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A kinetic model for the dynamics of collisionless spin neutral particles in
a spacetime with torsion is proposed. The fundamental matter field is the
kinetic density f(x, u, s) of particles with four-velocity u and four-spin s.
The stress-energy tensor and the spin current of the particles distribution
are defined as suitable integral moments of f in the (u, s) variables. By
requiring compatibility with the contracted Bianchi identity in Einstein–
Cartan theory, we derive a transport equation on the kinetic density f
that generalizes the well-known Vlasov equation for spinless particles. The
total number of particles in the new model is not conserved. To restore
this important property, we assume the existence in spacetime of a second
species of particles with the same mass and spin magnitude. The Vlasov
equation on the kinetic density f̄ of the new particles is derived by requiring
that the sum of the total numbers of particles of the two species should be
conserved.
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1. Introduction

Matter in general relativity is represented by tensor fields on a four-
dimensional manifold M — the spacetime. To measure distances, as well as
fields strength, the manifold M is equipped with a metric g. For consistency
with special relativity, g is assumed to have the Lorentzian signature. To
write down field equations for the metric g and the matter fields one also
needs a connection on M . In the Einstein theory, this is chosen to be the
Levi-Civita connection, i.e., the unique torsion-free connection ∇ such that
∇g = 0. With this choice, the Ricci tensor Rab is symmetric, and therefore
the Einstein equation

Rab −
1

2
gabR = 8πTab (G = c = 1) (1)

requires the stress-energy(-momentum) tensor Tab of the matter to be sym-
metric as well.

(2-A3.1)
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A few years after the publication of general relativity, Cartan proposed
to modify the geometry of spacetime by removing the restriction that the
connection should be torsion-free [3, 4]. One consequence of this general-
ization is that the Ricci tensor is no longer necessarily symmetric, and so
neither is the stress-energy tensor of the matter (assuming that the Einstein
equations still hold in the form of (1) when the connection has a torsion).

Shortly after Cartan’s original work, Pauli [16] proposed that the electron
possessed an additional degree of freedom (besides position and velocity),
which was later identified by Goudsmit and Uhlenbech as a form of intrinsic
angular momentum — the electron spin [23]. In the following years, sev-
eral theories were put forward attempting to describe the electron spin in
classical mechanics, some of which are presented in the review [15]. Car-
tan, among others, suggested that spin could act as a source of spacetime
torsion, thereby establishing a link between microscopic physics and general
relativity. This idea was largely forgotten once the concept of spin found
a successful approach in quantum mechanics (and later quantum field the-
ory), until the articles [12, 20] and the popular review [11] contributed to
its revival. Einstein–Cartan’s theory is nowadays an active (but not pre-
vailing) research topic in the physics community. As spin effects become
important only at exceedingly small scales, and only in the interior of mat-
ter, the current experimental evidence of general relativity does not rule out
Einstein–Cartan’s theory as an alternative description of gravity [10, 22].

The purpose of this paper is to lay down the foundations of a new ki-
netic model for spin particles in a spacetime with torsion. Neglecting spin,
the fundamental matter field in (general relativistic) kinetic theory is a non-
negative function f = f(x, u) representing the number density of particles
at the point x ∈ M with four-velocity u ∈ TxM [1, 6, 18]. In this paper,
we consider an extended particle density f = f(x, u, s), depending also on
the particle spin four-vector s ∈ TxM . The stress-energy tensor Tab(x) and
the spin current S c

ab (x) of the particles distribution are defined as suitable
integral moments of f in the (u, s) variables. The stress-energy tensor ap-
pears as a source of curvature in the Einstein equation; the spin current S c

ab
generates a torsion C c

ab in spacetime, which we assume to obey Cartan’s
equation

C c
ab = 8π

(
2S c

ab + δ c
a S

d
bd − δ c

b S
d

ad

)
.

As the spin current in our model satisfies the Frenkel condition S b
ab = 0,

Cartan’s equation simplifies to

C c
ab = 16πS c

ab . (2)
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The metric connection with torsion C c
ab is denoted by ∇̂. The Einstein

equation for the spacetime metric is, under Frenkel’s condition,

R̂ab −
1

2
gabR̂ = 8πΣab , Σab = Tab − ∇̂c

(
S c
ab + 2Sc

(ab)

)
, (3)

where R̂ab is the Ricci tensor of the connection ∇̂ and R̂ = R̂a
a. The

system of (2)–(3) is a special case of the system of field equations derived
in [12, 20] by the variational principle; for this reason, (2)–(3) are also known
as Kibble–Sciama equations in the physics literature.

The main difficulty in developing kinetic matter models in Einstein–
Cartan’s theory is to find an evolution equation on the particle density f

that is consistent with the Bianchi identity for the connection ∇̂, which
is [17]

∇̂b

(
R̂ab − 1

2
gabR̂

)
= −CabcR̂cb +

1

2
CbcdR̂a

dbc . (4)

Combining (2)–(4), we obtain the conservation law of energy-momentum in
the form

∇̂bΣ
ab = −2SabcR̂cb + SbcdR̂a

dbc . (5)

As opposed to other matter models (e.g., spin fluids [13]), in kinetic theory,
the constraint (5) does not automatically entail evolution equations on the
matter fields; on the contrary, it complicates the task of deriving admissible
kinetic models. In this paper, we introduce an evolution equation on the
kinetic density f(x, u, s) of spin particles which is compatible with (5) and
which generalizes the well-known Vlasov model for spinless particles [1, 18].
The overall interpretation of Vlasov equations is that the kinetic density f
remains constant along the trajectories of the individual particles; in partic-
ular, Vlasov models neglect collisions among the particles.

A questionable feature of our model is that, when applied to a single
species of particles, it violates the conservation law of the total number of
particles. To restore this important property, we assume the existence in
spacetime of a second species of particles with the same mass and spin mag-
nitude of the first species; the evolution equation for the kinetic density
f̄(x, u, s) of these new particles is obtained by imposing that the total par-
ticles number current computed with the kinetic density f + f̄ should be
divergence-free.

The rest of the paper is organized as follows. In Section 2, we recall some
facts on the classical kinetic theory for spinless particles and the Einstein–
Vlasov system. In Section 3, we review the results on Einstein–Cartan’s
theory used in this paper, including the derivation of system (2)–(3). In
Section 4, we introduce the definition of kinetic density for particles with
spin and show how to construct the tensors Tab, S c

ab from it. Section 5 is
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dedicated to the special case of collisionless spin particles. In Section 6, we
extend our model to the case when two species of particles with the same
mass and spin magnitude are present. In Section 7, we summarize our results
and comment further on their physical meaning.

In this paper, we assume that particles are neutral. Charged spin par-
ticles will of course also generate a torsion in spacetime, but the dominant
effect of spin in the charged case is to induce a magnetic moment on the par-
ticles. The generalization of the model in this paper to the case of charged
particles will be discussed elsewhere.

