For our purpose here, since the covariant form of the gravitational Li-
patov vertex in Eq. (3.38) is quite complicated in form, it will be useful to
recast it in light-cone gauge where its form simplifies considerably. Let ϵµ(k)
be the gluon polarization vector and ϵµν(k) be the graviton polarization ten-
sor such that (suppressing helicity labels) ϵµν(k) ∼ ϵµ(k)ϵν(k), ϵµ(k)kµ = 0.
The precise relation between the two was given previously in Eq. (3.21). In
light-cone gauge, the polarization tensor is ϵ+µ = 0.

Recall the form of the gravitational Lipatov vertex

Cµν =
1

2
(CµCν −NµNν) ,

with Cµ given in Eq. (2.60) and Nµ in Eq. (3.37). Contracting Nµ(k1, k2)
with the gluon polarization vector in light-cone gauge gives

ε∗µ(k)N
µ(k1, k2) = −2

√
k2
1k

2
2

ε∗i ℓi
ℓ2

≡ ε∗iNi(k1,k2) , (5.9)

62 An apparent horizon is a surface in spacetime where outgoing null (light) rays instan-
taneously stop expanding and remain parallel. The presence of an apparent horizon
signals the inevitable formation of an event horizon.
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with ℓ = k1 + k2
63. Using this result, the expression in Eq. (4.59) for the

QCD Lipatov vertex in light-cone gauge, and the gauge invariance condition
Γµνℓ

ν = 0, one can obtain all nonvanishing components of the gravitational
Lipatov vertex in light-cone gauge. These are as follows:

Cij(k1,k2) = 2

(
k2i − ℓi

k2
2

ℓ2

)(
k2j − ℓj

k2
2

ℓ2

)
− 2ℓiℓj

k2
1k

2
2

ℓ4
, (5.10)

C−i(k1,k2) =
4ℓ−
ℓ2⊥

[
(k1 · k2)

(
k2i − ℓi

k2
2

ℓ2

)
− ℓi

k2
1k

2
2

ℓ2

]
, (5.11)

C−−(k1,k2) =
8ℓ2−
ℓ4⊥

[
(k1 · k2)

2 − k2
1k

2
2

]
. (5.12)

We will now outline the derivation [277] of these expressions in a semi-
classical framework of colliding gravitational shockwaves in Einstein–Hilbert
gravity in a manner exactly analogous to the QCD discussion in Section 4.
We consider two incoming shocks from opposite directions along the z axis.
We take one of these shocks to be “heavy” (or dense in the QCD parlance
we introduced in Section 4) and the other “light” (or dilute). The heavy
shockwave acts like a background for the light shockwave which is a probe.
These shockwaves are separated by the impact parameter b in the transverse
plane. The collision point is at z = t = 0. The spacetime diagram for this
process is depicted in Fig. 35.

The EM tensor sourcing these shockwaves is given by

Tµν = δµ−δν−µH δ(x−)ρH(x) + δµ+δν+µLδ
(
x+
)
ρL(x) . (5.13)

This expression is valid in the pre-collision region t < 0 where the waves
have not yet collided. In the region t > 0, the EM tensor will get corrections
due to the backreaction of the changes in the spacetime. This is depicted in
Fig. 35, where region I is the common Minkowski vacuum shared by both the
shockwaves, and regions II and III are spacelike regions of respectively dense
and dilute shockwaves before the collision that correspond to the respective
coordinate transformation of Minkowski vacuum (as discussed in the pre-
vious section). Finally, region IV corresponds to the future of the collision
point in which the EM tensor of each of the shocks will get modified and
backreact to create a radiative spacetime with a nonvanishing curvature.

We begin by setting up the equations that govern the changes in the
spacetime metric in the dilute–dense approximation. Ultimately, our goal
will be to calculate the correction to the EM tensor and the modification to

63 The sign convention of k2 in this section is opposite to that in Section 3.
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Fig. 35. Trajectories of colliding gravitational shockwaves. The trajectory in red
(blue) is the shock with the dense (dilute) source ρH (ρL). In the dilute–dense
approximation, we treat ρL as a probe in the background created by ρH . The shift
in the blue trajectory is the Shapiro time delay to the light shockwave.

the metric in region IV in the dilute–dilute approximation where we keep
terms to linear order in ρH and ρL in the solution. This approximation will
be sufficient for recovering the gravitational Lipatov vertex. The derivation
outlined below is discussed in more detail in [277].

5.2.1. Equations of motion

Treating the spacetime created by shockwave H as background (ḡµν), we
consider small perturbations hµν around it

gµν = ḡµν + hµν . (5.14)

Here, ḡµν is given by Eq. (5.3). The perturbation hµν is further decomposed
into a term h

(1)
µν linear in ρL and a term h

(2)
µν of order O(ρHρL)

hµν = h(1)µν + κh(2)µν . (5.15)

The former is sourced by the T++ part of the pre-collision EM tensor in
Eq. (5.13), whereas the latter comes from the backreaction of the cor-
rected EM tensor at this order. In light-cone gauge (hµ+ = 0), lineariz-
ing Einstein’s field equations gives, for the traceless field h̃ij (defined as
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h̃ij ≡ hij − 1
2δijh , h = δijhij),

ḡ−−∂2+h̃ij −□h̃ij = κ2
[(
2∂i∂j −∇2

⊥δij
) 1

∂2+
T++ + 2Tij − δijT

− 2

∂+
(∂iT+j + ∂jT+i − δij∂kT+k)

]
. (5.16)

Here, □ is the d’Alembertian operator in Minkowski background and T ≡
δijTij . This equation is accompanied by the first-order equations of the
remaining components of the metric

∂+h−i = ∂j h̃ij + κ2
[
2

∂+
T+i −

∂i
∂2+
T++

]
, (5.17)

∂2+h−− = ∂i∂j h̃ij − κ2
[
∇2

⊥
∂2+

T++ − T − 2T+− + ḡ−−T++

]
. (5.18)

To solve these equations, we need to determine how the various components
of the energy momentum tensor evolve into region IV. For this, we will need
to consider the geodesic motion [278–280] of the ultrarelativistic distribution
of particles ρL as they cross the shockwave background created by ρH .

5.2.2. Spacetime evolution of the energy-momentum tensor

We need to derive how the EM tensor of a shockwave L (comprised of
ultrarelativistic particles) changes as it passes through the gravitational field
of shockwave H. For simplicity, we treat shockwave L as a point particle,
represented by a delta function: ρL(x) = δ(2)(x − b). Since this point
particle will follow a geodesic trajectory when it crosses shockwave H, one
can express the EM tensor as a function of this geodesic as

Tµν(x) =
µL√
−ḡ

∞∫
−∞

dλ ẊµẊν δ(4)(x−X(λ)) . (5.19)

Here, ḡ = −1 is the determinant of the background metric in Eq. (5.3)
and the dot denotes differentiation with respect to the worldline parameter
λ. This expression of the EM tensor follows from the relativistic action of
a massless point particle.

The problem then is to solve the geodesic equation and determine the
trajectory Xµ(λ). It is important to acknowledge that this point particle
treatment is a simplified model. In our point particle approximation, the
transverse source density ρL(x) remains unchanged, effectively “freezing” the
transverse dynamics. While this detail is not central to our discussion here,
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we will revisit it later when we derive the Lipatov vertex from our shockwave
model. A more complete picture would involve the boosted point particles
being accompanied by their own “graviton cloud”, as realized in the Faddeev–
Kulish construction we discussed in Section 3.7. This entire configuration
would trace a congruence of null geodesics, rather than a single one. We will
return to this topic in Section 5.5.

The energy momentum tensor in Eq. (5.19) is covariantly conserved only
when the worldline Xµ(λ) satisfies the geodesic equation

Ẍµ + Γµ
νρẊ

νẊρ = 0 , gνρẊ
νẊρ = 0 . (5.20)

The second relation ensures that the trajectory is a null geodesic. Solving
Eq. (5.20) with appropriate boundary condition at negative times one finds
[277]

X− = λ ,

X+ = −κ2µHΘ(X−)
ρH(b)

∇2
⊥

+
κ4µ2H
2

X−Θ(X−)
(
∂iρH(b)

∇2
⊥

)2

,

Xi = bi − κ2µHX
−Θ(X−)

∂iρH(b)

∇2
⊥

. (5.21)

It can be checked that the solution satisfies the null constraint in Eq. (5.20).
Notice that the null geodesic is continuous along the x− and transverse
directions (as a function of λ or X−) but acquires a discontinuity along the
x+ direction after crossing the shockwaveH atX− = 0. This behavior of the
null trajectory is shown in Fig. 35 (where motion in the transverse direction
is not shown) and is precisely the content of the coordinate transformation
in Eq. (5.5).

