
Acta Physica Polonica B 56, 2-A1 (2025)

STOCHASTIC MODELS OF MEMRISTIVE BEHAVIOR

P.F. Góra†, Ewa Gudowska-Nowak

Institute of Theoretical Physics
and

Mark Kac Complex Systems Research Center
Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland

Received 30 November 2024, accepted 11 February 2025,
published online 20 February 2025

Under normal operations, memristive devices undergo variability in
time and space and have internal dynamics. Interplay of memory and
stochastic signal processing in memristive devices makes them candidates
for performing bio-inspired tasks of information transduction and transfor-
mation, where intrinsic random behavior can be harnessed for high per-
formance of circuits built up of individual memory storing elements. The
paper discusses models of single memristive devices exhibiting both — dy-
namic hysteresis and Stochastic Resonance, addressing also the cooperative
effect of correlated noises acting on the system and occurrence of dirty hys-
teretic rounding.
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1. Introduction

The memristor, or the resistor with a memory, was first proposed by
Chua in [1] as a “missing circuit element”. The original idea has been further
extended [2] to memristive systems (otherwise named resistance-switching
memory cells) and has gradually attracted interest from researchers and
engineers, until the first actual memristor was reported to have been con-
structed in 2008 in HP Labs [3]. That incident brought about an explosion
of attention in the field of theoretical frameworks and fabrication techniques,
both intended to devise and construct electronic memory structures. There
is a discussion whether true memristors, exhibiting the direct flux-charge
interaction, exist. A discovery of such a device was reported in Ref. [4],
but this research was met with much criticism [5], and has been later with-
drawn. Usually, memristive devices are described in terms of deterministic
mathematical models in which a key element is the existence of a pinched
hysteresis loop [6, 7]. This feature of new components exhibiting memory
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storage captured special interest of the communities focused on information
and communication technologies, and found applications in areas such as
unconventional, neuromorphic computing [5, 8], machine learning, models
of the brain, and many others; see Refs. [9–12].

Memristive devices are resistors exhibiting the effect of “memory” or hys-
teretic behavior in response to external field or driving, and have been shown
to emulate well functions of biological synapses. An intriguing concept in the
field is neuron-like synchrony and performance of circuits built of elementary
memristive units. Significant progress in understanding networks of mem-
ristive elements has been achieved recently in Ref. [13]. In addition, it has
been strengthened that real (physical) memristive systems may significantly
differ from their model counterparts; see Refs. [14–16] for a comprehensive
review

dx

dt
= F (x, u) , (1a)

y = H(x, u) · u . (1b)

Here x is a vector of internal states. F must be continuous for the solution to
Eq. (1a) to exist. If x is actually a vector, not a scalar, then F is also a vector
function. The system has a memory, as the present-time values of y depend,
via x, on past values of u. This is the most general model of a memristive
system [9]. One defines a specific, particular system by providing detailed
information on x and specifying the functions F and H. If the pair (y, u) is
interpreted as current-voltage, (I, V ), we have a voltage-driven memristive
system.

All the memristive systems discussed so far are assumed to be clean, or
free of random perturbations. In reality, all systems are perturbed and can
be modeled in terms of stochastic processes, representing the inner fluctu-
ations in the systems or in their outer environments. These fluctuations
are termed noise and traditionally are described by Gaussian White Noise
(GWN) if they represent equilibrium fluctuations; sometimes memristive
devices of this kind are called “stochastic” [17]. Usually, the effects of fluctu-
ations are destructive as they blur or altogether destroy a coherent response
of a system. However, sometimes fluctuations, or noises, can act construc-
tively. Stochastic Resonance (SR) is the best-known phenomenon of this
kind. In SR, noise and a dynamical system act together to reinforce a pe-
riodic signal [18–20]. The SR seems to be ubiquitous and has been claimed
“an inherent property of rate-modulated series of events” [21, 22]. Several
measures to quantify SR have been proposed [23]; we are going to use the
most popular one, namely, the Signal-To-Noise Ratio (SNR) throughout this
paper