Notation. We shall often (but not always) use the abstract index
notation to denote tensors and tensor operations [25]. The Latin letters
a, b, c, d, e, h denote abstract indexes. Greek letters denote component in-
dexes and run from 0 to 3; the spatial component indexes are denoted by
i, j, k, . . . and run from 1 to 3. Single indexes within brackets, as in e(µ),
label the vectors of a basis and are not component indexes. The metric has
signature (−,+,+,+) and physical units are chosen so that G = c = ℏ = 1.

2. Kinetic theory for spinless particles

Let (M, g) be a spacetime — i.e., a four-dimensional time-oriented Loren-
tzian manifold. For the moment, we do not make any specific choice for a
connection on M . Let us consider a matter distribution that consists of
a large number of identical point particles with rest mass m > 0. In this
section, we assume that the state of each particle is determined by the
spacetime position x ∈ M and the four-velocity u ∈ TxM of the particle;
in particular, the particles spin is neglected. The particles four-velocity is
constrained by the condition gab(x)u

aub = −1, which has to be satisfied
at every point x ∈ M . The state space of each particle is therefore the
seven-dimensional submanifold of the tangent bundle given by

Π = ∪x∈MΠ[x] , Π[x] = {u ∈ TxM : gab(x)u
aub= −1, u future directed} .

In kinetic theory, the state of the matter distribution is described by a
function

f : Π → [0,∞)

giving the number density of particles in state space.

Remark. The kinetic density f is more commonly defined in the literature
as a function of (x, p), where p = mu is the four-momentum of the particles;
see [1, 6, 18]. Using (x, u) as independent variables has several advantages
in this paper; e.g., it results in the kinetic density having the same physical
dimension for particles with and without spin (in our units), and avoids the
appearance of several constants m in the equations.
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Let dπ(x) denote the volume element induced on Π[x] by the metric
volume form on TxM (where we regard TxM as a flat manifold with metric
gab(x) and Π[x] as a submanifold of TxM). All matter fields in spacetime
are obtained by integrating momentum fields defined on Π[x] (microscopic
fields) with respect to the measure f(x, u) dπ(x). For instance, the timelike
vector field on M given by

(Nf )
a(x) =

∫
Π[x]

uaf dπ(x) (6)

represents the particles number current in spacetime. The stress-energy
tensor (i.e., the momentum current) of the particles distribution is

(Tf )
ab(x) = m

∫
Π[x]

uaubf dπ(x) . (7)

Tf is symmetric and satisfies the strong and dominant energy conditions [6].
The Einstein equation in units G = c = 1 reads

Rab −
1

2
Rgab = 8π(Tf )ab . (8)

The Ricci tensor Rab depends on the connection and is not, in general,
symmetric. However, as the stress-energy tensor is symmetric for kinetic
matter, so must be Rab on the left-hand side of (8). The latter holds in
particular when the connection is the Levi-Civita one, which we assume to
be the case in the rest of this section.

The evolution equation satisfied by the kinetic particle density f depends
on the type of interaction between the particles. In general, it takes the
form L(f) = 0, where L is an operator acting on the state space Π. If
collisions among the particles are neglected, the operator L is the geodesics
spray and the resulting equation on f is called the Vlasov (or collisionless
Boltzmann) equation1. To derive an explicit form for the Vlasov equation,
we introduce a local system of coordinates xµ in a neighborhood of x ∈ M
and an orthonormal basis e(µ) of TxM such that e(0) is timelike and future
pointing. Let uµ denote the components of u ∈ TxM in the basis e(µ). We use
(xµ, uν) as local coordinates on the tangent bundle and (X(µ), U(ν)) as a basis
for the tangent space of the bundle, where (X(µ), U(ν))ψ = (∂xµψ, ∂uνψ) for

1 The name “Vlasov equation” referred originally to the plasma physics version of the
model [24], but it has by now become common to adopt the same name for the model
applied to gravitational systems.
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all smooth functions ψ : TM → R. The geodesic spray in these coordinates
is the vector field on the tangent bundle given by

L = uνeµ(ν)X(µ) + γ µ
αβ uαuβU(µ) ,

where eµ(ν) = e(ν)(x
µ) are the components of e(ν) in the basis X(µ) and γ µ

αβ

are the Ricci rotation coefficients of the frame e(µ); that is,

γ µ
αβ = ea(α)e

b
(β)∇ae

(µ)
b , (9)

where e(µ)a is the co-frame dual to ea(µ). The state space conditions in the
frame e(µ) become

ηµνu
µuν = −1 , u0 > 0 ,

and thus entail
u0 =

√
1 + |u|2 = −u0 , (10)

where

u =
(
u1, u2, u3

)
= (u1, u2, u3) , |u|2 =

(
u1
)2

+
(
u2
)2

+
(
u3
)2
.

The kinetic particle density can be written as a function of (x,u), which we
denote by f∗; that is,

f∗(x,u) = f
(
x,
√

1 + |u|2,u
)
.

Using γαβµ = −γαµβ , we find that the Vlasov equation L(f∗) = 0 is

uµeν(µ)∂xνf∗ + γ i
µν u

µuν∂uif∗ = 0 , (11)

where it is understood that u0 is given by (10). The invariant volume el-
ement dπ(x) on Π[x] in the coordinates (u1, u2, u3) is given by dπ(x) =√

|det h| du, where du = du1 ∧ du2 ∧ du3 and h is the (Riemannian) metric
induced by ηµν on the hyperboloid u0 =

√
1 + |u|2, i.e.,

hij = δij −
uiuj
(u0)2

. (12)

It follows that
dπ(x) =

√
|det h|du =

du

u0
,

and so the tensor fields (6)–(7) take the form

(Nf )
a = (Nf )

µ ea(µ) , (Tf )
ab = (Tf )

µν ea(µ)e
b
(ν) , (13a)
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where

(Nf )
µ (x) =

∫
R3

f∗(x,u)u
µdu

u0
, (Tf )

µν (x) = m

∫
R3

f∗(x,u)u
µuν

du

u0
.

(13b)
The Vlasov equation (11) implies that these fields are divergence-free:

∇a (Nf )
a = 0 , ∇b (Tf )

ab = 0 , (14)

where, for every vector field V a and tensor field P ab, the divergence in the
orthonormal frame e(µ) is computed by the formulas

∇aV
a = eα(µ)∂xαV µ + γααµV

µ , (15a)

∇bP
ab =

(
eα(ν)∂xαPµν + γ µ

α βP
βα + γααβP

µβ
)
ea(µ) . (15b)

Remark. With our definition (9) of the Ricci rotation coefficients, which is
the same as in [25], the formulas for the covariant derivative of tensor fields
in an orthonormal frame are obtained from those in a holonomic basis by the
formal substitutions ∂xµ → eα(µ)∂xα and Γµ

αβ → γ µ
α β , where Γµ

αβ are the
Christoffel symbols. For instance, for all vector fields V , we have ∇µV

ν =
∂xµV ν + Γ ν

µα V
α in the coordinates basis X(µ) and ∇µV

ν = eα(µ)∂xαV ν +

γ ν
µ αV

α in the orthonormal basis e(µ).

