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We consider N Dirac fermions on a 4-dimensional Euclidean space with
a quadratic interaction given by arbitrary external Clifford-valued fields.
The divergence of the axial current satisfies on the classical level a rela-
tion that is violated after quantization. Using the Pauli—Villars method to
regularize the fields, we find the conditions that guarantee the finiteness of
the anomaly. We also find this anomaly. Our result generalizes the well-
known computation of axial anomaly of Dirac fermions interacting with an
external Yang—Mills field.
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1. Introduction

We shall consider a set of classical anti-commuting Dirac spinor fields
Yr, ¢, I = 1,...,N, in a 4-dimensional Euclidean space (with positive
signature). We also introduce a quadratic Hermitian action for these fields
of the form

S = / dlz 3" Gr(@) (10, +m) 617 + 6 () ¥y(x). (1)
1J

Thus, all fields have the same mass m and are coupled to external Clifford-
algebra-valued fields &!7(x).

Conserved or approximately conserved currents play an important role
in QFT. For instance, the vector current

THa) =Y (@) yr(x) (2)
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satisfies formally
OuJH(x) =0. (3)

Relation (3) is true also inside correlation functions
(O0uT"(2)) = 0. (4)

To be precise, (3) is not fully rigorous, since it involves putting two
fields at coinciding points. Relation (4) is exact, since we only consider such
regularizations that keep this condition true.

Let us also introduce the following currents:

T (x Z% oy r(@),  TP(@) =Y dr@y (@) (5)

I

If the Dirac field is coupled only to an external Yang—Mills field, that is, the
field @ has just one component ¢(z) = iA,(x)y*(z), and fields ¢ satisfy the
classical equations of motion, then formally on the classical level, (5) satisfy
the equality

0T (x) + 2mJ°(z) = 0. (6)
However, on the quantum level, after appropriate renormalization, we get
1 vpo
<8uj5“(x)>ren + 2m<J5(x)>ren = 162 Tr ("7 Ay (x)Ape () =: Az)

(7)
where A, = 0,A,—0,A,+i[A,, A)] and Tr denotes the trace over the space
enumerating different fields ;. A(z) is called the axial anomaly. This is
described in essentially every modern textbook on Quantum Field Theory
such as [1, 2|, see also [3, 4] for a more specialized treatment.

For more general external fields, the classical relation analogous to (6) is

0u T () + 2mT () +Zw1 (v’ @' () + @' (2)7°) s (x) = 0, (8)

which holds if the fields 1 satisfy the classical equations of motion. Since
this is a generalization of the simpler case, we still expect an anomaly to be
present on the quantum level

<aﬂj5u($)>ren +2m <‘75 (x)>ren
+) (i) (" (@) + @' (2)7°) 4 (2))ren =2 A(2) - (9)
1J
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As in the case of the vector current, J°#(x) and equation (9) are prob-
lematic because they involve two fields at coinciding points. In order to
give sense to them, we shall use the Pauli—Villars regularization. We will
show that with this regularization the renormalized vector current J*(x)
is conserved. We will find conditions on the external fields ¢/ (z) which
guarantee that the axial anomaly is finite. These conditions say that cer-
tain local polynomials in external fields and their derivatives vanish. There
are three such conditions: one involves a polynomial of degree 1, another of
degree 2, and the third of degree 3. We will compute the anomaly — again,
given by a local polynomial in external fields. This is a rather complicated
polynomial of degree four. One should note that there are no anomalies of
degree five and more.

Lagrangians of the form (1) may appear in phenomenological description
of various physical systems. Our results show that the usual approximate
conservation of the axial current can often be generalized to a more general
setting.

2. Euclidean Dirac field
Consider the Clifford algebra generated by matrices v, such that

(Wt =% + ¥ =20, =, mr=1...,4, (10)

where g, is the Euclidean metric tensor g = diag(1,1,1,1). We will use
the conventions v5 = 1727374, Y = 5 (VY — W), and ¥ = (1r)77s.
Thus (10) can be extended to p,v =5, and 7., = _,},;rw = —y for p,v =
1,...,5. Still, whenever contraction of such indices appears in the text, the
summation it denotes is only over the range {1...4}.