The result in Eq. (5.21) and Eq. (5.19) allows us to obtain all the non-
vanishing components of particle Ls EM tensor in the dilute–dense approx-
imation. For our presentation here, we require the complete expression for
the EM tensor within the dilute–dilute approximation. This requires sum-
ming the EM tensor for both particle H and particle L. Interestingly, it can
be demonstrated that, when working in light-cone gauge, particle Hs EM
tensor gets no corrections from particle Ls gravitational field, even under
the dilute–dilute approximation. The nonvanishing components of the total
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EM tensor are

T++ = µLδ
(
x+
)
ρL + κ2µHµLΘ

×
(
x−
) [
δ′
(
x+
) ρH
□⊥

ρL + x−δ
(
x+
) ∂iρH

□⊥
∂iρL

]
,

T−− = µHδ(x
−)ρH ,

T−+ = κ2µHµLδ
(
x+
)
δ(x−)

ρH
∇2

⊥
ρL ,

T+i = κ2µHµLδ
(
x+
)
Θ(x−)

∂iρH
∇2

⊥
ρL . (5.22)

We have replaced in these results the transverse delta functions with the
finite transverse source distribution ρL. This is a harmless change with the
cautionary remark that the transverse dynamics of the source distribution
are frozen, which is a good approximation for small positive X−.

When working in the point particle approximation at a finite impact
parameter, the solution for the EM tensor contains a contact term ambiguity,
that is proportional to ρHρL. This term, expressed as δ(2)(x⃗ )δ(2)(⃗b− x⃗ ) =

δ(2)(⃗b )δ(2)(⃗b − x⃗ ), technically vanishes for |⃗b | > RS, which lies the region
where our point particle model is applicable. However, despite vanishing in
position space, this “smeared” provides a finite contribution in momentum
space. The precise coefficient of this term will not be fixed by the point
particle analysis and the ambiguity in the solution should ideally be resolved
by appealing to other physical considerations such as the unitarity of multi-
particle production. With this mind, we include the following term:

κ2µHµLx
−Θ(x−)δ

(
x+
)
ρHρL (5.23)

in the solution which vanishes in the point particle limit for large impact
parameters. As a consequence,

T++ = µLδ(x
+)ρL + κ2µHµLΘ(x−)

×
[
δ′
(
x+
) ρH
∇2

⊥
ρL + x−δ

(
x+
)
∂i

(
∂iρH
∇2

⊥
ρL

)]
. (5.24)

We will now show that this addition is essential for obtaining the correct
expression for the Lipatov emission vertex.

5.2.3. Gravitational Lipatov vertex from shockwave collisions

We start by determining h(1)ij which represents the fluctuation in the back-
ground induced by the light shockwave. In this approximation, Eq. (5.16)
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simplifies to

−□h̃(1)ij = κ2µLx
+Θ

(
x+
) (

2∂i∂j −∇2
⊥δij

)
ρL +O

(
κ4
)
. (5.25)

We substituted here the O(ρL) expression for T++ from Eq. (5.22) into the
r.h.s. Since it is independent of x−, h̃(1)ij too is x−-independent. Hence,

□h(1)ij = −∇2
⊥h

(1)
ij , which gives

h̃
(1)
ij = κ2µLx

+Θ
(
x+
)(2∂i∂j

∇2
⊥

− δij

)
ρL +O

(
κ4
)
. (5.26)

At order O(ρLρH), the solution for the field h̃
(2)
ij is found by plugging

the solution into Eq. (5.26), the corrected EM tensor from Eq. (5.22), and
Eq. (5.4) into Eq. (5.16), which yields

□h̃(2)ij = κ3µHµL

(
2δ(x+)δ(x−)

ρH
∇2

⊥
Pij

ρL
∇2

⊥
−Θ

(
x+
)
Θ(x−)

×
[
Pij

(
ρH
∇2

⊥
ρL + x+x−∂k

(
∂kρH
∇2

⊥
ρL

))
−2

{
∂i

(
∂jρH
∇2

⊥
ρL

)
+ ∂j

(
∂iρH
∇2

⊥
ρL

)
− δij∂k

(
∂kρH
∇2

⊥
ρL

)}])
, (5.27)

where Pij = 2∂i∂j − δij∇2
⊥. This equation can be readily integrated in

Fourier space, with the result

k2h̃
(2)
ij (k) = κ3µHµL

∫
d2q2

(2π)2
ρH(q1)

q21

ρL(q2)

q22

×
(
2Pij(q2)−

q22
k+k−

{
Pij(k)

(
1 +

k · q1
k+k−

)
− 2 (kiq1j + kjq1i − δijk · q1)

})
,

(5.28)

with Pij(p) ≡ 2 pipj − δijp
2. The transverse momenta are constrained by

k = q1 + q2. To extract the Lipatov vertex, we need to put the graviton’s
momentum k on-shell (2k+k− − k2 = 0), where the Lipatov vertex is the
residue of the 1/k2 pole. After straightforward manipulations of the above
expression, we find

h̃
(2)
ij (k) =

2κ3µHµL
k2 + iϵk−

∫
d2q2

(2π)2
Cij(q1, q2)

ρH
q21

ρL
q22

, (5.29)

where Cij(q1, q2) is the gravitational Lipatov vertex in the light-cone gauge
as defined in Eq. (5.10).
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Recall that this result relies heavily on the inclusion of the contact term
in the T++ solution, as discussed previously. Without this term, we would
only correctly reproduce the strict Yang–Mills double-copy CµCν part of
the Lipatov vertex. However, the NµNν term, which we understood from
Section 3 to be essential for unitarity, necessitates introducing this contact
term in T++. This provides the coordinate space interpretation of the intro-
duction of a similar term in momentum space we discussed in Section 3.1.1,
necessary to fix the ambiguity in the reconstruction of the gravitational Li-
patov vertex from the poles of the 2 → 3 amplitude.

Finally, we can similarly work out the expressions for h−i and h−−

h
(2)
−i (k) =

κ3s

k2 + iϵk−

∫
d2q2

(2π)2
C−i(q1, q2)

ρH
q21

ρL
q22

, (5.30)

h
(2)
−−(k) =

κ3s

k2 + iϵk−

∫
d2q2

(2π)2
C−−(q1, q2)

ρH
q21

ρL
q22

, (5.31)

where C−i and C−− were provided in Eq. (5.11) and Eq. (5.12) and s =
2µHµL represents the center-of-mass energy squared. These results show
that a purely semi-classical approach, directly analogous to the Yang–Mills
computations in [189] and [244] we reviewed in the previous section, suc-
cessfully recovers the gravitational Lipatov vertex.

In the following subsections, we will discuss the construction of the prop-
agators of various quantum fields in the background of a gravitational shock-
wave, which will be relevant for the rapidity renormalization group construc-
tion in gravity.

5.3. Linearized fluctuations and the gravitational Wilson line

Before discussing propagators of various quantum fields, we shall first
analyze how a spin-2 wavepacket propagates across a gravitational shock-
wave. We start by treating the spin-2 wavepacket as a small perturbation
about the background metric

gµν = ḡµν + κhµν . (5.32)

Here, the fluctuation field hµν is normalized by the coupling κ so that its
kinetic term is canonically normalized. Working in light-cone gauge hµ+ = 0,
linearizing Einstein’s equations results in Eq. (5.16), along with the first-
order relations in Eq. (5.17) with all the EM components set to zero.
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The ++ component of Einstein’s equations64 sets h ≡ δijhij = 0. It then
follows that the physical spin-2 degrees of freedom are specified by hij , with
the other components related to hij by first-order constraint relations. This
corresponds to the fact that the graviton has only two physical polarizations.
Equation (5.16) (after dropping the EM tensor terms) can be solved in the
vicinity of x− = 0, where the transverse derivatives acting on hij can be
neglected, which gives

∂−hij −
1

2
ḡ−−∂+hij = 0 , (5.33)

whose solution in terms of the initial condition hij(x+, x− = x−0 ,x) is simply

hij(x
+, x−,x) = V (x−,x)hij(x+, x− = x−0 ,x) . (5.34)

Here, V is the gravitational Wilson line operator given by

V (x−,x) ≡ exp

1

2

x−∫
x−
0

dz−ḡ−−(z−,x) ∂+

 . (5.35)

Using the constraint relations, the solution for the other two components
can be evaluated as

h−i(x
−) = V (x−)h−i

(
x−0
)
+ (∂jV )

1

∂+
hij
(
x−0
)
, (5.36)

h−−(x−) = V (x−)h−−
(
x−0
)
+ 2 (∂iV )

1

∂+
h−i

(
x−0
)
+ (∂i∂jV )

1

∂2+
hij
(
x−0
)
.