SNR = 10 log10
Ppeak

Pbackground
. (2)
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Here Ppeak stands for the power spectrum at the peak corresponding to the
external signal, and Pbackground is the extrapolated background. The interest
in SR has now largely weaned, but it still remains an important feature of
many noise-perturbed systems. And surely enough, in memristive devices
first a phenomenon of memory enhancement due to noise akin to SR has been
reported in Ref. [24] and later a genuine SR in metal-dioxide memristors has
been investigated in Ref. [25]. In addition, a model of stochastic resistance
jumps in memristive devices, not leading to SR, has been recently discussed
in Ref. [26].

Interestingly, effects similar to that of memristive devices, have been
observed in voltage-activated ion channels [21, 27–29]. Ion channels, while
not quite equivalent to memristive devices, share many of their features:
the current passing through an ion channel may depend on history and
display hysteretic behavior, and gating dynamics governed by low- and high-
conductance states have been shown to exhibit stochastic resonance [21].
Hysteresis and memory effects are also important in such diverse contexts
as social systems [30], security devices [31], and many others that are too
numerous to cite them here.

Notwithstanding previous works on the constructive role of noises in
nonlinear memristive systems [14, 24, 25], here we aim to discuss model sys-
tems where the quantitative analysis of memristic behavior is carried out
within the framework of single- and multiple-well models of voltage-driven
switching in conductance. In particular, double-well stochastic models of
that type mimic the Kramers theory of activated rate processes and have
been successfully applied to the analysis of the hysteresis phenomenon in
the conductance of voltage-sensitive ion channels [28, 29, 32–34]. The other
class of models discussed here involve single-well potentials with correlated
multiplicative and additive noises [35–37]. They are not directly related to
the double-well model, they just provide another example of constructive
effects of noises on memristive systems. These models belong to the general
(1) class, with the internal parameter x being the dynamic conductance of
the system, dubbed memductance in this context. It will be demonstrated
that incorporating fluctuations enhances current passing through the mem-
ristive device, thus showing a typical for the SR scenario, amplification of a
(weak) signal by noise.

2. Dynamic memory in voltage gated channels

Ion channels are transmembrane, pore-forming proteins which regulate
ionic currents through the cell membrane and undergo conformation defor-
mations under environmental (temperature, electric field, pressure) changes.
At the level of a single channel, the gating process which changes perme-
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ability of ions in response to voltage change across the cell membrane in-
corporates also local conformational variations of the constituting proteins.
Hysteresis, termed otherwise “mode shift” in ion channels is a phenomenon in
which a conductance loop arises in delayed response to voltage change, thus
exhibiting a memory effect. Such hysteretic current-voltage characteristics
has been detected in various biological channels [38–40] and the physiologi-
cal significance of the phenomenon has been debated over the years [21, 34].
When the voltage varies sufficiently slowly, the protein constituent of the
channel has enough time to adjust its conformation to the instantaneous
value of the voltage. As a consequence, the ion current through the channel
is independent of the prehistory, and hence no hysteresis is observed. On the
other hand, when the period of the voltage change is much shorter than the
characteristic protein relaxation time, the protein molecule cannot follow
fast variations of the voltage and adapts only to its average value. As a con-
sequence, the current through the channel becomes again independent of the
former history, and the hysteresis loop collapses to a single line. Altogether,
the loop area first grows monotonically with the frequency of voltage change,
reaches a maximum, and disappears as the frequency tends to infinity. In
models of a voltage-gated ion channel characterized by two states (open and
closed), conductance G(t) corresponds to the probability PO(t) of finding
the channel in an open state [21, 32, 34]. For N uncorrelated channels, the
time-dependent conductance obeys

G(t) = N [gC + (gO − gC)PO(t)] , (3)

where gi stands for the conductance of an individual channel in state i.
Time evolution of G(t) is governed by combination of Eq. (3) and the rate
equation

dPO(t)

dt
= −kO(t)PO(t) + kC(t) [1− PO(t)] (4)

in which the kinetic rates kO(t) = k∗O exp[αV (t)], kC(t) = k∗C exp[−βV (t)]
are voltage-dependent and describe stochastic transitions between open and
closed states. The memristive equation of the ion channel is then