The action of (1) can be written as

sl = [ ate 3 i) Dm. ) (o), (11)
1J
where
D(m,®)!” = (48, + m)é"! + &' = Dy(m)s' + &1 (12)

With the chosen conventions, the free part of the action is Hermitian. For
the whole action to be Hermitian, we need

(@IJ)T — 75¢J175- (13)

Note that with this assumption, v°D(m,®) is a Hermitian operator.
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It can be noted that a rotation of fields 1! (z) — U/ (x)y” (x), with U
being unitary matrices, is equivalent to an appropriate transformation of the
external fields @

Slwwl = [ dte Y di@) (U7 D 8)0) s, (10
1J

U'D(m,®)U = D (m,U'oU +~+*U(0,U)) . (15)
Given a basis of the Clifford algebra, the external fields #!7 can be
decomposed in this basis. We will use a specific basis
I e (1,ip%,in",4#4°,7°) (16)
and introduce varying symbols for different components of &/
o' = ol 1 = 11 1AL g 4B A+ CLT AP+ NS (1)

In some formulas, we will also use B;w = %GWWB””. With this choice,
(')t = 4515, which further implies that the interaction part of the action
S is Hermitian iff every component field ®1/(z) is a Hermitian N x N matrix.

Treating ¢7(z) and v¥;(y) as (independent) Grassmann variables, and
using the Berezin integral [ D[], we can compute correlation functions of
the fields from the formula

<'¢I1 561 T 1/11n (xn)lszm (ym) e ¢J1 (yl)>
1 / Y, (@1) - r, (@) (ym) - ()DI],  (18)

where
2= [ stipy) (19)

is the normalization factor. Since these integrals tend to be infinite, some
regularization is usually necessary to obtain physically meaningful results.
Since the integrals are Gaussian (in the Grassmannian sense), all correlation
functions can be reduced to the correlation function for a pair of fields

(Ur@)s () = = (D7) (@ y;m, @), (20)

where D_l(x,y;m,fﬁ) is the integral kernel of the inverse of the operator
D(m,®). Note the identity

(Qr(x) Y (y)) = tr (F* (D7), (y, m3m, D)) (21)

where the symbol tr denotes the trace over the spinor indices only, and the
minus sign from (20) has disappeared due to the anticommution relations of
Grassmann variables.
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3. Axial anomaly

In Introduction, we presented the vector current J#(x), and also the
axial currents J°(x) and J°*(x). Furthermore, we defined the anomaly
A(z).

We have (naively)

o (D7)

(z,;m, P)
(0uTM(x)) = Y tr <’V5'7“ Ié p ;o (22)
- T
(T°(2)) = Ztr (> (DY), (@, 23m, D)) , (23)
I
(Yr(@) Ty (x)) = tr (0" (DY), (z,25m, D)) . (24)
These expressions however have a problem because the integral kernel
D~Y(z,y;m) is divergent for y = x.

To resolve this problem, we shall use the Pauli—Villars regularization.
Namely, we define regularized propagators (free and full) as

(Dg1) 4 (@) = ZCD ,y; Mi(A)), (25)

(DY), (z, ;D) = ZCD (z,y; Mi(A),®), (26)

where A is a regularization parameter (eventually A — 400), masses M;(A)
and coefficients C; are chosen such that

Co=1, Moy(A) =m, lim M;(A) =+oo for i #0,
A—~00

and (Dy ') 4(z,y) has no divergence for y — z. These conditions mean that

the integral
_ dp —ig + M;
1 _ , i
(Dgt) , () = / n)t ZC 2 (27)
has to be finite. By (A.5) and (A.6), this is guaranteed by the conditions

Ye=0, Scm=o0, Y cami=o0, Y cMP=0. (28)
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A possible set of solutions for these equations is

i1€{0,...n},n >4, Ci:(l)i<7;>, M; =m+iA. (29)

A proof that this is indeed a solution is given in Appendix B. Other solutions
can be created by linear combinations of these solutions.
Using this regularized propagator, we define

o(D1 T, 1P
<%ﬂmuz§)%¢( s v,
I

o(D™! z,x; P
@ﬂwm=2u@w( Eﬁ v,<m
I
<J5(:c)>A Ztr (75 (Dil)ILA (x,x;@)) , (32)
I
(@ @y (@), =t (1 (D7), (@,0;9)) | (33)

and
Ap(z; @) = (9, (x)) , +2m (J°(2)) ,
+Z<¢I (Yo' () + &' (2)7°) s (), . (34)

We shall see that this regularization keeps the vector current conserved
on the quantum level, i.e.