(5.37)

The solutions in Eqs. (5.34), (5.36), and (5.37) glue together formulae that
connect plane-wave evolution from one side of the shockwave to plane-wave
evolution on the other side. The gravitational Wilson line operators V ap-
pearing in these formulas are shift operators that act along the shockwave
whose magnitude is a function of the energy of the shockwave and its trans-
verse distribution.

These equations are analogous to equations in the Yang–Mills case that
were used to obtain the QCD Lipatov vertex in [244]. Further, these results
admit a “classical” double copy to the gauge theory formulas. In particular,
the gauge theory Wilson line and the gravitational Wilson line are related
by the color-kinematic replacement rule. This can be seen by comparing

64 See Appendix B of [277] for further details.
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Eq. (4.2) with Eq. (5.35), where we observe that the color factor T a → ∂+
and the classical gauge field (of the gluon shockwave) is replaced by the
classical gravitational field (of the gravitational shockwave). The factor of
1/2 is explained as follows. Recall from footnote 35 that the double copy
which specifies the gauge coupling g is replaced by κ/2. This replacement is
applicable when the fields are canonically normalized, following which, the
respective couplings appear in the classical solutions linearly.

5.4. Propagators in gravitational shockwave backgrounds

In this subsection, we present results for the retarded propagators of
various quantum fields within gravitational shockwave background. Fur-
thermore, we draw a comparison between these results and those obtained
for propagators in a gluon shockwave background, revealing a straightfor-
ward connection via a color-kinematic replacement. For further details, we
refer to [188].

Recalling the definition of the retarded propagator given in Section 4.2
(in Eq. (4.19)), we start by adapting the convolution formula (4.17) for the
retarded scalar Green’s function to the shockwave spacetime

GR(x, y) =

∫
d4z d4wGR(x, z) δ

(
z− − z−0

)
×2 ∂−z GR(z, w)δ

(
w− − w−

0

)
2 ∂−w GR(w, y) .

With δ > 0, we set z−0 = δ and w−
0 = 0. δ is introduced to give an

infinitesimal width to the gravitational shockwave in the x− direction and
will eventually be set to zero.

Our focus here is on the off-shell propagation of quantum fields through
a shockwave. Therefore, we consider the regions where x− > δ and y− < 0.
Since the regions (y−, 0) and (δ, x−) have a trivial background, in these
regions, we can effectively replace the full retarded propagator GR(x, z) with
the free propagator G0

R(x, z) in the convolution formula

GR(x, y) =

∫
d4z d4wG0

R(x, z) δ(z
− − δ) 2 ∂−z GR(z, w)δ(w

−)2∂−w G
0
R(w, y) .

(5.38)
We now need to just determine GR(z, w) using its definition in Eq. (4.19).

Following a method similar to that outlined in the previous section, we
start with the solution of the small scalar fluctuation equation around the
gravitational shockwave background. This was previously addressed in [277],
with the solution being

ϕk(x) = Θ(−x−) e−ikx +Θ(x−) e−ikx Uk(x) , (5.39)
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where the phase Uk(x) is defined as

Uk(x) = exp

(
iκ2µ

ρ(x)

□⊥
k−
)
. (5.40)

Plugging this result into the definition of the Green’s function, with the
conditions x− > δ and y− < 0, gives us

GR(x, y) = −
∫

d4k

(2π)4
e−ik(x−y)

k2 + ik−ϵ
Uk(x) . (5.41)

The result of this expression in the limit δ → 0 is

lim
δ→0

GR(x
− = δ, y− = 0) =

1

2
ef∂y+ Θ

(
x+ − y+

)
δ(2)(x− y) , (5.42)

where the function f is defined as f(x) = κ2µρ(x)
□⊥

. Substituting the result
from Eq. (5.42) into Eq. (5.38) and performing the w-integral results in the
following expression:

GR(x, y) = G0
R(x, y) +

∫
d4z G0

R(x, z)
(
e−f(z)∂z+ − 1

)
δ(z−)2∂z+G

0
R(z, y) .

(5.43)
The identity term is separated from e−f(z)∂z+ which yields the full result for
the retarded propagator as a free propagator plus an interacting part which
captures all-order interactions with the shockwave. Finally, we can perform
the Fourier transformation and obtain the propagator in momentum space

G̃R

(
p, p′

)
= G̃0

R(p)(2π)
4δ(4)

(
p− p′

)
+ G̃0

R(p)T
(
p, p′

)
G̃0

R

(
p′
)
, (5.44)

where the effective vertex T is given by (see also [281])

T
(
p, p′

)
= −4πi

(
p′
)−
δ
(
p− −

(
p′
)−)∫

d2z ei(p−p′)·z
(
eif(z)p

′
+ − 1

)
,

(5.45)
and G0

R(p) is specified in Eq. (4.30).
Just as in the gauge theory case, the form of the shockwave propaga-

tor in Eq. (5.44) clearly illustrates the physical interpretation of multiple
scatterings off the shockwave. The first term accounts for the case of no
interaction, while the T (p, p′) function, which resums all such interactions
into an exponential, captures the multiple interactions with the shockwave
(see the pictorial representation in Fig. 28). The form of the propagator
in Eq. (5.44) is also what appears in the case plane-wave backgrounds that
have been discussed in the literature long ago in [282] and more recently in
[283, 284].
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We now move on to the propagator of a spin-2 particle in a gravitational
shockwave background. The retarded Green function for a spin-2 particle is
(the subscript R is dropped below to avoid clutter in the formulas)

Gµνρσ(x, y) = −
∫

d4k

(2π)4
1

k2 + iϵk−
∑
λλ′

h
(λλ′)
µν,k (x)h

∗(λλ′)
ρσ,k (y) . (5.46)

In flat space, the spin-2 wave packet h
(λλ′)
µν,k (x) is given by h

(λλ′)
µν,k (x) =

ϵ
(λλ′)
µν (k) e−ikx, where ϵ(λλ

′)
µν is the graviton polarization tensor which satisfies

the completeness relation∑
λλ′

ϵ(λλ
′)

µν (k)ϵ∗(λλ
′)

ρσ (k) =
1

2
(ΛµρΛνσ + ΛµσΛνρ − ΛµνΛρσ) ,

Λµν = ηµν −
nµkν + nνkµ

n · k
. (5.47)

Here, nµ is an arbitrary null vector. This expression can be derived by using
its relation to the spin-1 polarization vector (ϵ(λ)µ ) which is given by

ϵ(λλ
′)

µν =
1

2

(
ϵ(λ)µ ϵ∗(λ

′)
ν + ϵ(λ)ν ϵ∗(λ

′)
µ − ϵ(ω)µ ϵ∗(ω)ν δλλ

′
)
. (5.48)

The spin-2 polarization tensor thus constructed satisfies transversality and
tracelessness condition kµϵ(λλ

′)
µν = ηµνϵ

(λλ′)
µν = 0 which follows by making use

of kµϵ(λ)µ = 0 and ηµνϵ(λ)µ ϵ
∗(λ′)
ν = δ(λλ

′). Further, the graviton polarization is
automatically in light-cone gauge if the photon polarization vector satisfies
the light-cone gauge condition: nµϵ(λ)µ = 0 for a null vector nµ. The result in
Eq. (5.47) can be straightforwardly derived using the completeness relation
of the photon polarization vectors

∑
λ ϵ

(λ)
µ (k)

(
ϵ
(λ)
ν (k)

)∗
= ηµν − kµnν+kνnµ

k·n .
Substituting the polarization sum in Eq. (5.47) into Eq. (5.46), we obtain
the following result for the free graviton propagator:

G0
µνρσ(x, y) = −1

2

∫
d4k

(2π)4
(ΛµρΛνσ + ΛµσΛνρ − ΛµνΛρσ)

k2 + ik−ϵ
e−ik(x−y)

≡
∫

d4k

(2π)4
G̃0

µναβ(k) e
−ik(x−y) . (5.49)

Similar to the scalar case, this result for the free graviton propagator can
then be used to calculate the graviton propagator in a gravitational shock-
wave background. We present this result below in the eikonal approximation
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and refer to [188] for details