I(t) = G (PO(t), V (t), t)V (t) , (5)

where, in general, the conductance may be voltage-dependent. In real chan-
nels, the voltage sensitivity is determined by a corresponding set of charged
residues that react to changes in voltage potential, promoting conforma-
tional changes of the protein that, in turn, generate a discrete change of
conductance [21, 34, 41].
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3. An asymmetric double-well

The free energy defines the work required to move from one region to
another in phase space, such as e.g. between conformational states of a
protein, or a channel operating between states of different conductance. In
a recent study of the time-dependent anion channel VDAC [41], response to
the trans-membrane potential in the form of gating to low/high-conductance
states was analyzed by performing atomistic molecular dynamics studies. By
choosing an appropriate collective “reaction coordinate” (be it e.g. conduc-
tance G), histograms of configurational states can be assembled and prob-
ability density of states P (G) defined, see Fig. 1. From the latter, the free
energy profiles can be estimated as Veff(G) = −kBT lnP (G).

Fig. 1. Exemplary traces of a channel activity recorded at various conductance lev-
els (C — closed state, O — open state) and histograms of conducting states derived
from them (presented below the signal). Bottom: an asymmetric effective potential
(free energy extracted from the stationary distribution) as −kBT ln(P (G)).

Our first model refers to such an approach and assumes the energy land-
scape of the channel gating in the form of the two well asymmetric (tilted)
potential. Interestingly, a similar double-well potential has been experi-
mentally observed in a virtual memristive device based on yttria stabilized
zirconia film [42].
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In our model, time changes in conductance follow then an overdamped
motion in a potential, possessing two minima, with respective depths UL, UR.
The particular shape of the potential is of lesser importance, but for the
purpose of this research, the following potential has been used:

V (G) =
1

4
(G− 2)4 − 1

2
(G− 2)2 − 1

8
(G− 2) , (6)

where G is the memory-dependent conductance (memductance) of the sys-
tem. Such a configuration may be achieved by carefully doping a semicon-
ductor. The equation of motion is

Ġ = −dV

dG
+ V1 cosωt+ σ ξ(t) , (7)

and the associated current is

I(t) = G(t) · V1 cos(ωt) , (8)

where ξ is a Gaussian White Noise and σ represents its intensity. The
amplitude V1 is too small to drive the particle over the barrier. In this
research, V1 = 0.2 and ω = 2π. In the absence of the external voltage,
V1 = 0, the escape from a potential well forms a classic Kramers problem.
Therefore, the ratio of dwelling times in the right and left potential wells is

τR/τL ∼ exp

(
UR − UL

σ

)
. (9)

We assume that the system starts in states of low conductance (within
the left potential well). Without the noise, the memductance would always
remain there, but thanks to the noise, it may cross the barrier and increase
the current (8) transmitted by the system. Once in the right well and pro-
vided the noise is not very large, the system has a tendency to stay there
and perform noisy oscillation around the deeper minimum.