Ah_I)I;O (OpJ"(2)) 4, =0. (35)
This relation is actually satisfied even without the limit. We shall also see
that the axial currents, in general, produce infinite axial anomalies linear,
quadratic, and cubic in fields @. If the anomaly has a finite limit for A — oo,
it is okay; it is analogous to the standard textbook axial anomaly. However,
if in this limit it diverges, we find it problematic. We consider the disap-
pearance of these infinite anomalies a necessary condition for the consistency
of the quantization; for that to happen, fields @ need to satisfy some spe-
cific conditions, which we will derive in this paper. Under these conditions,
we also compute the resulting anomaly. Our result can be summarized as
follows.
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Theorem 3.1. Suppose that the following conditions are fullfilled:
TrA =0,
Tr (8,C" + 26X+ 2B By,) = 0,
Tr (—FPA +ik[A", O] + 268" By, — i[A", A¥]B,,,
FiBu[C", C”] + 2B B A + 20" CA + XF) = 0.
Then there exists the limit
Alz) = lim Ax(z),
the relation in (9) is satisfied, and the renormalized anomaly is

A= AW + A® 1 A® 4 AW

1
1 — I v
A 9 2TI‘ (0 0,0,C ),

1
(2 — 3 I
AV = 192 Tr (4/{3 OuA + 60,0\

+3e89, A, 00 Ag + 24,010, C7 — 207949, A,
+4B 0", Bpo + 8B 0,0" By, — 8B0,0" B,
+6¢"" 9, B 8, By + 40, B°*0" B, — 40" B9, B,,,
—120"B,,, 0"\ + 6“”53“0&3:/05) :

40 1217r2ﬂ< (0us) (100, C"} + 43, 4] + 4 {4, B })

+(9,A,) (2igW[H, A + i B[ Ay, Ag] — 3ieB[C,, Cp]
FA{AM, OV} — 4{AV,CP) — 29" { A%, C)

2-A2.7

(36)
(37)

(40)

(41)

412 {m, BW} —12{)\, B"} — 12igas (BWB“B _ B”ﬁB“a> )

+ (8, Bag) (3ewﬁ (K, Ay} — 4ig"B[k, O + 4ie"*P [\, O]
_12ighf [AV, BW} 12 [Aa, B“ﬁ] 4 [A“, Baﬁ]

H16¢2(C,. 8} +8 {0, 30} —a{cr 57} )



2-A2.8

J. DEREZINSKI, A. LATOSINSKI

+(9,C,) (109#%2 — 6ghv 2
_4gMAC A, — 2ARAY — 24V AW
—8gMCCy — 201CY — 20V CH

+4i[k, BM] — 4i [A, BW} - 4g‘“’Bpong>

(0N (—Gi[/i, AM] — 121 [BW, CVD ) , (43)

961#2 Tr( — 82600 + 82i62[A, €] + 1614°, ][ Aq, N
+48IN2[AF, C,] + 48C*Cy (KA + k) + 96KCHAC,,
+64K2B" B, + 326k B" kB,

+48B*? Bog (kA + k) + 645 B" \B,,,,

—~192)\B" B, — 96AB" \B,,,,

—48i (B,M + RBW) [A", A¥] + 48i(BuA + AB,y, )| A, AY]

+16i (BM n KBW) [C*™,C"] + 12818, C*KC"”

—16i( By, A 4+ AB,,)[CH, C¥] — 96iB,,CHAC"

+32(Buk + 5B, |AF, V] + 32 (B’W)\ + )\B’W) (A", O]
—64B,,,(A*KkC” + C*kAM) — 64B,,,(AAFCY + C¥ A*))
+64B,, (A XC” 4+ CYNAM) + 64B,,,(\CV A" + AFCY \)
—256ig,,, kK B** Bog B? — 512ig,, A\B"* B, s B"”

—6e"P[A,,, A)[An, Ag] + 2¢"P[C,,, C)[Ca, C]

—4e"PA,, A,)[Cu, C) + 86" *P[A,,, C,)][Aa, C]

—16i[A,,, A)][A*, C¥] + 32iA" A, [AY, C,)]

+32A% A0 B" By, — 32A° B" Ao By — 128¢,5B"*B"?[A,,, A,
—96C“Co B" B, + 320°B" Cy By, + 64igas B B"°[C,, C,)]
+192i(A,BaC” B** — A, B"*C" B,o) + 64iB*° B,g[ A", C,)]
+64i(A,C" Byo B* — A,B"*B,,C")

—64B°% B3 B" B, + 64[B*", By,] [Ba,,, Bﬁy] ) . (44)
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Among many terms in the above theorem, we can find the terms that
reproduce the standard axial anomaly of the Yang-Mills field

1
Al@)wpor=0 = 3 — e P Ty (9, A,00A5) + 53 L emwesqy (0,A,AxAp)
1 1403
ez T (A, Al[Aa, Ag))
- 16126“””[5 Tr (A Aap) (45)
™

where A, = 0,4, — 0, A, +i[A,, Al
Another part that we can extract from the full result are the terms that
depend only on scalar fields x and A, that is when A, =0, B, =0,C, =0

A(x)a.B.c=0 = (460" Ou\ + 60" KON — 4KPN) | (46)

1
1272

with the conditions for the vanishing of divergent part being

tr(A) = 0, (47)
tr(kA) = 0, (48)
tr (—k*A+ %) = 0. (49)