G̃µνρσ

(
p, p′

)
= G̃0

µνρσ(p)(2π)
4δ(4)

(
p− p′

)
+G̃0

µναβ(p)T αβγδ
(
p, p′

)
G̃0

γδρσ

(
p′
)
, (5.50)

where the effective vertex Tµνρσ (or T-matrix in the language of scattering
amplitudes) is

Tµνρσ
(
p, p′

)
= −1

2
(ΛµρΛνσ + ΛµσΛνρ − ΛµνΛρσ) 4πi

(
p′
)−
δ
(
p− −

(
p′
)−)

×
∫

d2z ei(p−p′)·z
(
eif(z)p

′
+ − 1

)
. (5.51)

The function f was defined earlier as f(x) = κ2µρ(x)
□⊥

.
Having computed the eikonal gravitational shockwave propagator, we

can now compare it against the corresponding results in the QCD case.
Specifically, for the case of scalar propagators, we will compare Eq. (4.29)
against Eq. (5.44). The classical double-copy relationship discussed in Sec-
tion 3.6 is evident between them and manifests in their respective T ampli-
tudes. To see this, note that the phase factor in Eq. (5.40) can be written
as the gravitational Wilson line

Uk(x) = P exp

(
i

2

∫
dz−g−−

(
z−,x

)
k−
)
. (5.52)

This expression can be contrasted with the Wilson line for the colored scalars
in Eq. (4.22). Recall from the discussion in Section 3.6 that the shockwave
background itself exhibits the property gA− → −1

2g−−. When the color
charge density ρ(x) in the QCD case is replaced by the mass density µρ(x)
in GR, and g → κ and T a → −k−, the QCD Wilson line operator precisely
maps onto the gravitational Wilson line operator [84]. Hence, we see that the
double-copy relationship between the scalar propagators (4.29) and (5.44) is
inherited from the classical double copy of the underlying shockwave back-
grounds. Similarly, one can compare the retarded gluon and graviton shock-
wave propagators in Eq. (4.32) and Eq. (5.50), respectively, where the same
relationship holds [188].

We now provide a brief remark on the sources of subeikonal corrections
to the shockwave propagators. As demonstrated in Section 3.6, subeikonal
corrections to the gluon Lipatov vertex were important for successfully re-
covering the gravitational Lipatov vertex via the classical double-copy pre-
scription in Eq. (3.107). Further, we recall from the discussion in Section 3
that the gravitational Lipatov vertex is crucial for subleading classical cor-
rections to the eikonal phase which are suppressed in R2

S/b
2. This suggests
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that in our above analysis of the shockwave propagators, where we omit-
ted terms involving transverse derivatives of the mass distribution ρ(x), one
should keep terms upto the first nontrivial order in R2

S/b
2 that would be

required for a consistent construction of the rapidity RG.
For scalar propagators, incorporating these subeikonal effects is straight-

forward. The derivation of the full solution for the scalar field was done in
[188], where it was found that while the solution takes the form as before
in Eq. (5.39), the associated gravitational Wilson line in Eq. (5.40) gets
generalized to the following:

Uk(x
−,x) = exp i

(
k−f1(x) + k−x−f2(x)− x−kif3,i(x)

)
. (5.53)

Here, f1, f2, and f3,i are functions of the transverse coordinate x with the
last two containing transverse derivatives of ρ(x) that are O(1/b) suppressed
with respect to f1. These are given by

f1(x) = κ2µ
1

□⊥
ρ(x) ,

f2(x) = −1

2
κ4µ2x−

(
∂i
□⊥

ρ(x)

)2

,

f3,i(x) = κ2µx−
∂i
□⊥

ρ(x) . (5.54)

The term f1 corresponds to the previously computed eikonal contribution
(that was defined as f(x) below Eq. (5.42)), while f2 and f3,i account for the
subeikonal effects. This form for the Wilson line follows from the solution
to the geodesic equations in Eq. (5.21). A scalar wave packet propagating
through the shockwave follows a geodesic path described by these solutions;
the complete solution for small scalar fluctuations can be formulated with
the Wilson line in Eq. (5.53). Following the methodology outlined above,
this generalization then allows for the computation of the retarded scalar
propagator that incorporates subeikonal terms. The subeikonal contribu-
tions encoded in f2 and f3,i are suppressed relative to the eikonal term (f1)
by powers of RS/b and (RS/b)

2 respectively (considering ρ(x)/□⊥ ∼ log(b)
for large b).

For graviton propagators, one needs to account for changes to the polar-
ization tensor when considering subeikonal corrections. This effect, which is
more complicated to derive, was neglected in our prior discussion. A spin-2
wave packet before interacting with the shockwave satisfies h

(λλ′)
µν,k (x) =

ϵ
(λλ′)
µν (k) e−ikx. To determine how these basis elements evolve after passing

through the shockwave, one must transform the spin-2 fluctuations along
the null geodesics crossing the shockwave. This can be achieved using the
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transformation of a rank-two tensor. An examination of the transformed
components [188] reveals that, when terms with transverse derivatives act-
ing on ρ(x) are neglected, the transverse components of the graviton remain
effectively unchanged. Thus, at leading eikonal order, the graviton polariza-
tion tensor is not modified by scattering from the shockwave. As a result,
the calculation of the graviton propagator at leading eikonal order is anal-
ogous to that of the scalar propagator; it will however differ at subleading
orders.

We conclude this section with remarks on corrections to the leading-
order gravitational wave radiation spectum in shockwave collision computed
in [277]. One of the two NLO contributions to the inclusive spectrum in the
SK formalism is given by

⟨N⟩NLO(1) =

∫
d3p

(2π)32Ep

∫
d3q

(2π)32Eq
|T (−q, p)|2 . (5.55)

As discussed in [176], this specific contribution corresponds to the cut
“Wightman” propagator (G+−). The other NLO contribution stems from
the interference between the leading-order result and its one-loop correc-
tion. This latter term can be derived from the Feynman propagator (G++).
The leading-order cut H-diagram is depicted in Fig. 36, while the NLO con-
tributions are illustrated in Fig. 37.

ρH

ρL

ρH

ρL

Fig. 36. Cut vacuum-to-vacuum H-diagram contributing at leading order to the
observable Oij(x, y) ≡ ⟨Ai(x)Aj(y)⟩. The crosses depict the source densities ρH
and ρL.

ρH

ρL

ρH

ρL

+

ρH

ρL

ρH

ρL

+

ρH

ρL

ρH

ρL

Fig. 37. These cut vacuum–vacuum diagrams depict both higher-order insertions
of the classical field that contribute to a resummation of (gρ)n terms as well as
next-to-leading order O(g2) corrections to the leading-order contribution shown in
Fig. 36.
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Interestingly, as demonstrated for gluon radiation in shockwave scatter-
ing within the CGC EFT, the NLO contributions to the radiation spectrum
can be framed entirely as an initial-value problem. The key quantity in
this approach is the retarded dressed Green function in the shockwave back-
ground. The computation of the NLO contributions should follow analo-
gously to the QCD case, as detailed in Sections 4.2 and 4.5. Note that as
suggested by the rightmost figure in Fig. 37, this contribution corresponds
to pair production in a time-dependent strong-field background; this can be
understood as Hawking radiation for b > RS in shockwave collisions [285].

5.5. Multi-particle radiation in shockwave collisions

In Section 4, we discussed the shockwave formalism in the Regge asymp-
totics of QCD in the context of deeply inelastic collisions and in high-energy
hadron–hadron collisions. We discussed in particular the CGC EFT, where
static color sources are separated by a scale Λ+ (whose logarithm relative to
the beam momentum P+ is the rapidity of interest) from dynamical gauge
fields. Since physical quantities must be independent of this scale, this
requirement lends itself to an RG in rapidity corresponding to the Balitsky–
JIMWLK equations for n-point Wilson line correlators. As noted, one recov-
ers the BFKL equation for the 2-point “dipole” correlator in the low-density
limit of these equations. These equations have a nontrivial IR fixed point
that corresponds to the formation of an overoccupied classical lump charac-
terized by an energy (or x) dependent emergent “saturation scale” QS(x).