As for all matter models in general relativity, the equation ∇b(Tf )
ab = 0

represents the conservation law of energy-momentum in differential form; in
light of the contracted Bianchi identity ∇a(R

ab − gabR/2) = 0, it must be
satisfied in order for the Einstein equation (8) to admit solutions. Similarly,
the equation ∇a(Nf )

a = 0 is the conservation law of the particles number in
differential form. Since for particles with charge q the electric four-current
is given by q(Nf )

a, then the identity ∇a(Nf )
a = 0 in the Einstein–Vlasov

model is equivalent to the conservation of charge, and it is therefore required
if one wants to add the Maxwell equations to the system; see [14] for an
introduction to the Einstein–Vlasov–Maxwell system.

In the presence of an additional species of particles with kinetic density
f̄ satisfying the Vlasov equation, the total stress-energy tensor and the total
number current are given respectively by

Tf + Tf̄ = Tf+f̄ , Nf +Nf̄ = Nf+f̄

and they are divergence-free as a consequence of each of the tensors Tf , Tf̄ ,
Nf , Nf̄ being divergence-free.
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3. Introduction to Einstein–Cartan’s theory

3.1. Manifolds with torsion

The purpose of this section is to recall a few important definitions and
formulas in Riemann–Cartan’s geometry. More details can be found e.g.
in [11, 13, 19, 22].

Let ∇̂ be a metric connection on the manifold M . The torsion C c
ab of

∇̂ is defined by requiring

C c
ab X

aY b =
(
∇̂XY

)c
−
(
∇̂YX

)c
− [X,Y ]c

for all smooth vector fields X,Y . By expressing the commutator [X,Y ] in
terms of the Levi-Civita connection ∇ as

[X,Y ] = (∇XY )− (∇YX) , (16)

we can rewrite the definition of torsion as

C c
ab = K c

ab −K c
ba ,

where the contorsion K c
ab of ∇̂ is defined by

K c
ab X

aY b =
(
∇̂XY

)c
− (∇XY )c .

The torsion and contorsion satisfy the properties

(i) C c
ab = −C c

ba , (ii) Kabc = −Kacb , (iii) K c
ab =

1

2
C c
ab +Cc

(ab) . (17)

Property (i) is obvious, while (ii) and (iii) follow by the metric compatibility
condition of ∇̂ and ∇. By (iii) we obtain the additional identities

K a
ab = C a

ab , K c
[ab] =

1

2
C c
ab , K c

(ab) = Cc
(ab) .

The Ricci rotation coefficients of any orthonormal basis ea(µ) in the connec-

tions ∇̂,∇ are related by

γ̂ α
µν = γ α

µν −K α
µν ,

hence (15) imply the following identities:

∇̂aV
a = ∇aV

a +K a
ab V

b , (18a)

∇̂bP
ab = ∇bP

ab +K a
bc P

cb +K b
bc P

ac , (18b)
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for all tensor fields V a, P ab. More generally, there holds

∇̂aX
b1···bk

c1...cl
= ∇aX

b1···bk
c1...cl

+
∑
j

K
bj

ad Xb1···bj−1d···bk
c1...cl

−
∑
j

K d
acj X

b1...bk
c1···cj−1d···cl . (19)

Let R̂ d
abc denote the Riemann tensor of the connection ∇̂, that is

R̂ d
abc X

aY bZc =
(
∇̂X

(
∇̂Y Z

))d
−
(
∇̂Y

(
∇̂XZ

))d
−
(
∇̂[X,Y ]Z

)d
for all smooth vector fields X,Y, Z. Using (∇̂XY )c = (∇XY )c+K c

ab X
aY b,

Leibniz’s rule, and (16), we find

R̂ d
abc =R d

abc +∇̂aK
d

bc −∇̂bK
d

ac +K d
ec (K e

ab −K e
ba )+K e

ac K
d

be −K e
bc K

d
ae ,

where R d
abc is the Riemann tensor of the Levi-Civita connection ∇. From

here we see that R̂ d
abc has the following symmetry properties in common

with R d
abc :

R̂ d
abc = −R̂ d

bac , R̂abcd = −R̂abdc . (20)

However, the remaining fundamental symmetries of R d
abc , namely

R d
abc +R d

cab +R d
bca = 0 , Rabcd = Rcdab ,

are in general no longer satisfied by R̂ d
abc . Symmetries (20) imply that

there exists only one non-zero independent contraction of R̂ d
abc . Following

the convention in [25], we define the Ricci tensor by contracting the second
and fourth index of the Riemann tensor, that is,

R̂ab = R̂ c
acb = Rab + ∇̂aK

c
cb − ∇̂cK

c
ab +K d

ab K
c

cd −K d
ca K c

db , (21)

where Rab is the Ricci tensor of the Levi-Civita connection ∇2. Moreover,
taking the trace of (21), we find

R̂ = R+ 2∇̂aK
ab

b +K ac
a K b

bc +K ab
c K c

ab . (22)

The last property of manifolds with torsion that we need is the (con-
tracted) Bianchi identity satisfied by the Einstein tensor Êab = R̂ab−gabR̂/2;
recall that ∇bE

ab = 0 holds in the Levi-Civita connection. To derive the

2 In [11], the Ricci tensor is defined as R̂ab = R̂ c
cab and thus differs from ours by a

sign.
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analogous equation for Êab, we start from the differential Bianchi identity
for the Riemann tensor R̂ d

abc , which reads

∇̂[aR̂
e

bc]d + C h
[ab R̂

e
c]hd = 0 ,

see [17, Eq. (4.2.43)]. Contracting a with e and b with d, we arrive to the
following identity:

∇̂bÊ
ab = −CabcR̂cb +

1

2
CbcdR̂a

dbc . (23)

An alternative way to obtain (23) is by using (21)–(22) to write Êab in
terms of Eab, and then applying (17) and (19), as well as ∇aE

ab = 0, in the
resulting expression. We emphasize, in particular, that identities (23) and
∇aE

ab = 0 are equivalent.

3.2. Einstein–Cartan equations

In this section, we review the argument in [11, 12, 20] to derive the field
equations (2)–(3) in Einstein–Cartan’s theory. The starting point is the
Lagrangian density

L(g,K, Ψ) = 1

16π
LG(g,K) + LM

(
g, Ψ, ∇̂Ψ

)
,

where
LG(g,K) = R̂

√
|g| (|g| = −det g)

is the gravitational term, and LM (g, Ψ, ∇̂Ψ) is the matter term, depending
on the matter field Ψ and its covariant derivative ∇̂Ψ (and thus on the
contorsion K). As shown in [11, Appendix], the variation of LG with the
respect to the metric is, up to a divergence term3,

1√
|g|
δLG

δgab
= −Êab −∇∗

c

(
P abc − P bca + P cab

)
, (24)

where the operator ∇∗ and the tensor P c
ab are defined by

∇∗
a = ∇̂a + C b

ab , P c
ab =

1

2

(
C c
ab + δ c

a C d
bd − δ c

b C d
ad

)
.