System (7) has been solved numerically with the Euler–Maruyama
method and a timestep ∆t = 1/256. For the purpose of calculating SNR,
trajectories have been averaged over 512 realizations for every single value
of σ. For a very weak noise, σ = 0.01, the memductance displays oscilla-
tions in the left potential well. However, consecutive minima and maxima
are shifted due to the noise, and instead of a clear hysteresis loop, we can
see a collection of overlapping loops. For larger noise intensities, σ = 0.5
and σ = 0.75, the system crosses to the right potential well and spends most
of its time there. This means an increase of the memductance, but instead
of a clear hysteresis loop, we obtain a combination of many overlapping,
individual loops, bearing the impression of a “dirty hysteresis”, see Fig. 2.
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Fig. 2. Example trajectories (left column) and their corresponding hysteresis loops
(right column) for system (7). Noise intensities are, top to bottom, σ = 0.01,
σ = 0.5, and σ = 0.75.
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For even larger intensities of the noise, system (7) ceases to see the fine
structure of the potential and the memductance performs a random walk
over all accessible range. This leads to a peculiar behavior of the SNR, see
Fig. 3. For very small noises, the system performs nearly perfect oscillations
in the left potential well and the SNR is large. As the noise increases, it
gradually destroys the oscillations and the SNR decreases, finally reaching
a minimum. After that, the constructive role of noise kicks in, helping
the memductance to cross to the right potential well in phase with the
external voltage. The SNR reaches a maximum and a Stochastic Resonance
is observed. However, for even larger values of the noise, the SNR displays
a rather strange behavior: unlike in the regular SR, the SNR does not drop to
zero, but reaches a plateau that extends up to unphysically large intensities
of the noise.
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Fig. 3. The Signal-To-Noise Ratio in the system (7) as a function of the GWN
intensity.

This last phenomenon requires, perhaps, some attention. The power
spectrum of current (8) is related through the Wiener–Khinchin theorem
to the autocorrelation ⟨I(t)I(t+ t′)⟩ = ⟨G(t)G(t+ t′)⟩ cosωt cosω(t + t′).
If the noise is very large, the memductance G(t) discontinues to see de-
tails of the potential and is smeared over all accessible range with ⟨G(t)⟩ =
G̃ ̸= 0 due to the asymmetry of the potential with respect to sign reversal.
γ(t) = G(t) − G̃ is a random variable satisfying ⟨γ(t)⟩ = 0. The existence
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of ⟨γ(t)γ(t+ t′)⟩ is guaranteed by the fact that the process is driven by a
GWN. Therefore, 〈

G(t)G(t+ t′)
〉
=

〈
γ(t)γ(t+ t′)

〉
+ G̃2 . (10)

The presence of G̃2 ̸= 0 is responsible for the plateau in the SNR.

4. Harmonic well with correlated noises

The other model discussed in this paper relates to the Linear Stochastic
Resonance (LSR) [35]. LSR is a kind of SR where a signal-enhancing effect
arises from cooperation between a linear transmitter and two GWNs acting
on it, one multiplicative, or parametric, the other additive. Instead of (6),
we take

V (G) = 1
2aG

2 − V0G . (11)

With the absence of any noises, this system leads to a time-delay behavior.
We now perturb the model by two GWNs: A multiplicative, ξ(t) with an
intensity p, and an additive, ξa(t) with an intensity q, noises. The evolution
equation for the memductance is

Ġ(t) = − (a+ pξ(t))G+ V0 + qξa(t) + V1 cos(ωt+ ϕ) , (12)

where ϕ is a random initial phase of the signal and we take the Ito interpre-
tation of the multiplicative noise. Since both noises originate in the same
physical system in a thermal equilibrium interacting with system (11), it is
reasonable to assume that they are correlated〈

ξ(t)ξa(t
′)
〉
= c δ(t− t′) , −1 ⩽ c ⩽ 1 . (13)

The noises represent interactions with a multitude of unobserved degrees
of freedom. Note that while equation (12) is formally linear, a multiplica-
tive (nonlinear) coupling between the stochastic process and the observed
memductance reflects the presence of a “hidden” nonlinearity.

We may represent the additive noise ξa(t) as a combination of two inde-
pendent GWNs

ξa(t) = c ξ(t) +
√

1− c2 η(t) , (14)

with ⟨ξ(t)η(t′)⟩ = 0, leading to

Ġ = − (a+ pξ(t))G+ V0 + qcξ(t) + q
√
1− c2 η(t)

+V1 cos(ωt+ ϕ) . (15)
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System (15) has been discussed in Ref. [35]. The formal solution with
G(0) = 0 is

G(t) =

t∫
0

e−a(t−t′) exp

−p

t∫
t′

ξ(t′′)dt′′


×
(
V0 + qc ξ(t′) + q

√
1− c2η(t′) + V1 cos(ωt

′ + ϕ)
)
dt′ . (16)