One more special case would be when the configuration of external fields

haSA'u:()’ Buuzo,)\:()
A(T)a,Br=0 = ﬁTr (e‘“’”"@ C,0,Cy + 100, ( 20#))

=1 27728 Tr (¢"77C,0,Cy + 105*C*) (50)

with the only condition for the vanishing of the divergent part being

tr(9,C") = 0. (51)

4. First steps of proof

The remainder of the paper is devoted to a proof of the above theorem.
From the definition of D~ (x,y; M, ®), we have

(1# 50+ M +8(0)) D MB) = S0 -0), 62

il
D_l(:z:,y;M,Q5)< 88+M+¢>( )) = sz —v), (53)
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therefore,

(70 + m + ®(x)) (D7) ; (2, ;@)
— Zc,- (Y0 +m + &(z)) D™ (2, y; M;(A), D)

—ZC m — M;(A)) D™z, y; Mi(A), ®) + 4 (z — y))

_Zc m — M;(A)) D™ (&, y; My(A), D) . (54)

Let us first check the conservation of the vector current

(0" (%)) 2
o p)
= B Tt (’Y“W (D7), (@,y:9) + (D7) (2, ; @’Y“ayu>

= lim <Tr tr (ZC M;(A) — &(z)) DYz, y; M(A), D) + 6*(x — y))

Yy—x

+Tr tr <Z CiD ™! (w,y; M;i(A), D) (M;(A) + D(y)) — 6*(x — y)))

=0. (55)

We can express the regularized anomaly as

Aa(z; @) = lim Tr tr <v5 (’Y“aiu +m + 95(»”6)) (D7) 4 (@, 915))

Yy—x

Bl
+r (75 (D7) (@, y: ) ( " 5 +m> +¢(y)>

= ;1_% | 2C; (m — M;(A)) Tr tr (’y D~ (:L‘,y;MZ-(A),é)) . (56)

Let us interrupt for a moment the proof of Theorem 3.1 to comment
on whether the anomalies we compute are gauge invariant. Unfortunately,
while operator D(m, @) satisfies relation (15), and thus we have also

U 'D Y (M;(A),®)U = D (M;(A),U'SU +~*UH(9,U)) , (57)
U 'O, (@)U = (DY), (U U +4*U~1(8,U)) ,  (58)

no similar relation will be satisfied by A4 (z; ®) as we defined it.
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In fact, from (56) we have

Ax (a;; U~ loU + ’Y“Uﬁl(auU)) = ?}13}0 Z 2C; (m — Mi(4))

x Tr tr ("D~ (2, y; M;(A), U™ 'oU + U1 (9,U)))
= lim Z 2C; (m — M;(A)) Tr tr (y°U~ (&) D™ (2, y; My(A), ®)U (y))
= lim 3 72C; (m — Mi(A) Tr tx (YPU (0)U ™ (2) D" (. y: M;(4), 9))
Z (59)
which means that

Ay (z; U~lou +7“U_1(8“U)) — Ay(x; D)

= 1}1_12 Tr tr (75 (U(y)U_l(x)—l)Z 2C; (m—M;(A)) D™ (z, y; My(A), @)) .
| (60

While combination Y, C;D~1(z,y; M;(A),®) has no divergence for y — x
(with appropriately chosen coefficient C;), it is not necessarily true for
> CiM; D™ (z, y; M;(A),®). Due to that divergence, the limit in the ex-
pression above does not vanish, and it contains terms dependent on U.

Let us go back to the proof of Theorem 3.1. Expanding D~'(M) =
(Do(M) + @)~! into a series with regard to the powers of @

D™ (M) = Dy'(M) - Dy (M)®Dy ' (M)
+Dg Y (M)YODG (M)®D (M) + ..., (61)
we obtain the expansion of Aeq(x; A) into a series

Ax(z) = AV @)+ AP (@) + AP (@) + ... (62)

in which Aﬁln) is a homogeneous polynomial of n'" order in fields @.

5. Zeroth-order term

Using (A.5) and (A.6), we obtain
Oy = 1 (m — M, 5D~ (0. 0 M
Ay (@) = lim D 2C (m — M) Tr tr (7" Dg ' (w, y; M;)

_ d'p —ip + M;
= N/ 2n) ; 2C;(m — M;) tr (751)2_1_]\412)
=0. (63)
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6. First-order term

= lim (— Z2c m—M;) Tr tr<5/d4zD0_1(x,z;Mi)@(z)Do_l(z,y;Mi)>

y—)CE

s

(—ig + Mi)y* (i + ) + M;)
x Tr tr ( ((q R ME) (q2 n MZQ) QS(P)) .