Hence, the Lagrangian field equation δL/δgab = 0 reads

Êab +∇∗
c

(
P abc − P bca + P cab

)
= 8πT ab , T ab =

2√
|g|
δLM

δgab
. (25)

3 We have a different sign in (24) than in [11] due to our convention on the definition
of the Ricci tensor.
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Similarly, it is found that

1√
|g|

δLG

δK c
ab

= −2P ba
c ,

and so the Lagrangian field equation δL/δK c
ab = 0 is

P ba
c = 8πS ba

c , S ba
c =

1√
|g|

δLM

δK c
ab

. (26)

The tensor S c
ab is the spin current. As this suffices for the applications to

kinetic theory discussed later, we continue this section assuming that the
spin current satisfies the Frenkel condition

S a
ab = 0 . (27)

Assuming (27), we obtain

P a
ab = 0 , P c

ab =
1

2
C c
ab ,

∇∗
c

(
P abc − P bca + P cab

)
= ∇̂c

(
1

2
Cabc + Cc(ab)

)
,

and therefore (25) and (26) simplify to

Êab = 8πΣab , Σab = Tab − ∇̂c

(
S c
ab + 2Sc

(ab)

)
, (28)

C c
ab = 16πS c

ab . (29)

Using the Bianchi identity (23) in (28)–(29), we find

∇̂bΣ
ab = −2SabcR̂cb + SbcdR̂a

dbc . (30)

Identitiy (30) is the local conservation law of energy-momentum in Einstein–
Cartan’s theory.

3.3. General relativistic form of the Einstein–Cartan equations

Let
Hab = 8π

[ (
S d
ca + 2Sd

(ca)

)(
S c
db + 2Sc

(db)

)
+
1

2
gab
(
Scde + 2Se(cd)

) (
Sdec + 2Sc(de)

) ]
. (31a)
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By Cartan’s equation (29), the identity (iii) in (17) and formula (21) for
R̂ab (with K a

ab = C a
ab = 0), we can rewrite (28) in the general relativistic

form
Rab −

1

2
gabR = 8π(Tab +Hab) , (31b)

in which the spin current appears as an external matter field with stress-
energy tensor Hab. By (31) and the contracted Bianchi identity ∇a(R

ab −
gabR/2) = 0, the conservation law (30) is equivalent to

∇bT
ab = Ja , Ja := −∇bH

ab . (32)

For our purpose, it is preferable to use the conservation law of energy-
momentum in the form of (32), rather than (30), and therefore in the fol-
lowing we shall write the Einstein equation for the metric in the form of (31)
instead of (28). We emphasize, however, that it is the original geometric in-
terpretation of S c

ab as the spacetime torsion (up to a constant) that justifies
the definition of the tensor Hab; moreover, Hab is not an actual stress-energy
tensor and so there is no physical reason to require that it should satisfy the
energy conditions commonly imposed on Tab in general relativity.

Remark. The tensor Hab simplifies if the spin current, or equivalently the
torsion tensor, is assumed to satisfy further algebraic properties (besides the
Frenkel condition). For instance, a rather common case study is that of a
totally antisymmetric torsion [5, 7]; that is, Ca(bc) = 0, and thus Sa(bc) = 0.
In this case, S is the dual of a vector field V , i.e., Sabc = εabcdV

d, and the
tensor Hab simplifies to

Hab = −16π

(
VaVb +

1

2
gabV

cVc

)
.

4. Kinetic theory of spin particles

In the rest of the paper, we shall complete the Einstein–Cartan theory de-
scribed in the previous section by constructing the matter model within the
formalism of kinetic theory for spin particles. The fundamental matter field
in this theory is the kinetic density f(x, u, s) of particles with four-velocity u
and four-spin s. In contrast to the Lagrangian approach presented in Sec-
tion 3.2, neither the matter field equations nor the stress-energy tensor Tab
will be derived by a variational principle. Instead, we rely on the relation
between kinetic theory and (relativistic) particles mechanics to justify the
definitions of the tensor fields Tab, S c

ab . Subsequently, we derive an evolu-
tion equation on the kinetic density f for collisionless particles with spin by
an argument similar to the one presented in Section 2 and requiring com-
patibility with the conservation law (32). Finally, in Section 6, we introduce
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a similar model in the presence of two species of particles with the same
mass and spin magnitude by imposing that the their total number should
be conserved.

4.1. Kinetic density of spin particles

There exist two common representations for the spin of a particle in rel-
ativistic mechanics: as a spacelike four-vector sa satisfying the constraints
saua = 0 and sasa = σ2, or as a skew-symmetric tensor ϕab satisfying
ϕabu

b = 0 and ϕabϕ
ab = σ2/2, where σ is a given positive constant. The

first representation is due to Thomas [21], while the second one was intro-
duced, independently and almost at the same time, by Frenkel [8]. The two
representations are equivalent, as the variables sa, ϕab are related by the
identities

ϕab =
(
s[aub]

)⋆
, sa = 2ub(ϕab)

⋆ ,

where y⋆ denotes the dual of y. In this paper, we shall employ both repre-
sentations of the spin variable. Specifically, the Thomas four-vector sa will
appear as an independent variable in the kinetic particle density, while the
Frenkel tensor ϕab will be used for the definition of spin current.

To formalize the definition of kinetic particle density, we introduce the
vector bundle

Q = ∪x∈M (TxM)2 ,

whose elements we henceforth identify with the triples (x, u, s), where x ∈M
and u, s ∈ TxM . The vector bundle Q is also a smooth, twelve-dimensional
manifold. The state space of spin particles is the nine-dimensional subman-
ifold of Q given by

Πσ = ∪x∈MΠσ[x] ⊂ Q ,

Πσ[x] = {(u, s) ∈ (TxM)2 : gabu
aub = −1,

gabs
asb = σ2, gabs

aub = 0, u future directed} .