We explored 2 → n scattering in the emergent shockwave description;
at high occupancies, the leading contribution is from t-channel fractiona-
tion (coherent multiple scattering); subsequent s-channel radiation (inelas-
tic particle production) is parametrically suppressed at low occupancies but
becomes large with increasing occupancy of the sources. Specifically, gluon
emissions appear formally at NLO in αs; however, there are large contribu-
tions from the phase space at small x, with (αs ln(1/x))

n contributions to
all orders in perturbation theory. This is the BFKL regime of multi-particle
production. However, as we saw in Section 4.5, when the sources emitting
radiation have large occupancies O(1/g), the power counting is significantly
modified; multi-particle production occurs from s-channel cuts, and can be
described in a semi-classical framework.

Given the strong similarities between this EFT formalism and 2 → n
scattering in gravity, articulated in Section 3 and in this section, one may
ask whether a similar RG can be formulated in gravity, whose nontrivial
fixed point is a black hole with the emergent scale RS ∼ 1/QS; indeed, it is
speculated that these overoccupied states in the two theories have universal
properties [165]. In this subsection, we will outline some lessons from this
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double copy that may be relevant for strong-field gravity. We emphasize that
this discussion is less grounded than those in previous subsections and should
be understood as a collection of ideas resulting from this correspondence,
and their connections to other approaches, that can and should be explored
further.

In gravity, the leading contribution is also from coherent multiple scat-
tering of gravitons. While gravitational BFKL contributes to multi-graviton
emission, the kinematic window for such contributions is much smaller than
in QCD. Rather, as discussed in Section 3.7, the initial states emitting the
(relatively) hard radiation65 can be described as classical coherent states of
softer gravitons. Just as in the CGC EFT, emissions from these classical
sources are what dominate inelastic multi-graviton production as b → RS.
Likewise, to compute expectation values of the full density matrix, one
has to average over all possible configurations of such classical coherent
sources66. This averaging entangles the hard emitted radiation with soft
radiation (forming the coherent states) [290, 291]. Thus, similarly to the
CGC EFT, one can in the GR case begin with an initial condition which
is a boosted overoccupied mass distribution, corresponding to a stochas-
tic distribution67 of configurations W̄GR[ρH ]. For reviews of earlier work
on classical–statistical configurations in the GR context, see [292, 293] and
references therein; for a recent discussion, see [294].

For a fixed distribution of sources ρL and ρH , multi-particle production
can be determined from Cutkosky’s rules in strong time-dependent fields, as
discussed previously in Section 4.5. This corresponds to the combinatorics
of cut and uncut graphs in the presence of the strong sources. The nontrivial
upshot of this discussion is a very simple result [155, 176, 235, 245, 249, 295],
which at first blush, should also apply to gravity: for n-particle production,
for a fixed distribution of sources, it is given by Eq. (5.29) containing the
gravitational Lipatov vertex, with the n-particle distribution represented as〈

dnN

d2k⊥1dy1 . . . d2k⊥ndyn

〉
=

∫
[dρL][dρH ]W̄GR[ρL] W̄GR[ρH ]

dN

d2k⊥1dy1
[ρL, ρH ] . . .

dN

d2k⊥1dy1
[ρL, ρH ] ,

(5.56)

65 The typical momentum is set by saturation scale QS ∼ √
s/n ∼ 1/RS, which also sets

the temperature scale of Hawking radiation. The power spectrum of the radiation
will however be very broad with a significant hard tail extending out to the energies
of the colliding shockwaves.

66 For an interesting related discussion in the ACV framework, see [286–289].
67 A similar distribution W̄GR[ρL] can be understood to correspond to the graviton

cloud represented by ρL.
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where
dN

d2k⊥dy
[ρL, ρH ] =

1

(2π)6

∣∣∣k2h̃(2)ij (k)
∣∣∣2 . (5.57)

This contribution to multi-particle production is illustrated in Fig. 38. From
the structure of Eq. (5.29), we see immediately that this expression is pro-
portional to the gauge-invariant scalar product of the gravitational Lipatov
vertex.

ρH ρH ρHρHρHρH

ρL ρL ρLρLρLρL

Fig. 38. Illustration of dilute–dilute inclusive multi-graviton production represent-
ing Eq. (5.56). The dotted red lines represent the stochastic averaging over coherent
sources.

Further, one can also understand Eq. (5.57) as the inelastic piece of
the H-diagram (in the language of ACV [68]), and Eq. (5.56) as cuts of
n-such “horizontal” H-ladders. As noted in Section 4.5, these correspond
to a negative binomial distribution, which interpolates between a Poisson
distribution and a Bose–Einstein distribution [249]. Not least, in the strong-
field limit, Eq. (5.57) is parametrically of order 1/λGR. This is the largest
contribution at high occupancies; in this case, the multi-particle distribution,
as in a laser, is closer to the Bose–Einstein distribution.

We note in conclusion that the above construction can be simply mapped
to the discussion in the introduction of Section 3 on the expansion (à la
ACV) of the S-matrix in terms of the phase shifts δ = δ0+ δ1+ δ2+ . . . . As
observed there, δ0 is purely real arising from the (eikonal) exponentiation
of multiple exchanges of classical fields (reggeized gravitons) between the
coherent state (classical) sources. The next contribution δ1 in the power
counting is analogous to the QCD Feynman graphs in Fig. 5. Due to the
closed loop, this contribution is sensitive to the Planck scale, which sup-
presses it by l2Planck/b

2 at fixed impact parameter. For δ2, at two-loops,
one obtains the first absorptive (inelastic) contribution from the H-diagram
in Fig. 39. This can be understood in reverse as resulting from the inte-
gration over the phase space of the emitted graviton; in our language, this
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would be the integral over the bremsstrahlung phase factor
∫

d2k⊥
k2⊥

dx
x , whose

exponentiation will correspond to the double log in Eq. (3.8). Since it is
manifest in our approach that this is a classical contribution, the impact
parameter integral must be cut off at the scale RS of the stochastic sources.
Equation (5.56) further tells us that there must be such classical absorptive
contributions at post-Minkowskian order O(Gp), where p = 3, 5, . . . , each
with an additional double-log power, the net result of which results in their
exponentiation. We will return to this discussion in future work68.

p

ρH

ρL

p− k

k

k − p

−k

Fig. 39. Illustration of dilute–dilute single inclusive graviton production with clas-
sical fields/reggeized gravitons (dark curly lines) and the Lipatov vertex (black
blobs). This contribution is the imaginary part of a two-loop Feynman diagram
(the H-diagram), with the crosses representing the on-shell final states.

5.5.1. Self-forces and tidal deformations in shockwave collisions

Equations (5.56) and (5.57), though providing a useful guide to our think-
ing, are far from the full story. One observes, for instance, that the expres-
sions are IR divergent in transverse momenta. In the framework outlined,
these are regulated on the scale of the source distribution W̄GR[ρH ]; for
a black hole, we anticipate this would be of order k⊥ ∼ (RS)

−1. In other
words, they are absorbed into the “Weinberg coherent states” as we noted
previously.

More importantly, our earlier discussion was for dilute–dilute scattering,
valid for large impact parameters. When one considers radiation closer to the
source with the larger mass density (ρH), higher-order (RS/b) contributions
in our expansion of h̃ij in Eq. (5.15) become important. One of the diagrams
illustrating such a correction is shown in Fig. 40. To begin to address this,
we observe that the conditions under which Eq. (5.29) was derived change
significantly as occupancy increases with decreasing impact parameter. The
point particle approximation to the energy momentum tensor post-collision
in Eq. (5.19) to the geodesic equations is no longer robust. This will modify
Eqs. (5.20)–(5.22), and therefore the equations of motion in Section 5.2.1.

68 We thank Ira Rothstein for illuminating discussions on this topic.
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Fig. 40. Illustration of the rescattering of the graviton produced in shockwave
collision with a reggeized graviton in the dilute–dense power counting.

An interesting question is whether the structure of Eq. (5.56), with the
Lipatov vertex and reggeized gravitons as building blocks, will be preserved.
In QCD, this is still the case, with the modified expression for the gauge field
given in Eq. (4.60), with the rescattering contributions from the metric ex-
ponentiated to all orders into a Wilson line. The corresponding question in
gravity is whether Eq. (5.29) is similarly modified by the gravitational Wil-
son line in Eq. (5.35). There are however differences in the QCD and gravity
cases that make this simple double-copy replacement unlikely. Firstly, as we
saw even in our discussion of the dilute–dilute case in Section 5.2.1, the r.h.s.
of Eq. (5.16) contains contributions from the stress-tensor that are formally
subeikonal (in t/s) relative to the leading T++ term; this terms are necessary
to obtain a closed form for the equations of motion. (This was prefigured
in the classical double-copy discussion in Section 3.6, where similarly one
observes that subeikonal contributions have to be retained to recover the
gravitational Lipatov vertex.)