(64)

To calculate this expression, we will use identity (A.1) and then (A.5),
(A.9), (A.10). We get

4 .
AP @) = = [ e ((471T) 2 20 m—) 17 g (017 T (°0(p)

_lpM
(4)?
2

+(41;) ( >~ 2Ci(m — M;)log (M7) + O (4 )) Trtr(v%(p)))

= — Tr(\(x)) Zcz(m — M;) M} log (M7)

+

( 2C;(m—M;)M; log(]\/[i)2 + %pz +O (A1)> Tr tr (7“75415(1)))

+_7T1 (0,C*(x)) Y Ci(m — M;) M;log (M?)

7

—I-rTr(aa)\ ZC m — M;)log (M})

7

(0"0,0,C" (z)) + O (A7) . (65)

12

We see that some terms are divergent with A. For now, we will just keep
them in mind, as similar divergent terms may arise in terms of higher order
in @. The finite term will be denoted AM, and matches the formula given
n (41).
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7. Second-order term

2) 1‘) = liin Z2C¢(m— Mi)/d421/d422
Y—xT

x Tr tr (v Dy (x zl,M)QP(zl)DO (21, 203 Mi)®(20) Dyt (22, y; M;))

/ / d4pd l<: silp+R)z / oy ;Cﬂ(m — M)

x Tr tr (¢(p)D6 (¢ M;)®(k)Dy ' (q — k; M;)y° Dy (q + p; M;)) . (66)

Using identity (A.1) and then (A.9)—(A.11), we get
dipdik |
S
X ((471r)2 ;Cﬂ(m — M;)log (Mf)
(= T b @RN) + 1 T tr (200176 + ) )

—1
+

e (Z C;i2(m — M;)M;log (ME)) Tr tr (&(p)®(k)7°)

p*Tr tr (@(p)@(k)")

3(41”)2 Tr tr (B(p)B(k) (—2K — ) + K)7°)

+3(41W)2 Tr tr (B(p)(f — P)P(R) (6 + K)7°)

+2(‘4’ﬂ) Tr tr ((p)®(k) (¥ + %)ﬂ) +0 (A7) (67)

1
3

+

Calculating the traces, we obtain

AD(g) = 2 3 T (K(@)A(@) + B (2) Bu(w) ) 3 Cilm — Mi) My log (M)

7T

FAD L0 (A7) (68)

where A®)| the finite part, is given by Eq. (43).
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Again, we can see a problematic term divergent when A — oco. It has
the same kind of divergence as one of the terms that appeared in the linear
order, and they will need to be considered together, leading to the con-
dition (37). Among the many finite terms, there is one proportional to
Tr(e"*P9, A, (7)9aAg(z)), which leads to the standard, well-known axial
anomaly in the presence of vector field.

8. Third-order term

(3) 4 4 4
Ay (x) —Z}I_I)Iglc Z2C'm M/d21/d252/d23
X Tr( "Dyt (x, 21,M )B(21) Dy (21, 205 M) B (22)

x Dy ' (22, 23, M;)®(23) Dy ' (23, 3 M;) )

/// d*p1d*pad®ps el(P1+patps)e
271' 12

x/WZCﬂ(m—Mi)tr (@(p1) Dy (g5 Mi)®(p2)

x Dy (q — p2; M;)D(p3) Dy (g — p2 — p3; Mi)v° Dy (g + pr; M;)) - (69)
Using identity (A.1) we get
Dy (q — p2 — p3; Mi)y° Dy (q + pr; M)

(g +p1)12 e 4 Dyt (g —pa — p3; Mi)i(Py + 2+ p3)) 7. (70)

The second term in this expression leads to the integrals which are con-
vergent even without the sum ), C;2(m — M;). The leading term in those
integrals is proportional to 1/M;, which makes them O(A~!) for i # 0. That
means that only the first term from the expression above can lead to a term
that is divergent in the limit A — oo. The second term can still give a
finite contribution, thanks to the factor (m — M;), and simple dimensional
analysis tells us that in the part of integral over ¢ that contains this second
term, we can omit all momenta p; except for the factor i(g; + pa + p2) — all
terms coming from these omitted momenta would be at least of the order of
(m — M;)/M?, which means they would vanish in the limit of A — oo
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4 4
/// d 1d 2d b3 1(p1+p2+173)1"
(2m)12

d%q 1
X(/chiQ(m_Mi)(Q—i—pl)Q—FM?
xtr (®(p1) Dy (; M;)P(p2) Dy ' (g — pa; Mi)P(ps)y°)

dtq i(p1 + p2 + p3)
+ [ <L N comm - M, 4
/ ()i 2 G2 = M)

xtr (@(pl)D (q; Mi)®(p2) Dy ' (q — pa; M;)

x®D(p3) Dy (¢ — p2 — p3; Mi)y"+°) >

4, 14
/// d p1(217rp?;i D3 1(p1+p2+p3 / 4 ZC 2 m — M
) ( —qv(q — p2)

"

((g+p1)2+ M?) (¢2+ M?) ((q — p2)? + M?)
xtr (D(p1)7"D(p2)7"P(p3)7°)
. —iq, M;

((q +p1)%+ M2) (> + M?) ((q — p2)? + M?)