The kinetic particle density in the Thomas representation is therefore a
function

f : Πσ → [0,∞) . (33)

To make this construction more explicit, we shall now introduce a specific
set of coordinates on the state space Πσ. Let e(µ) be an orthonormal frame
on the tangent bundle, with e(0) being timelike. Let xµ be a local system
of coordinates on M and uµ, sµ denote the components in the frame e(µ) of
the four-vectors u, s; (xα, uµ, sν) are local coordinates on Q. We write

s =
(
s1, s2, s3

)
= (s1, s2, s3) , u =

(
u1, u2, u3

)
= (u1, u2, u3) ,
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and follow the notation introduced in Section 2. The state space conditions
on (TxM)2 in the frame e(µ) read

ηµνu
µuν = −1 , u0 > 0 , ηµνu

µsν = 0 , ηµνs
µsν = σ2 . (34)

By ηµνuµuν = −1 and u0 > 0, we have

u0 =
√
1 + |u|2 = −u0 . (35)

From ηµνs
µuν = 0, we infer s · u = s0u0, where a · b denotes the standard

Euclidean product of the three-dimensional vectors a, b. It follows that

s0 =
s · u
u0

= −s0 . (36)

Next, we observe that
ηµνs

µsν = hijs
isj , (37)

where hij are the components of the hyperbolic metric (12). The matrix
(hij) is positive definite. Let

√
h denote the square root of h, that is,(√

h
)
ij
= δij −

uiuj
u0 (1 + u0)

,

[(√
h
)−1

]
ij

= δij +
uiuj
1 + u0

, (38)

where (
√
h )−1 is the inverse of

√
h. By (37), we may introduce the unit

vector ω ∈ S2 as

ωj =
1

σ

(√
h
)j
i
si , i.e., ω =

1

σ

(
s− s0

1 + u0
u

)
. (39)

By (39), the quantity σω is the spin vector in the rest frame of the particle.
Moreover, by (36) and (39),

s = σ

(
ω +

ω · u
1 + u0

u

)
, s0 = σω · u . (40)

It follows that Πσ[x] ≃ R3 × S2 and so the particle density (33) can be
written as a function of (x,u,ω); see (49) below. By further introducing the
angles θ, φ through

ω = (sin θ cosφ, sin θ sinφ, cos θ) , (θ, φ) ∈ [0, π]× [0, 2π) , (41)

then f becomes a function of (x,u, θ, φ). However, except for a few calcu-
lations where it is convenient to do so, we shall not employ the spherical
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coordinates (θ, φ). The orthonormal components of the Frenkel tensor ϕab
in the coordinates (u,ω) are given by

ϕµν =
1

2
εµναβs

αuβ ⇒


(ϕ01, ϕ02, ϕ03) =

σ

2
(ω ∧ u) ,

(ϕ23, ϕ31, ϕ12) = −σ
2
u0
(√

h
)
ω ,

ϕµν = −ϕνµ ,

(42)

where εµναβ denotes the four-dimensional Levi-Civita permutation symbol.

4.2. Spacetime matter fields

To define the stress-energy tensor and the spin current in spacetime, we
first need to introduce a volume form on Πσ[x], which we do as follows.
Consider the natural metric on (TxM)2

G((u, s), (u∗, s∗)) = g(u, u∗) + g(s, s∗) . (43)

Since G(y, y) = σ2 − 1 holds for y = (u, s) ∈ Πσ[x], then for σ2 = 1 the
metric induced on Πσ[x] by G is degenerate and thus its volume form is
singular. Therefore,

in the rest of the paper we assume that σ ̸= 1 .

Let Hσ be the metric induced by G on Πσ[x] for σ ̸= 1 and let dπσ(x)
be its metric volume form. The particles number current (Nf )

a and the
stress-energy tensor (Tf )

ab for particles with spin are given by

(Nf )
a(x) =

∫
Πσ [x]

uaf dπσ(x) , (Tf )
ab(x) = m

∫
Πσ [x]

uaubf dπσ(x) . (44)

Due to the interpretation of f as the particles number density on state
space and of u as the particles four-velocity, these are the only physically
reasonable definitions of the fields (Nf )

a and (Tf )
ab. Likewise, in agreement

with the general definition of spacetime currents in kinetic theory, the spin
current should be given by the integral over Πσ[x] in the measure fdπσ(x)
of a microscopic field of the form κabu

c, where κab = κab(u, s) is a skew-
symmetric tensor representing the spin variable of the individual particles.
Choosing κab to be the Frenkel tensor ϕab leads us to define the spin current
in spacetime as

(Sf )
c

ab (x) =

∫
Πσ [x]

ϕabu
cf dπσ(x) . (45)
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In particular, (Sf ) c
ab satisfies (Sf )

c
ab = −(Sf )

c
ba and, using ϕabub = 0, the

Frenkel condition holds
(Sf )

a
ab = 0 . (46)

The definitions of the tensor fields Nf , Tf , Sf will now be written in the
coordinates system (u,ω) on Πσ[x] introduced in Section 4.1. We begin by
computing the volume form dπσ(x) in these coordinates. We claim that

dπσ(x) = σ2
√
|1− σ2| dudω

u0
, (47a)

where du = du1 ∧ du2 ∧ du3 and dω is the standard surface element on the
unit sphere; that is, employing the spherical coordinates representation (41)
of ω ∈ S2,

dω = sin θ dθ ∧ dφ . (47b)

To prove (47), let y = (u, s) = (
√
1 + |u|2,u, s0, s) and z = (u, θ, φ). De-

note by H the 5× 5 matrix of components of Hσ and by G the 8× 8 matrix
of components of G. Let ∂zy be the 5× 8 matrix

∂zy =

(
∂uu ∂us
∂(θ,φ)u ∂(θ,φ)s

)
=

(
∂uu ∂us
0 ∂(θ,φ)s

)
.

Then
H = (∂zy)G(∂zy)T =

(
A B
BT C

)
,

where A,B, C are the matrices

A = (∂uu)η(∂uu)
T + (∂us)η(∂us)

T ,

B = (∂us)η
(
∂(θ,φ)s

)
,

C =
(
∂(θ,φ)s

)
η
(
∂(θ,φ)s

)
= σ2

(
1 0
0 sin2 θ

)
.

Therefore,

det(H) = det(C) det
(
A− BC−1BT

)
= σ4 sin2 θ det(D) , D = A− BBT

σ2
.

The computation of det(D) is very long and so we present only the result4,
which is

det(D) =
1− σ2

(u0)2
;

hence, dπσ(x) =
√
|det(H)|dudθ ∧ dφ is given by (47).

4 Part of this computation has been carried out with Mathematica.
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It follows that the tensors of (44)–(45) in the coordinates (u,ω) read

(Nf )
a = (Nf )

µ ea(µ) , (Nf )
µ =

∫
R3×S2

uµfσ
dudω

u0
, (48a)

(Tf )
ab = Tµνea(µ)e

b
(ν) , (Tf )

µν(x) = m

∫
R3×S2

uµuνfσ
dudω

u0
,

(48b)

(Sf )
c

ab = (Sf )
α

µν e(µ)a e
(ν)
b ec(α) , (Sf )

α
µν (x) =

∫
R3×S2

ϕµνu
αfσ

dudω

u0
, (48c)

where ϕµν are given by (42) and

fσ(x,u,ω) = σ2
√

|1− σ2|

×f

(
x,
√

1 + |u|2,u, σω · u, σω +
σω · u

1 +
√

1 + |u|2
u

)
. (49)

By (48), fσ is the kinetic particle density in the variables (u,ω) ∈ R3 × S2.