A further key point is that in going from the dilute–dilute to dilute–
dense approximation with decreasing impact parameter is that one has to
simultaneously consider both so-called “self-force” and “tidal deformation”
contributions69. As we noted earlier, the dilute–dense approximation cor-
responds to keeping ρL/∇2

⊥ ≪ 1 and ρH/∇2
⊥ ∼ O(1). In most black hole

merger scenarios, both ρL/∇2
⊥ and ρH/∇2

⊥ are becoming large simultane-
ously with decreasing impact parameter so one is going from dilute–dilute to
dense–dense kinematics rapidly. As we discussed in Section 4.4, the latter is
only tractable numerically in QCD; the situation in this regard is even more

69 For a nice complementary discussion of these within a worldline EFT [296], with
similar conclusions, see [297, 298]. Other EFT-based approaches include [299–301].
For discussions in the language of scattering amplitudes, see [302]. A key difference of
these works from ours is that we are working not at finite boost but in the shockwave
γ → ∞ limit. In this limit, the computation of self-force and tidal effects may simplify
considerably [303].
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severe in gravity. It is therefore convenient to work in a dilute–dense limit
corresponding to the case where the gravitational radiation is being emitted
close to the heavy-mass compact object and far from the light one70. This
is because the geodesic deviations of the light sources are small but that of
the radiated graviton are large, providing potential analytical insight into
the dynamics of the “chirp”, namely, the critical impact parameter where
gravitational radiation ceases [276].

To obtain the closed form of equations for h(3)µν , the tidal correction illus-
trated in Fig. 40 (at O(ρLρ

2
H)) will induce a time-dependence to the static

sources, which in turn needs to be accounted for in null geodesic equations.
The multipoles of this deformation correspond to so-called dynamical Love
numbers; an elegant discussion of these within the worldline EFT framework
is given in [305]. An important constraint in the shockwave formalism would
be to match these Love numbers to those obtained in the EFT framework
at finite boost. We will shortly outline the modifications to the geodesic
equations in our context.

Before we do so, we briefly mention a potentially interesting feature of
the coherent rescattering illustrated in Fig. 40 (which does appear to have
been discussed previously in the GR literature) which is the gravitational
variant of the Landau–Pomeranchuk–Migdal (LPM) effect [306–308], origi-
nally discovered in QED. In the usual Bethe–Heitler description of energy
loss in QED media, the radiative amplitude is simply the sum over the ra-
diative amplitude from all the medium charges. However, if the energy of
the emitted photon is small, there is a characteristic “formation time” where
the photon is collinear to the fast charge. If the mean free path between the
scattering centers is shorter than this time scale, the relative phase between
the multiple scatterings matters, leading to a destructive interference con-
tribution in the radiative cross section relative to the Bethe–Heitler result.
This is the LPM effect.

In QCD, a similar analysis applies but one has to take the rescattering
of the emitted gluons into account; one obtains a qualitative change in the
power spectrum of the emitted radiation relative to the QED case [309]. As
shown explicitly in [310], the analysis corresponds to taking into account
multiple scattering corrections similarly to Fig. 31 in the QCD case, but
further taking the relative phases in the sum of the individual radiative am-
plitudes into account. These provide the LPM destructive interference; they
are subeikonal but relevant for finite boost and a large number of scattering
centers. Given the strong similarities between the QCD and gravity analy-
ses of radiation in the respective (weakly coupled) strong-field regimes, one

70 Besides theoretical interest, this kinematics may be relevant for extreme inspiral ratios
or for hyperbolic encounters of light black holes off heavy ones [304].
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anticipates a similar LPM contribution to be relevant to gravitational radi-
ation when tidal forces become important. As in QCD, the LPM effect will
modify the shape of the power spectrum.

5.5.2. Geodesic congruence of wee gravitons and stretched horizons

The study of geodesics, and families of geodesics (referred to as geodesic
congruence) in general relativity, is important for understanding how space-
time curvature influences the motion of test particles and light rays. Two
key equations that describe the behavior of geodesics are the geodesic devi-
ation equation, and the Raychaudhuri equation, which can both be related
to the stated necessary modifications to the dilute–dilute framework under-
lying Eq. (5.56). These equations are well-known to provide insights into
gravitational lensing, singularity theorems, and the structure of spacetime
[311, 312].

For multi-particle 2 → n scattering in the regime of high occupancies, the
Raychaudhuri equation will be especially relevant. It governs the evolution
of the expansion along a congruence of geodesics

dθ

dλ
= −1

2
θ2 − σµνσ

µν + ωµνω
µν −Rµνξ

µξν . (5.58)

The l.h.s. of this equation defines the change in θ, the expansion scalar,
with the variation in the affine parameter λ introduced previously in the
context of Eq. (5.22) and the solution of Eq. (5.20). The expansion scalar θ
is defined as the trace of the null extrinsic curvature, θ = ∇µξ

µ, where ξµ
is the tangent vector field to the null congruence. On the r.h.s., in addition
to θ, σµν is the shear tensor, ωµν the vorticity, and Rµν the Ricci curvature
tensor of the spacetime. Detailed expressions for these will not interest us
here — we refer the reader to [311, 313].

The physical interpretation of the l.h.s. is that of the logarithmic deriva-
tive of the area element of a congruence of geodesics with respect to the
affine parameter [313], while the r.h.s. represents the forces whose action
distorts this area. The focusing theorem states that when the vorticity of
the congruence is zero, and the spacetime satisfies the null energy condition
(Tµνξµξν ≥ 0 for arbitrary, future-directed vectors ξµ), the expansion scalar
does not increase at all regular points of the geodesic congruence.
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In the shockwave spacetime71 in Eq. (5.3), the null geodesic congruence
is generated by the null vector field ξ ≡ ξµ∂µ

ξ = ∂− +

[
−κ2µδ(x−)ρ(x)

∇2
⊥

+
κ4µ2

2
Θ(x−)

(
∂iρ(x)

∇2
⊥

)2
]
∂+

+

[
−κ2µΘ(x−)

∂iρ(x)

∇2
⊥

]
∂i . (5.59)

The components of this vector field satisfy the null condition kµkµ = 0, and
the expansion scalar θ = ∇µξ

µ can be explicitly evaluated to be

θ = −κ2µΘ(x−)ρ(x) . (5.60)

We see that this quantity undergoes a discontinuous jump upon crossing the
shockwave at λ = x− = 0, seen previously in the solution of Eq. (5.21). The
magnitude of this discontinuity is proportional to the transverse distribu-
tion ρ(x) that measures the transverse area spanned by the congruence as
discussed above.

On can check the validity of the Raychaudhuri equation for a null con-
gruence in shockwave spacetime. This is most easily done by first defining
the tensor

Bµν = ∇µξν , (5.61)

and noting that the first three terms on the r.h.s. of Eq. (5.58) can be
packaged together as [313]

BµνBµν =
1

2
θ2 + σµνσµν − ωµνωµν , (5.62)

allowing us to express Eq. (5.58) as

dθ

dλ
= −BµνBµν −Rµνξ

µξν . (5.63)

For the spacetime in Eq. (5.3), the only nonvanishing component of the Ricci
tensor is R−− = κ2µδ(x−)ρ(x). The quantities on the r.h.s. of Eq. (5.63)
are evaluated to be

BµνBµν = κ4µ2Θ(x−)
(
∂i∂j

ρ(x)

∇2
⊥

)(
∂i∂j

ρ(x)

∇2
⊥

)
, (5.64)

Rµνξ
µξν = κ2µδ(x−)ρ(x) . (5.65)

71 Since this refers to a single shockwave, we will refer to the mass distribution generi-
cally as ρ, rather than ρL,H in the collision.



11-A1.152 H. Raj, R. Venugopalan

To verify the Raychaudhuri equation for the expansion scalar in Eq. (5.63),
we need to evaluate the total derivative on the l.h.s. of Eq. (5.63)

dθ

dλ
=

∂x−

∂λ

∂θ

∂x−
+
∂xi

∂λ

∂θ

∂xi
,

= −κ2µδ(x−)ρ(x) +
(
−κ2µΘ(x−)

∂iρ(x)

∇2
⊥

)(
κ2µΘ(x−)∂iρ(x)

)
,

= −κ2µδ(x−)ρ(x)− κ4µ2Θ(x−)
∂iρ(x)

∇2
⊥

∂iρ(x) . (5.66)

We see that the first term above cancels against the Ricci curvature term in
the Raychaudhuri equation. For the remaining terms, we make use of the
identity(
∂i∂j

ρ(x)

∇2
⊥

)(
∂i∂j

ρ(x)

∇2
⊥

)
=∂i

[(
∂j
ρ(x)

∇2
⊥

)(
∂i∂j

ρ(x)

∇2
⊥

)]
−
(
∂j
ρ(x)

∇2
⊥

)
∂jρ(x) .