X tr (@( DYHP(p2)P(p3)y )
—i(q — p2) . M;
(¢ + Mf) (g —p2)? + M?)
(p3)7°)

M?
T+ p0? +282) (@ + M2) (4= po)? + D)
Xtr (¢(p1)@(p2)@(p3)75)

+((€1+p1 )2 + M?)
xtr ((P(pl) (p2)yH®

+i(p1 + p2 + pP3)a (quql,214 + (terms with pj)>
(¢* + M?)

xtr (D(p1) (YD (p2)P(p3)V” + VD(p2)7 ' D(p3) + P(p2)V" P (ps)y”) v*7°)
3

. M .
+1(p1 + p2 +P3)a (2124 + (terms with pj)>
(¢> + M2)

xtr (@(p1)®(p2)®(p3)y*7°) ) : (71)



2-A2.16 J. DEREZINSKI, A. LATOSINSKI

Using identities (A.11), (A.13), (A.14), (A.15), (A.17), and (A.18), we
get

(3) d4p1d4]?2d D3 1 1+p2 . ;
) < ( I log (M2) + O (A )> T (P(p1)7" D (p2)7" P (ps)7°)

P e L NG (A—3)> Tr (#(p1)7"®(p2)2(p3)7°)

+ < e ip?’)u +0 (/1_3)) Tr ((p1)®(p2)7"P(p3)7°)
< ;+0 (/12)> Tr (D(p1)®(p2)P(p3)7°)

+i(p1 + p2 + p3)a <12(;7‘9T/;12/M +0 (/1_3)>

x Tt (D(p1) (V' P(p2)P(p3)y” +7"D(p2)y" P(p3) + P (p2)7V"P(p3)v") v*7°)
+i(p1 +P2 +p3)0¢ (6(47‘(’1)2]\41 + O (/13)>

x Tr (B(p1)P(p2)P(p3)7*7°) )

1
=~ iGne Ei:c,Q(m — M;) log (M}) Tr (7" ®,d7°)

-1 5
+m Tr (@ (v/0,9P — VPO, P — 20,P7"P — P10, D) ")
1 17 v v
e T (@ (20° — "Dy — 7 P3P — DV DY) 1Y)
+0O (A7Y (72)
where in the last expression, ¢ means ¢(x) and 0, means W‘au. After calcu-
lating the traces, we get

AP (@) = (Zm(m — M;) log (Mf)>

1 N N
x5 Tr ( 2\ — ik[A", C,)] — 26B™ By, + i[A*, A B+

ﬂ-Q
B[O, CY) = B B\ = 204 Cu\ = 3) + A® 0 (471
(73)
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where A®)| the finite part, is given by Eq. (43), and the divergent part
contributes to the condition (38).

9. Fourth-order term

X r) = li_r}n ZQCi(m—Mi)/d421/d42’2/d423/d4z4
Y—x =

x Tr tr( "Dyt (w, 21; M) D(21) Dy (21, 225 M) P (22)
(22, 237 M;)®(23) Dy ' (23, 245 M;)D(24) Dy * (24, y3 M;))

Dy
d4 d4 d4 d4 d4
//// b1 272r 163 P4 1(p1+p2+p3+p4)56/(27342(712(m — M;)

x Tr tr (Dy (g + p1 + p2 + p3 + pa; M;)D(p1) Dy ' (q + p2 + p3 + pa; M;)
xD(p2) Dy (q + p3 + pa; Mi)D(p3) Dyt (q + pa; My)P(pa) Dyt (g M;)y°)

(74)
Using identity (A.1), we get
Dy (q; M;)Y° Dy (g + pr + p2 + p3 + pa; M;)
:< ! L M) s ) )75,
(q+p1+p2a+p3s+pa)?+M2 - (¢2+M?2) ((g+p1+p2+p3+pa)?+MPF)
(75)

Using dimensional analysis, we can see that the second term will only
produce contributions that vanish in the limit of A — oco. The first term
may produce a finite contribution, but this contribution will be independent

of p;
/ / / / d*p1d*pad'psd’ps ol (P14+p2+p3+pa)e
(2m)16
x / W zi:Cﬂ(m - 1\41-)(]2+1Mi2
x Tr tr (D(p1) Dy * (q; M;)P(p2) Dy ' (g3 M)
x®(p3) Dy (4 Mi)(pa)y°) + O (A7)