This solution has a well-defined mean if

a− 1

2
p2 > 0 , (17)

and a variance if a stronger condition

a− p2 > 0 (18)

holds. In this case, for V1 = 0, the solution is

⟨G(t)⟩ −→
t→∞

G∞ =
V0 − 1

2cpq

a− 1
2p

2
, (19)

and the variance asymptotically takes the form〈
G2(t)

〉
− ⟨G(t)⟩2 −→

t→∞

D =
4V 2

0 p
2 − 8aV0cpq+

(
4a2−4a

(
1−c2

)
p2+

(
1−c2

)
p4
)
q2

2(a−p2) (p2−2a)2
. (20)

For V1 ̸= 0, we can calculate the correlation function

⟨G(t)G(t+ τ)⟩ − ⟨G(t)⟩2 −→
t→∞

V 2
1 cos(ωτ)

2
[(
a− 1

2p
2
)2

+ ω2
] +

[
V 2
1 p

2

4 (a− p2)
[(
a− 1

2p
2
)2

+ ω2
] +D

]
e−(a−

1
2
p2)τ ,(21)

where now the braces additionally represent averaging over the initial phase
of the signal.
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The most interesting feature of the above solution is that if

V0p− acq = 0 , (22)

then for c ̸= 0, the variance D reaches a minimum. This is so because with
the condition of (22) satisfied, Eq. (15) can be written as

Ġ = −(a+ pξ(t))(G− V0/a) + q
√

1− c2 η(t) + V1 cos(ωt+ ϕ) . (23)

As we can see, part of the additive noise translates only to a shift in the
equilibrium solution and G∞ = V0/a, as in the deterministic case. We can
think of the parameters of the potential, a and V0, and the intensity of the
multiplicative noise, p, as fixed, but suppose we can control the intensity of
the additive noise, q. We can see that by manipulating q, we can make the
correlated part of the additive noise to act in unison with the multiplicative
part. Their combined effect results just in shifting of the equilibrium value
of G. If the condition of (22) is satisfied, a contribution form the correlated
part of the additive noise is eliminated, reducing the variance, D, and low-
ering the noise background, leading to an increase in the Signal-To-Noise
ratio, cf. (2).

Furthermore, if c = 1 with condition (22) satisfied, the additive noise
is eliminated altogether. Without the external signal, V1 = 0, the formal
solution (16) now reads

G(t) =
V0

a
+

(
G(0)− V0

a

)
exp

[
− at− p

t∫
0

ξ(t′) dt′

]
, (24)

where G(0) is the initial value of the memductance. If the multiplicative
noise is not too strong, cf. Eq. (18), almost all realizations asymptotically
approach G∞ = V0/a. The variance asymptotically vanishes, D → 0, and
the device behaves as a noise-free resistor. When V1 ̸= 0, c = 1, and with
the condition of (22) satisfied, the solution is still noisy, but minimally so
for a given amplitude of the multiplicative noise, p, see Fig. 4. A similar
reasoning holds for c = −1.

Because D enters the expression for the correlation function (21), min-
imizing D corresponds to optimizing the current (8) with respect to the
external signal with amplitude of the multiplicative noise, p, fixed. We
have solved Eq. (15) numerically with the Euler–Maryuama scheme with a
timestep ∆t = 1/256. Numerical power spectra have been averaged over 128
realizations of the noises. Results for the model (15) are presented in Figs. 5
and 6 for different values of the multiplicative noise amplitude, p. For c = 1,
a clear stochastic resonance is visible. The stochastic resonance persists for
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Fig. 4. Broken line — the noisy hysteresis loop for p = 0.25, c = 1 and with the
condition of (22) satisfied. The other parameters are V0 = 1, a = 1, V1 = 4,
ω = 2π. The colored line shows the clean hysteresis loop corresponding to the
same set of parameters.
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Fig. 5. Numerically obtained Signal-To-Noise ratio as a function of the intensity
of the additive noise, q, for different values of the correlation coefficient, c The
multiplicative noise intensity p = 0.15. All other parameters as in Fig. 4.