(5.67)
This implies that up to a total derivative (in the transverse direction),
BµνBµν can be written as

BµνBµν = −κ4µ2Θ(x−)
(
∂i
ρ(x)

∇2
⊥

)
∂iρ(x) , (5.68)

which cancels against the second term in dθ/dλ. Hence, the shockwave
spacetime with the transverse mass distribution ρ(x) satisfies the Raychaud-
huri equation, provided the total derivative term in Eq. (5.67) vanishes.

For the shockwave collision case of interest, the rapid s-channel radiation
we outlined generates a large phase space occupancy of wee gravitons that
has been conjectured to form a black hole when the phase space occupancy
n ∼ 1/λGR(QS), where QS =

√
s/n ∼ 1/RS [90, 137, 138]. As discussed

in Section 4.5, this is completely analogous to the formation of an overoc-
cupied glasma state in ultrarelativistic heavy-ion collisions, where QS is the
saturation scale. A promising approach to study this process quantitatively
in gravity is within the dilute–dense formalism for radiation at b ≈ RS.
The large phase space occupancy of emitted gravitons suggests that their
evolution can be similarly described by the null Raychaudhuri equation. As
observed in [314], the overoccupied wee gravitons form a 2-D area close toRS.
We now recall from Eq. (5.56) that from the 2 → n perspective, this is a
stochastic process with W̄GR[ρH ], as remarked in Section 3.7, corresponding
to the density matrix of the screened UV modes comprising the dynamics
at b ≤ RS. This setup is reminiscent of the dynamics of wee partons in the
CGC EFT, and it would be interesting to explore whether the focusing and
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absorption of wee gravitons72 induced by the Raychaudhuri equation can
similarly allow one to interpret the event horizon as the RG fixed point of
their evolution.

Another relevant comparison is the role of semi-classical quantum fluc-
tuations in the shockwave background. We showed in Section 5.4 that the
corresponding Green functions have a double-copy structure to their QCD
counterparts in Section 4.2. In the latter case, the leading “BFKL logs” are
absorbed in the JIMWLK RG evolution of the stochastic weight functionals
which satisfy a Fokker–Planck equation in the functional space73; the double
copy (following our discussion in Sections 2 and 3) implies that this is also
the case in gravity. Therefore, both classical and quantum noise contribute
to the single-inclusive and higher factorial moments of the gravitational wave
spectrum. It has been shown that quantum noise induces an additional quan-
tum contribution to the null Raychaudhuri equation [317, 318]; this quantum
contribution does not violate its focusing properties and is consistent with
a quantum null energy condition [319].

Quantum noise is significantly suppressed relative to classical noise.
However, it has been argued that in scenarios where the stochastic dis-
tribution is that of squeezed states in contrast to coherent states, there is
a significant enhancement of quantum noise that may be detected74 at fu-
ture gravitational wave detectors [321–323]. Just as the distinction between
quantum and classical optics is only manifested in higher point correlators,
noise correlations in gravitational wave detectors may also provide a way to
distinguish between their quantum versus classical origins [324]. With these
improvements, we can be optimistic that future gravitational wave detectors
will be able to do so, see for example [325–328] and references therein.

6. Bookends and loose threads

This paper provide an introduction to 2 → n scattering in QCD and
gravity in high-energy Regge asymptotics. In the QCD case, discussed in
Sections 2 and 4, we outlined an explicit derivation of the BFKL equa-
tion, using dispersive techniques, to all orders in perturbation theory in
the leading-logarithmic approximation. The emergent building blocks of
the 2 → n amplitude are nonlocal Lipatov vertices and reggeized propa-

72 For a similar discussion of the classical and quantum gravitational phase space in the
context of the null Raychaudhuri equation, see [315].

73 A discussion of such fluctuations in shockwave backgrounds is given in [316] and it
would be interesting to explore whether our discussion can be formulated in this
language.

74 Amusingly, the application of squeezed vacuum states in gravitational wave interfer-
ometers is an important technique in reducing the quantum noise that limits these
measurements [320].
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gators. The solution of the BFKL equation shows that the cross section
grows rapidly with energy, accompanied by a slow UV and IR diffusion of
transverse momenta with rapidity. The former is cured by running coupling
effects appearing at next-to-leading-log accuracy, while infrared diffusion is
cured by many-body screening and recombination effects arising from the
overpopulation of phase space.

This gluon saturation phenomena signals the breakdown of the opera-
tor product expansion and conventional perturbation theory in the Regge
asymptotics of QCD since all-order power corrections contribute [56]. Specif-
ically, this occurs when the exchanged squared momenta Q2 ≤ Q2

S(x), where
Q2

S(x) ≫ Λ2
QCD is the dynamical emergent saturation scale. The presence

of this large scale indicates that weak coupling methods are applicable, and
is quantified in the semi-classical CGC EFT, where the weak coupling ex-
pansion is around a strong-field vacuum corresponding to large ρ ∼ O(1/g)
classical color charge densities. In the shift from the BFKL paradigm to the
CGC one, we switched as well from the “in–out” amplitude formalism for
the former to the “in–in” Schwinger–Keldysh (SK) formalism that more effi-
ciently captures the strongly-correlated many-body dynamics of the latter.

In high-energy kinematics, the strong classical “shockwave” field com-
prised of overoccupied wee gluons is the non-Abelian analog of the Weizsäcker–
Williams equivalent photon field in electrodynamics. However, unlike
electrodynamics, the wee gluons are strongly correlated, with their many-
body (2-D) dynamics on the celestial sphere described by correlators of
Wilson line “vertex operators” sourced by color sources that are static on
the dynamical time scales of interest. This CGC construction is robust for
a large nucleus which acts as a coherent source of large color charge, with the
saturation scale Q2

S ∝ A1/3 in units of Λ2
QCD. In an RG picture, this scale

depends dynamically on the rapidity, since what we call sources or fields
depends on the separation between large-x and small-x degrees of freedom
within the EFT.

The resulting Balitsky–JIMWLK equations describe the RG evolution of
the aforementioned rapidity scale-dependent vertex operators that appear in
DIS off nuclei at collider energies. In the “dilute” limit ρ/k2⊥ ≪ 1, where k⊥
is transverse momentum of a parton in the dense gluon cloud, the two-point
“dipole” correlator satisfies the BFKL rapidity evolution equation, thereby
recovering a key feature of 2 → n scattering. Precision computations of DIS
processes to next-to-leading order and next-to-leading-logarithmic accuracy
are now available, which will allow one to systematically test and refine the
CGC EFT at the Electron–Ion Collider.

The CGC classical fields have a one-to-one map to the reggeized fields,
and likewise the quark (gluon) shockwave propagators to quark–quark–
reggeon (gluon–gluon–reggeon) propagators, in Lipatov’s reggeon field the-
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ory. The former is however more versatile because it can be straightfor-
wardly applied to treat multi-particle production in the hadron–hadron,
hadron–nucleus, and nucleus–nucleus collisions in the language of shock-
wave scattering. An important feature of the BFKL → CGC shift at high
occupancies is from s-channel to t-channel fractionation. In other words, it
represents the change from the fractionation of energy through radiation in
a single “vertical” t-channel ladder to fractionation of the overall t-channel
momentum exchange via multiple t-channel exchanges in the “horizontal”
ladder generated in shockwave scatting.

Multi-particle production from the time-dependent strong fields in shock-
wave scattering can be computed in the SK formalism by systematic appli-
cation of Cutkosky’s rules for a fixed distribution of sources, followed by
averaging over weight functional representing the distribution of sources. In
analytical dilute–dilute and dilute–dense limits, the multi-particle spectrum
is a negative binomial distribution generalizing the 2 → 3 emission ampli-
tude controlled by the Lipatov vertex. The so-called AGK cutting rules of
reggeon field theory are straightforwardly recovered in this framework. In
the dense–dense limit of shockwave scattering (appropriate for describing
collisions of dense sources of color charge such as heavy ions), an analytical
treatment is no longer feasible. Detailed numerical simulations describe the
generation of an overpopulated glasma in these collisions, and its evolution
through turbulent and hydrodynamic attractors to a thermal quark–gluon
plasma. The QGP was discovered at RHIC and confirmed in higher-energy
collisions at the LHC. Quantitative comparisons of theory to experiment
implement the shockwave scattering framework outlined here.