4 3
= / (;17:)14 ZC,Q(m — M;) (M 7 Ir tr (@4 %)

(¢ + M?)"

et ;qf]’(jf;zl Tr tr (@ (Y4PY" D + 4P + Dy dy”) D7) ) +0 (A7)
q i
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N Cofm— My — 45
= ;Cﬂ(m M;) (6(4%)2Mi Tr tr (9°4°)

—g _
+WS”5M Tr tr (@ (Pv"P + FHP2AY 4 Dy D) @75) ) +0 (4 1)

1
= S Tr tr (@ (20° — VF'Pry, @ — Dy, — DY Dy,) D7°) + O (A7)

—; _ 3 s 21 AR - o o
- STy Tr( 32i3) + 32ik2[ A", C,)] — 16A% Ag (KA + k) + 324%% A\

+48IN2[AF, C,] + 48C*Cy (KA + k) + 965CHKC),
+64K2B" B, + 32k B" kB,

+24B* B, g(k\ + k) + 64k B \B,,,,

—~192\2B" B,,,, — 96AB"\B,,,,

48 <BW/-$ n RBW) [A#, A¥] + 48i(B A + AB,y, )[A, AY]

+16i (BM + HBW) [C™,C7] + 1281 B, C*kC"”
—16i(B,yA + AB,,)[C*, C"] — 96iB,,,C*\C”
+32(Byuk + £Bu)[AF, C¥] + 32 (BW)\ + )\BW) (A, O]
—64B,, (A'C” + CYrAV)

—64B,, (NAFC” 4 C¥ AF))

+64B,, (AFAC” 4 CYAAF)

+64B,,(A\C” A" 4 AFCV )\)
—256ig,,, k B"* Bog B? — 512ig,, A\B"* B, B"”
+32iA% A, [AM, C,))

+32A%A,B" By, — 32A“B" A, By,

+40iB*’ B,g[A*,C,,] — 16B** B3 B" By,
—96C*Cy B" B, + 32C“B" Cy By,

+192i(A, B,oC” B"* — A,B"*C"B,4)
+64i(A,CY Byo B" — A, B"*B,,C")

_GEMVaﬁ [A/w AI/] [AOH Aﬁ]

—16i[A,, A,][4*, C"]

—4e"P1A,, A,)[Ca, C]

+8e"°8[A,,, C)[Aa, O]
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+2e47*%[Cy, C][Ca, Cg]
—128g,5B"*B"P[A,,, A,]
+64ig.3B"*BP[C,, C,)]
HO4[B, By [Baw, BY] ) + 0 (47) | (76)

where fields without an argument mean fields at a point x.

10. Summary

Higher-order integrals include at least six propagators D 1(p, M), so
even with the factor (m — M;), they will not produce terms divergent or
finite in the limit A — oco. The only divergent terms come from the terms
up to the 3 order in @, and the finite terms are up to the 4" order in &,
which we calculated above. Writing all of them together, we have

Ax(z) = (Z Ci (m — M;) M? log (Mf)) 2;;2 Tr(\)

+ (Z Ci(m — M;)M; log (Mf))
(2 L a0 + i Tr (kA + BWBW))

+ (Z Ci2(m — M;) log (M,?)) (Z 4771r2 Tr(ON)
I

—1 - -
5 T (WA = k(A% C,) = 268" By +i[ A, A”| By
2
—iB,, [C*,C"] — 2B" B, A — 2CHC\,\ — >\3)> + 0 (A°%) . (77)
For the divergent terms to vanish, we need then
tr(A) = 0, (78)
tr (9,0 + 26X+ 2B B, ) = 0, (79)

tr (aﬂaux — K2\ + iK[A", O] + 26BM By, — i[AF, AY| B,
FiBu[C", €] + 2B B A + 204 CuA + X*) = 0. (80)

We require these conditions to be satisfied everywhere in the whole space.
From the first condition, it follows then that tr(0#9,A) = 0 and this term
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can be omitted from the third condition, leaving us with
tr <—/~£2)\ +ik[A*, C,] + 26 B" By, — i[A*, AY]B,,
FiBu[C*, C] + 2B B A + 204 Cud + X*) = 0. (81)

Optionally, we can also use the second condition to obtain the identity

1 1
1z vy —
127T2T1r (0"0,0,C") 15,2

A = "9, Tr (—2m - 2BP”B,M> . (82)

This way, we can get rid of the term A® completely, adding additional
terms to A®) instead. Whether it is worth it, may be situational.