all c ̸= 0, but for small values of c, SR is drowned by numerical fluctuations.
For uncorrelated additive and multiplicative noises, c = 0, the stochastic res-
onance vanishes altogether and the resulting hysteresis loop becomes much
more irregular due to the maximization of the additive noise. Trajectories
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Fig. 6. The same as Fig. 5, but with the multiplicative noise intensity p = 0.25.

representing negative memductances are clearly visible, as shown in Fig. 7.
Negative memductances represent a paradoxical behavior with current pass-
ing against the voltage. We can see that too large values of noise intensities,
when not mitigated by mutual correlations, can lead to unphysical behavior
of our model memristive system.

Fig. 7. The same as in Fig. 4, but for c = 0 and p = q = 0.25.
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Interestingly, for both amplitudes of the noises, p and q, fixed, for c ̸= 0,
the resonance condition (22) can still be reached by changing V0. This,
however, means changing the shape of the noise-free hysteresis as well.

5. Higher-order monostable wells

Results for the LSR can be generalized to higher-order monostable po-
tential wells. Suppose that instead of relaxing in a harmonic well, the
particle whose position represents the memductance relaxes in a potential
1
2nG

2n , n = 2, 3, . . . . We now have

Ġ = −(a+ pξ(t))G2n−1 + V0 + qcξ(t) + q
√

1− c2 η(t)

+V1 cos(ωt+ ϕ) (25)

and for c ̸= 0, with the condition (22) satisfied,

Ġ = −(a+ pξ(t))
(
G2n−1 − V0/a

)
+ q

√
1− c2 η(t)

+V1 cos(ωt+ ϕ) . (26)

The intensity of the multiplicative noise, p, cannot be arbitrary large as the
system would become divergent. Unlike in the linear case, cf. Eq. (18), the
maximal intensity can be assessed only numerically; it is always smaller than
in the linear case.

Substituting y = G− (V0/a)
1/(2n−1) we get

ẏ = −(a+ pξ(t))yW (y) + q
√
1− c2 η(t) + V1 cos(ωt+ ϕ) , (27)

where

W (y) =

2(n−1)∑
l=0

(
2n− 1

l + 1

)
yl(V0/a)

1− l+1
2n−1 (28)

is a polynomial of the order of 2(n−1). As we can see, correlations between
the multiplicative and additive noises again result in shifting of the equilib-
rium solution and reducing the additive noise. If c = ±1 and the resonance
condition (22) is satisfied, the additive noise is eliminated completely.

If there is no external signal, V1 = 0, and the additive noise is eliminated,
Eq. (27) is formally solved as∫

dy

yW (y)
= −at− p

t∫
0

ξ
(
t′
)
dt′ . (29)

For n = 2, the integral on the left-hand side of Eq. (29) can be carried
out analytically, but even then the resulting expression cannot be solved for
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y explicitly. In general, Eq. (25) can be solved only numerically. Due to
the nonlinear character of Eqs. (25), (27), a solution for V1 ̸= 0 cannot be
represented as a convolution of the free solution and the external forcing, as
in the linear case discussed above. However, as the integral in (29) contains
a logarithmic term, we expect that the condition of (18) needs to be satisfied
for the variance of the solution to exist. Numerical experiments confirm this
intuition.

We have solved Eq. (25) numerically for the quartic (n = 2) potential.
The solutions display a hysteresis loop, as expected. Numerical experiments
show that the nonlinearity significantly reduces the range of parameters for
which negative memductances do not appear. Figure 8 shows a hysteresis
loop in a resonant case.

Fig. 8. Broken life — the noisy hysteresis loop for the quartic well, (25) with n = 2,
c = 1 and the condition of (22) is satisfied. Parameters are V0 = 1, a = 1, p = 0.15,
V1 = 1.5, ω = 2π. The colored line shows the clean hysteresis loop corresponding
to the same set of parameters. (Note a different scale as compared to Fig. 4.)