Remark. Upon introducing the spin average of the kinetic particle density
fσ as

f∗(x,u) =

∫
S2

fσ(x,u,ω) dω ,

the tensor fields Nf , Tf in (48) reduce to the particles number current and
the stress-energy tensor (13) of spinless particles. Therefore, in the absence
of torsion, the particles spin averages out and gives no contribution to the
spacetime geometry.

If only a species of particles with kinetic density f is present, the Cartan
equation (29) for the spacetime torsion is

C c
ab = 16π(Sf )

c
ab (50a)

and the Einstein equation (31b) for the metric is

Rab −
1

2
gabR = 8π((Tf )ab + (Hf )ab) , (50b)

where (Hf )ab is given as in (31a) with S ≡ Sf . In particular, the conserva-
tion law of energy-momentum (32) takes the form

∇b(Tf )
ab = (Jf )

a , (Jf )
a := −∇b(Hf )

ab . (51)
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Suppose now that an additional species of spin particles with the same
mass m and spin magnitude σ is present and let f̄ be the kinetic density of
the new particles. The total stress-energy tensor, particles number current,
and spin current are given by

Tf + Tf̄ = Tf+f̄ , Nf +Nf̄ = Nf+f̄ , Sf + Sf̄ = Sf+f̄

and, therefore, the Einstein–Cartan equations in this case are the same
as (50) with the substitutions

Sf → Sf+f̄ , Tf → Tf+f̄ , Hf → Hf+f̄ .

The conservation law of energy-momentum (32) in the presence of two
species of particles reads

∇b

[
(Tf )

ab +
(
Tf̄
)ab]

= ∇b

(
Tf+f̄

)ab
=
(
Jf+f̄

)a
. (52)

A simple but important observation at this point is that Jf+f̄ ̸= Jf+Jf̄ and,
therefore, requiring (51) to hold for each species of particles does not imply
that (52) is satisfied. Instead, some kind interaction between the particles
of one species with the particles of the other species is necessary.

5. The Vlasov equation for spin particles

The purpose of this section is to derive a Vlasov equation for spin parti-
cles that is consistent with the conservation law (51). We start our argument
with a vector field W on the bundle Q = ∪x∈M (TxM)2 of the following form:

W = uβeα(β)X(α) +AµU(µ) +BνS(ν) , (53)

where (X(α), U(µ), S(ν))ψ = (∂xαψ, ∂uµψ, ∂sνψ) for all smooth functions ψ :
Q→ R, (xα, uµ, sν) are the local coordinates on Q introduced in Section 4.1
and Aµ, Bµ are functions of (x, u, s). The vector field W is tangent to the
state space Πσ if and only if, for all curves

(xα(τ), uµ(τ), sν(τ)) ⊂ Q

such that

dxα

dτ
= uβeα(β) ,

duµ

dτ
= Aµ(x, u, s) ,

dsν

dτ
= Bν(x, u, s) , (54)

there hold
d

dτ
ηµνu

µuν =
d

dτ
ηµνs

µuν =
d

dτ
ηµνs

µsν = 0 .
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Equivalently, the functions Aµ, Bµ must satisfy

Aµuµ = 0 , Aµsµ +Bµuµ = 0 , Bµsµ = 0 . (55)

Assuming (55), we may express W in the coordinates (u,ω) ∈ R3 × S2 on
Πσ[x] introduced in Section 4.1. To achieve this, let

ψ∗(x,u,ω) = ψ

(
x,
√

1 + |u|2,u, σω · u, σω +
σω · u

1 +
√

1 + |u|2
u

)
(56)

be the restriction of ψ = ψ(x, u, s) on {(u, s) ∈ R8 : (34) hold}.

Lemma 1. For all Aµ, Bµ satisfying (55), there holds

Aµ(∂uµψ)∗ +Bµ(∂sµψ)∗ =Ai∂uiψ∗ +
(
√
h )ji
σ

(
Bi − s0

1 + u0
Ai

)
/∂ωjψ∗

− (
√
h )ikA

iωk

u0(1 + u0)
uj /∂ωjψ∗,

where s0 = σω · u, u0 =
√

1 + |u|2 and /∂ω = (/∂ω1 , /∂ω2 , /∂ω2), /∂ωi = (δji −
ωiω

j)∂ωj , denotes the gradient operator on S2.

Proof. See Appendix.

For the purpose of computing the left-hand side of (32), it is convenient
to split the functions Aµ, Bµ as

Aµ = γ µ
αβ uαuβ + aµ , Bµ = γ µ

αβ uαsβ + bµ , (57)

where γ µ
αβ are the Ricci rotation coefficients of the orthonormal frame e(µ)

in the Levi-Civita connection ∇ and aµ, bµ are arbitrary functions of (x,u,ω)
that satisfy

aµuµ = bµsµ = aµsµ + bµuµ = 0 ,

or, equivalently,

a0 =
a · u
u0

, b0 =
b · s
s0

,
(
u0s− s0u

)
·
(
s0a− u0b

)
= 0 . (58)

The identity in Lemma 1 applied to the vector fields (57) can be written in
the form

(Fψ)∗ =
(
γ i
αβ u

αuβ + ai
)
∂uiψ∗ +

(
γ i
αk u

αωk + yi
)
/∂ωiψ∗ (59)
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for all smooth functions ψ = ψ(x, u, s), where

F =
(
γ µ
αβ uαuβ + aµ

)
∂uµ +

(
γ µ
αβ uαsβ + bµ

)
∂sµ , (60)

and yi = yi(x,u,ω) are given by

yi =
γ j
α0 u

α

1 + u0
(
ω · u δij − ωju

i
)
+

1

σ

(√
h
)i
j
bj −

(√
h
)k
j

1 + u0

(
s0

σ
δik +

ωku
i

u0

)
aj .

(61)
As

yiωi =
1

σu0

(√
h
)i
j

(
u0bj − s0aj

)
ωi = − 1

σ2 (u0)2
(
u0s− s0u

)
·
(
s0a− u0b

)
,

the third equation in (58) is equivalent to y · ω = 0. Thus, choosing aµ, bµ
satisfying (58) is equivalent to

(i) choosing a = (a1, a2, a3) arbitrarily and setting a0 = a · u/u0;

(ii) introducing n = n(x,u,ω), such that

n · ω = 0 ; (62)

(iii) choosing bi such that yi = ni, where yi is given by (61);

(iv) setting b0 = b · s/s0.

We conclude that the most general equation W (fσ) = 0 on the kinetic
particle density is

uαeµ(α)∂xµfσ +
(
γ i
αβ u

αuβ + ai
)
∂uifσ +

(
γ i
αk u

αωk + ni
)
/∂ωifσ = 0 , (63)

where a,n are arbitrary, up to the constraint in (62).