If these conditions are fulfilled, the regularized anomaly has a finite limit
for A — oo, which contains terms from the first to the fourth order in fields

A(z) = lim Ay(2) = AV (@) + AP (@) + AO (@) + AV (2). (83)

Appendix A

Formula library

In this appendix, we collect various formulas useful in the proof of The-
orem 3.1. We start with the elementary identity

—igfy + My s~ + M; _ ( L i+ MG —ﬁfz)) 5

PAME T A ME T \p M (03 MD) (5} + M)
(A.1)
The following family of identities is very useful when we consider the
so-called Feynman parameters

[e.o]

/deAi e PBi = Z gz . (A.2)
s i i
Assuming ). A; =0,
/dpp_1 Z AjePBi = — Z A;log B; . (A.3)
5 i i
Assuming ) . A; =0, Y . A;B; =0,

/dp p_2 Z AZ e_pBi = Z A'LBz log B,L . (A4)

0
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Let us formulate the remaining identities as lemmas. Note that all inte-
grands in the following integrals are in L.

Lemma A.1. Assuming >, A; =0, Y, A;M? =0,
1
A i - S s, 0
/ 42 q+M2 = 0. (A.6)

Proof. The integrability of the integrand of (A.5) follows from:

1 1 1 M? —m?
Ai—— = A; — + —
Z ’q2+Mi2 ZZ: ! <q2+Mz2 ¢+ m? 2 2)

; (¢% +m?)
_ ()
= ZAZ (& + M2) (@ + m?)?

(2

(A.7)

To obtain (A.5), we first introduce the so-called Feynman representation,
then we evaluate the Gaussian integral, and finally we apply (A.4)

d4q 1 T d4q —(q2+M2
/(%)4 ZAiunf — /dp/ @n) ZAie (+M7)p
1 0 1

o0
/dp(47r)2 Z p2 ¢ (471— 2 l) ( 8)
0 (2

A proof of (A.6) is left to the reader. O

We also skip the proofs of the following identities:
Lemma A.2. Assuming ), A; =0,

d4
/( )4ZAZ((q+p) +M2) (4> + M?)

1 1
o [ [ams- - ) S Alog (5 +M2) (19
0 0
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d4
/( )4 Z “((g+p)? +M2)(q2+Mf)

1
m%/d 5(1 = 51— ) 3 Aulog (3160" + M) . (A10)
0

l\’)
[e=]
=,

d4q QV(q k)
/ 2 A (¢>+M?) ((q — k)? +M23 ((q+p)?+ M)

—
[N
|

~—

'S

o
= s,

1

1
M/M/MM—mﬁrw
0

2

ZA (B2k — Bap)u(B3(—k — p) — Bik),
" B1Bak? + B1B3p% + BafBs(k + p)? + M?

—QHTV > Ailog (B1B2k” + B1Bsp® + Bafs(k +p)* + M?)) ; (A.11)
/ d'g N~y aue . —w Z Ajlog (M?) . (A.12)
(2m)4 - ’ (¢ + MZZ) 4(4m)?
Lemma A.3.

/ diq 1
(2m)* (2 + M?) ((q — k)2 + M?) ((q+ p)? + M?)
1 1

1
1
= 5 d,Bl dﬂg d,B3 (5(1 - ﬁl - ﬂQ - /83)
oo
1

. B1B2k? + B1Bsp? + Baf3(k + p)2 + M’ (A-13)
/ diq 4y
(2m)* (¢ + M?) ((q — k)2 + M?) (g +p)? + M?)
1 1 1
1
= 5 [ dB1 [ dB2 [ dB36(1 — B1 — Ba — B3)
nfofof
(B2k — B3p), (A.14)

" B1Bak® + B1sp? + BaBs(k + p)2 + M2
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/ a? (g —Fk)u
2m)* (2 + M?) ((q — k)2 + M?) ((q+ p)? + M?)

- 471T)2 0/1 a8, 0/1 a6

dB36(1 — B1 — B2 — f33)

O\H

“ 15k +(gf(5;p2:r 5)2;3@:: lﬂp)Q FAE (A.15)
/ ((21;?4 (¢ +1M?)3 B 2(47521\41.2 ’ (A.16)
/ (;1:)]4 (g2 +1MZ2)4 N 6(4W§2Mi4 ’ (A.17)
/ (3;34 (2 %\2})4 N 12(49:;21\42.2 ' (A.18)

Appendix B

Identity for Pauli—Villars reqularization

A proof that (29) is a solution of (28):
Using (29), we have

ZCM’“ - Zn: )"<Z’>(m+m)k

=0

We have then
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(2 o)

Since x = 1 is a n'® order zero of function (1 —2)", then even after applying
the operator :1;% less than n times, it will still be a zero of the resulting
function; therefore, we get

i(—l)i(@)#’ =0, for p<mn; (B.3)

d oM =0, for k<n. (B.4)

(B.2)

=1
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