Because with the amplitude of the multiplicative noise equal p = 0.25 as
in Fig. 4 leads to negative memductances, we have used a smaller value of
p = 0.15 and the noisy hysteresis is less blurred. Figure 9 shows the SNR.
In a quatric well, the stochastic resonance is even stronger than in the LSR.
SR is present for all c ̸= 0, but for small values of c it is hardly visible.
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Fig. 9. Numerically obtained Signal-To-Noise Ratio as a function of the intensity
of the additive noise, q, in the model of (25), for different values of the correlation
coefficient, c. Other parameters as in Fig. 8.

6. Conclusions

In this paper, we have addressed the effect of noise on signal transmis-
sion in model memristive devices. On the one hand, side miniaturization of
electronic processors allows for integration of many circuit elements per unit
area and lowers the driving voltage, on the other hand, it naturally makes
the systems vulnerable to thermal, 1/f , shot and external, environmental
noises. At the same time, based on theoretical approaches and experimen-
tal considerations, it has been documented that better endurance of signal
transmission in natural and artificial systems can be achieved by under-
standing the source and making use of inherent temporal fluctuations in
resistive devices. Contemporary methods used in the design of artificial sig-
nal transferring systems try to mimic information processing mechanisms of
living organisms and to emulate states of conductance of neuron synapses
by analyzing stochastic response of neuron-like units and networks. Taken
from that perspective, the Stochastic Resonance phenomenon may serve as
an event optimizing performance of a system in the presence of noise, alike
hearing or visual sensations have been shown to be amplified [20, 43–45] by
interference of weak signals and temporal fluctuations.

Theoretical models as investigated here were mostly motivated by studies
on protein channels and synthetic micropores in metal-organic frameworks
(MOF) [46–50] where hysteretic behavior has been observed. In particular,
authors of Ref. [48] presented extensive experimental studies of the class
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of iono-neuromorphic biomolecular memristor, whose switching mechanism
and ionic transport resembles biosynapses. The physical mechanism has
been modeled by running simulations based on Eq. (5) where the conduc-
tance was assumed to depend on the number of pores per unit area. In turn,
Catacuzzeno et al. used a model of voltage-dependent potassium channel
based on the description of the voltage sensor represented as a Brownian par-
ticle diffusing in multimodal energy profile related to the change of the sensor
position in the channel and MD simulations of the conformation variations
of the channel protein. Similar abstraction of the gating process analyzed
by stochastic modeling has been addressed by Metri et al. [49]. Notably, in
those models, hysteresis in gating has been attributed to the difference in
energy between conformations of the channel represented by either discrete
or continuous variations of G(V (t), t).

Our research shows that a conceptually very simple system of a particle
relaxing in a potential well can model the memristive behavior under the
influence of noise. We have discussed two kinds of models which, in ad-
dition to the memristive behavior, display a Stochastic Resonance. In the
model involving a tilted double-well potential we observe a “dirty hysteresis”
consisting of multiple overlapping hysteresis loops, reminiscent of hysteretic
rounding observed in plastic or disordered materials. In the model involving
a monostable well subject to correlated multiplicative and additive noises
— a harmonic well that can be solved analytically and its generalisations to
higher-order wells — a blurred hysteresis is observed, much as in the case
of hysteresis loops observed in voltage-activated ion channels [27–29]. This
highlights a previously unexpected connection between memristive systems
and ion channels. Indeed, data presented in Fig. 1 that gave rise to our
model double-well potential (6) resemble those obtained experimentally for
a “virtual memristor” in Ref. [42]. The question remains how integration
of such units in neuromorphic architecture will influence properties of the
circuit and its performance in signal transduction.

We would like to thank Benjamin Lindner for a most helpful discus-
sion. This work has been supported by the Priority Research Area SciMat
under the programme Excellence Initiative — Research University at the
Jagiellonian University in Kraków.
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