Remark. To express (63) in terms of the angles (θ, φ) in (41), one has to
use the transformation

/∂ω = U
(

∂θ
(sin θ)−1∂φ

)
, U =

 cos θ cosφ − sinφ
cos θ sinφ cosφ
− sin θ 0

 , (64)

relating the gradient on S2 in the Cartesian and spherical coordinates.

The next step is to choose the vectors a,n in (63) in such a way that
the constraint in (51) is satisfied. This step requires computing ∇b(Tf )

ab

from (63), which we do by using the following lemma.
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Lemma 2. Let ψ = ψ(x, u, s) be given and ψ∗ = ψ∗(x,u,ω) be defined as
in (56). Assume that fσ solves (63) and that the vector fields afσ, nfσ are
smooth. Let

Ψν(x) =

∫
R3×S2

ψ∗(x,u,ω)uν fσ
dudω

u0
.

Then

eβ(ν)∂xβΨν =

∫
R3×S2

[
eβ(ν)u

ν∂xβψ∗ + (Fψ)∗ + γβαβu
αψ∗

]
fσ

dudω

u0

+

∫
R3×S2

(
/∂ω · n+ ∂u · a− a · u

(u0)2

)
ψ∗fσ

du dω

u0
,

where F is given by (60).

Proof. See Appendix.

Applying Lemma 2 with ψ = uµ, and using F (uµ) = γ µ
αβ uαuβ + aµ, we

find

∇ν(Tf )
µν = m

∫
R3×S2

[(
/∂ω · n+ ∂u · a− a · u

(u0)2

)
uµ + aµ

]
fσ

dudω

u0
.

In order to turn the previous equation into an identity valid for all kinetic
densities fσ, we let(

/∂ω · n+ ∂u · a− a · u
(u0)2

)
uµ + aµ =

1

Mf
∇ν(Tf )

µν , (65)

where Mf is the Lorentz invariant mass function

Mf = Mf (x) = m

∫
R3×S2

fσ
dudω

u0
.

From (65) and aµuµ = 0, we obtain

/∂ω · n+ ∂u · a− a · u
(u0)2

= −
uµ∇ν(Tf )

µν

Mf
. (66)

Substituting (66) in (65), we find that the constraint in (65) is equivalent to
choosing aµ as

aµ =
1

Mf
(δµα + uµuα)∇ν(Tf )

αν , (67)
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i.e., as the projection of the vector field M−1
f ∇b(Tf )

ab onto the plane or-
thogonal to u. Using (67) in (66) gives the following equation on n:

/∂ω · n = −4
uµ∇ν(Tf )

µν

Mf
. (68)

As the right-hand side of (68) is independent of ω ∈ S2, we may write n as

n(x,u,ω) = −4
uµ∇ν(Tf )

µν

Mf
ξ(x,u,ω) , (69)

where the vector ξ(x,u,ω) satisfies

ξ · ω = 0 , /∂ω · ξ = 1 . (70)

There exist of course infinitely many vectors ξ satisfying (70). Before pre-
senting one example, we derive the evolution equation satisfied by the par-
ticles number current Nf , which is independent of the choice of ξ. This
equation on Nf follows by applying Lemma 2 with ψ∗(x, p, s) = 1, which
gives

∇ν(Nf )
ν =

∫
R3×S2

(
/∂ω · n+ ∂u · a− a · u

(u0)2

)
fσ

dudω

u0

and so, by (66),

∇µ(Nf )
µ = −

(Nf )µ∇ν(Tf )
µν

Mf
. (71)

In conclusion, we have derived the following Vlasov equation on the kinetic
density fσ = fσ(x,u,ω) of particles with mass m and spin magnitude σ

uαeµ(α)∂xµfσ +
(
γ i
αβ u

αuβ + ai
)
∂uifσ +

(
γ i
αk u

αωk + ni
)
/∂ωifσ = 0 , (72a)

where

ai =
1

Mf

(
δiµ + uiuµ

)
∇ν(Tf )

µν , ni = −4
uµ∇ν(Tf )

µν

Mf
ξi , (72b)

and ξ = (ξ1, ξ2, ξ3) is an arbitrary vector that satisfies (70). We also ob-
tained that the evolution equation for the particles number current is (71).

When only one species of particles is present, the term ∇ν(Tf )
µν in (71)–

(72) must be replaced with (Jf )
ν in order for the constraint in (51) to be

satisfied. In particular, the Vlasov model for one species of particles derived
in this section does not preserve the total number of particles.
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Example of solution to (70)

The constraint ξ · ω = 0 implies that ξ is the projection on the plane
orthogonal to ω of a (dimensionless) vector field c(x,u,ω), that is,

ξ = ω ∧ (ω ∧ c) . (73a)

A simple choice for the vector c is to take it parallel to the relativistic velocity
v = u/u0. Specifically, we make the ansatz

c = ζ(z)v , z = ω · v . (73b)

Replacing the ansatz (73) into (70) and computing the divergence on S2, we
obtain the following equation on the function ζ:

ζ ′(z)
(
z2 − |v|2

)
+ 2zζ(z) = 1 ,

the solution of which is
ζ(z) =

C − z

|v|2 − z2
,

where C is an arbitrary function of |v|. Choosing C ≡ 0, we arrive to the
following final form of the vector ξ:

ξ = − ω · v
|ω ∧ v|2

ω ∧ (ω ∧ v) ,

and, therefore, to the following final form of the vector n:

n = 4
uµ∇ν(Tf )

µν

Mf

ω · v
|ω ∧ v|2

ω ∧ (ω ∧ v) . (74)

Remark. For the choice (74) of the vector n, the assumption in Lemma 2
that the vector field nfσ should be smooth is satisfied when fσ = O(|n∧u|2)
as |n ∧ u| → 0.

6. The Vlasov system for two species of particles

The Vlasov model derived in the previous section violates the conserva-
tion law of particles number. In this section, we shall restore this fundamen-
tal property by postulating the existence in spacetime of a second species of
particles interacting with the particles of the first species. We assume that
the particles of the new species also have mass m and spin magnitude σ.