Remarkably, 2 → n scattering in gravity has strong mathematical and
conceptual correspondence to the QCD case. In Section 3, we showed that
an identical dispersive approach to that developed in Section 2 applies in
the multi-Regge asymptotics of gravity, which leads to the gravitational
analog of the BFKL equation with the principal elements being the gravi-
tational Lipatov vertices and reggeized t-channel propagators. Most strik-
ingly, the gravitational Lipatov vertex can be expressed as the difference of
the bilinear double copy of the QCD Lipatov vertex and that of the photon
bremsstrahlung vertex. However, unlike QCD, the regime of applicability of
gravitational BFKL is limited because the dimensionless gravitational cou-
pling is very small, with λGR ln(s/|t|) ≪ 1 even at trans-Planckian energies.

Nevertheless, the elements of the BFKL construction are important be-
cause they contain exactly the same structure of real graviton emission and
virtual graviton exchanges that comprise the Weinberg soft theorem. Specif-
ically, in the ultrarelativistic regime, the Weinberg emission vertex is the soft
limit of the Lipatov vertex, and likewise, the Sudakov double logs (whose
exponentiation is responsible for reggeization) have an identical structure to
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the Weinberg’s result for soft virtual exchanges. These contributions dress
the graviton cloud accompanying the incoming asymptotic graviton states
in 2 → n scattering, replacing them with Faddeev–Kulish coherent states.
At trans-Planckian energies, the shockwave comprised of this soft graviton
cloud breaks the asymptotic BMS symmetry of large gauge transformations
in gravity, a quantitative consequence of which is the gravitational memory
effect. (In Section 4.1.1, we discussed the analogous color memory effect
manifest in the CGC.) In summary, though BFKL dynamics does not drive
inelastic multi-particle production, its effects contribute to the shockwave
description of 2 → n scattering, in an exactly analogous manner to the
CGC shockwave framework in QCD.

Multi-particle production in gravitational shockwave collisions was dis-
cussed in Section 5 in the gravitational dilute–dilute framework developed for
QCD. Solutions of the Einstein equations in this setup demonstrate that the
gravitational single inclusive spectrum is a classical double copy of its gluon
counterpart, with the QCD Lipatov vertex replaced by the gravitational Li-
patov vertex. The same result is obtained by computing gluon radiation
emitted by classical color charges in a Wong + classical Yang–Mills setup,
and performing a classical double-copy replacement; interestingly, to arrive
at this result, it is important to keep leading subeikonal terms on the QCD
side of the double copy.

In the “quantum first” SK construction of the coherent state of wee gravi-
tons, there are a distribution of quantum paths in configuration space that
comprise the initial density matrix. Since their energy level separations are
1/n, they are not distinguishable, except on the asymptotically long time
scales that are sensitive to these low frequencies. They are however of rel-
evance in constructing the S-matrix for multi-particle production, as is the
case for the weight functional over classical color charges in QCD. They are
especially important for a systematic treatment of Hawking radiation, and
entangle its spectrum with the many-body wee graviton spectrum making
up the initial density matrix. More simply, classical multi-particle produc-
tion in the dilute–dilute framework follows the same pattern as established
in QCD, with a similar combinatorics applicable to the n-particle final state.
Unlike QCD, the extension to the dilute–dense scenario involving the rescat-
tering of radiation with reggeized gravitons from the compact dense source
is not as simple and requires taking the physics of tidal forces and geodesic
congruences into account. However, as in QCD, one anticipates that the
latter will display collective hydrodynamics behavior resulting in black hole
formation.

There are several loose threads in the bookends to this narrative. For
2 → n scattering, the extension of the BFKL (and CGC) frameworks be-
yond NLLx accuracy is challenging, and will involve taking into account the
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breakdown of reggeization. In the shockwave language, this requires going
beyond the classical–statistical framework for multi-particle production, and
taking into account the decay of the shockwave. An interesting possibility
is to reformulate this problem in terms of the Goldstone modes correspond-
ing to the broken global symmetries in the shockwave construction. More
generally, the extension of this multi-particle production framework beyond
weak coupling remains challenging despite the many developments in strong
coupling holographic approaches. This is especially important since the cou-
pling in collider experiments is not particularly weak in the relevant phase
space.

While the discovery and characterization of an emergent classical regime
of QCD is a goal of current and future colliders, the opposite is true in
gravity, with a major goal being the discovery of quantum effects in gravity.
Despite considerable developments in gravitational wave astronomy, empir-
ical constraints on such effects is elusive. As we noted, the statistics of
multi-graviton production is non-Poissonian, and likely close to squeezed
states comprising a Bose condensate. A better understanding of the in-
terplay between the multi-graviton mechanism we have outlined, the null
Raychaudhuri equation, and rescattering effects as b → RS is a promising
approach to arrive at quantitative predictions towards detecting quantum
features of gravity.

An outstanding loose thread is to connect our discussion to entanglement
and quantum information. This is clearly a vast subject but there are some
aspects that are fundamental to the topic of this paper. A starting point
is ’t Hooft’s postulate of the S-matrix formulation of gravity as a rigorous
way to approach the apparent puzzle posed by information loss in black
holes. The tools developed here are useful in this regard. The double copy
is an especially valuable guide since one can pose similar questions in QCD,
where we have a well-defined quantum theory. We have discussed here how
classical states of high occupancy emerge in 2 → n scattering, and further,
how these wee parton states unitarize the cross section of a fixed impact
parameter. It has long been argued that wee partons satisfy the holographic
principle, with their information context forming a two-dimensional surface
that is accessible in Regge asymptotics. The important development since is
the understanding that wee parton correlations are screened on a semi-hard
dynamical emergent scale RS = 1/QS(x).

One naively expects the formation of such “macroscopic” classical states
to be exponentially suppressed in 2 → n scattering. The fact that they form
with unit probability means they are comprised of a large number of mi-
crostates which compensate for this exponential suppression [165]. In other
words, they must have a very large entropy. What are these microstates?
We understand that they are gapped with gap sizes ∼ QS/n, and are clas-
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sical only in the sense of n → ∞. For finite n ∼ 1/αs, they must decay on
a characteristic time scale tG ∼ n/QS = 1/(αsQS). In Regge asymptotics,
where

√
s → ∞, tG ≪ 1/ΛQCD; the shockwave decays on time scales much

shorter than hadronization time scales. Broken global Poincaré and color
symmetries (of large gauge transformations) are restored on this time scale,
with a careful search of correlations in the asymptotic final state necessary
to detect the imprints of the metastable classical state.

From Bekenstein [329], we know that the entropy of macroscopic con-
figurations of microstates S ≤ 2πER, where E is the energy contained in
a region of radius R; in our case, E = nQS and R = RS, which gives
S = O(1/αs), since n = 1/αs. From this perspective, the number of mi-
crostates eS = e1/αs compensates for the e−1/αs suppression one would ob-
tain from the combinatorics of perturbative Feynman diagrams at large n.
This is often misunderstood to be a fine tuning argument but it is not the
case in QCD: We have independent computations of the dynamics of the
theory that demonstrate that macroscopic classical states can form with
unit probability. A useful way to think about this problem is to extend the
CGC EFT and treat the nonperturbative dynamics of the weight functionals
W [ρ] in terms of the Goldstone dynamics of the excitations of the conden-
sate, where the Goldstone scale (corresponding to the global symmetries
broken by the shockwave) can be estimated to be fG =

√
nQS [165]. The

Bekenstein–Hawking area law [329, 330] for the entropy in units of this scale
is then S = 4πR2

S f
2
G ∼ 1/αs, recovering our estimate above.

The double copy suggests a similar argument may hold in gravity, and
this has indeed been argued previously to be the case [138]. However, as
we have seen, the double-copy logic is fraught sooner in gravity than in
QCD and the strong-field corrections appear sooner as b → RS. An im-
portant challenge would be to match the Goldstone framework of broken
global symmetries with RG and null energy conditions informing a micro-
scopic derivation of the Raychaudhuri equation that systematically treats
the 1/n quantum corrections we alluded to. For promising interesting work
in this direction, see [331]; a discussion of its embedding in the language of
complexity theory and quantum information can be found in [332].
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