Let f̄σ(x,u,ω) be the kinetic density of the new particles; the Vlasov
equation on f̄σ is

uαeµ(α)∂xµ f̄σ +
(
γ i
αβ u

αuβ + āi
)
∂ui f̄σ +

(
γ i
αk u

αωk + n̄i
)
/∂ωi f̄σ = 0 , (75a)
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where

āi =
1

Mf̄

(
δiµ + uiuµ

)
∇ν

(
Tf̄
)µν

, n̄i = −4
uµ∇ν

(
Tf̄
)µν

Mf̄

ξi . (75b)

The evolution equation for the number current of the new particles is there-
fore

∇µ

(
Nf̄

)µ
= −

(
Nf̄

)
µ
∇ν

(
Tf̄
)µν

Mf̄

. (76)

As pointed out at the end of Section 4.2, when two particle species are
present it cannot be assumed that the conservation law of energy-momentum
holds in the form of (51) for each single species, since otherwise the constraint
in (52) would be violated. To overcome this inconsistency, we postulate that
the stress-energy tensors of the two particle species satisfy

∇b (Tf )
ab = χ(x)

(
Jf+f̄

)a
, ∇b

(
Tf̄
)ab

= χ̄(x)
(
Jf+f̄

)a
, (77)

for some functions χ, χ̄ such that

χ(x) + χ̄(x) = 1 . (78)

Replacing (77) in (71) and (76), we find the following equation on the total
particles number current of the two species:

∇µ

[
(Nf )

µ +
(
Nf̄

)µ]
= −χ(x)

(Nf )µ
(
Jf+f̄

)µ
Mf

− χ̄(x)

(
Nf̄

)
µ

(
Jf+f̄

)µ
Mf̄

.

Hence, we obtain that (Nf )
µ + (Nf̄ )

µ is divergence-free when

χ(x)
(Nf )µ

(
Jf+f̄

)µ
Mf

+ χ̄(x)

(
Nf̄

)
µ

(
Jf+f̄

)µ
Mf̄

= 0 . (79)

Solving the system of (78)–(79) and replacing the solution χ, χ̄ in (77), we
obtain

∇b (Tf )
ab = −

(
Nf̄

)
µ

(
Jf+f̄

)µMf(
Jf+f̄

)µ (Mf̄ (Nf )µ −Mf

(
Nf̄

)
µ

) (Jf+f̄

)a
, (80a)

∇b

(
Tf̄
)ab

=
(Nf )µ

(
Jf+f̄

)µMf̄(
Jf+f̄

)µ (Mf̄ (Nf )µ −Mf

(
Nf̄

)
µ

) (Jf+f̄

)a
. (80b)
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Thus, our final system on the kinetic densities fσ, f̄σ for the particles of the
two species is (72)–(75) with (80) replaced in the definitions of the vectors
a, ā,n, n̄. This system couples the dynamics of the kinetic densities fσ, f̄σ
and is consistent with the conservation law of energy-momentum (52). The
total number of particles of each individual species is not conserved, but
their sum is.

7. Conclusions

In this paper, we have introduced a new general relativistic kinetic model
for the dynamics of spin neutral particles with positive mass in a spacetime
with torsion. The main assumptions of the model are:

(i) the four-velocity u and four-spin s of the particles are constrained by
uµsµ = 0 and sµsµ = σ2 for a positive constant σ ̸= 1;

(ii) the particles do not collide;

(iii) the particles spin induces a torsion in spacetime that obeys Eintein–
Cartan’s theory.

We have derived the most general transport equation on the kinetic particle
density f(x, u, s) that is consistent with assumptions (i)–(ii); see (63). This
equation is defined up to the choice of two arbitrary vectors, which can be
chosen so that the model is compatible with the Bianchi identity (i.e., the
conservation law of energy-momentum) in Einstein–Cartan’s theory. The to-
tal number of particles is not conserved by the single species particle model,
which led us to assume the existence in spacetime of an additional species
of particles with the same mass m and spin magnitude σ. The evolution
equation for the kinetic density f̄(x, u, s) of these new particles has been ob-
tained by imposing that the total particles number current computed with
the kinetic density f + f̄ should be divergence-free.

According to Eqs. (72)–(75), the particles motion is not geodesic. In
fact, along their trajectory x = x(τ), the momentum p(τ) = mu(τ) of the
two particle species satisfies, respectively,

dpi

dτ
= m

(
γ i
αβ u

αuβ + ai
)
,

dpi

dτ
= m

(
γ i
αβ u

αuβ + āi
)
,

where ai, āi are given by (72b) and (75b). Thus, the deviation from geodesics
motion is different for the particles of the two species: in one case it is
determined by the force ma, in the second case, by the force mā. Both
these forces are induced by the spacetime torsion. Similarly, the direction ω
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of the rest frame spin vector for the two particle species obeys, respectively,

dωi

dτ
= γ i

αk u
αωk + ni ,

dωi

dτ
= γ i

αk u
αωk + n̄i ,

where ni, n̄i are given in (72b) and (75b). The first term on the right-hand
side of the previous equations is the change of ω due to the rotation of the
frame e(µ), while the terms ni, n̄i represent the rotation of ω induced by the
spacetime torsion. Again, this effect is different for the two particle species.

In the typical applications of the Vlasov equation (11) for spinless par-
ticles, f∗ stands for the kinetic density of galaxies, or even clusters of galax-
ies [2]. In our model, the kinetic densities fσ, f̄σ are to be interpreted as the
densities in state space of elementary particles. In this respect, the problem
to which our model could be applicable is the study of the early universe
dynamics.

Since we assume that particles are neutral and have positive mass, then
our model applies, for instance, to neutrinos. Within this application, it is
tempting to identify the two particle species with neutrinos/antineutrinos
pairs, but this interpretation is not without issues. In fact, according to
the Standard Model, neutrinos and antineutrinos are distinguished based on
their weak isospin, and thus on their weak interaction, while in our model,
they differ by how torsion acts on them. Moreover, the difference between
the action of gravity on neutrinos and antineutrinos predicted by our model
has never been observed.

Finally, we remark that the results presented in this paper are entirely
different from those in [9], which pertain to exact solutions of the standard
Vlasov equation for particles without spin on a background symmetric man-
ifold with a given simple torsion.

I am grateful to Håkan Andréasson for his comments on this article.

Appendix

Proof of Lemma 1

We have

∂uiψ∗ =
ui
u0

(∂u0ψ)∗ + (∂uiψ)∗ + σωi(∂s0ψ)∗

+
σωiu

j

1 + u0
(∂sjψ)∗ +

σω · u
1 + u0

(√
h
)j
i
(∂sjψ)∗ , (A.1)

∂ωiψ∗ = σui(∂s0ψ)∗ + σ

[(√
h
)−1

]j
i

(∂sjψ)∗ . (A.2)
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Inverting (A.2), we obtain

(∂sjψ)∗ = −uj
u0

(∂s0ψ)∗ +
1

σ

(√
h
)k
j
∂ωkψ∗ , (A.3)

where we used that (
√
h )ijui = uj/u

0. By (A.3), we have

uj(∂sjψ)∗ = −|u|2

u0
(∂s0ψ)∗ +

uk

σu0
∂ωkψ∗ . (A.4)

Using (A.3) and (A.4) in (A.1), we find, after some simplifications,

∂uiψ∗ =
ui
u0

(∂u0ψ)∗ + (∂uiψ)∗ +
s0

1 + u0
(∂siψ)∗ +

si
u0

(∂s0ψ)∗

− s0ui
(u0)2(1 + u0)

(∂s0ψ)∗ +

(√
h
)k
i
ωk

u0(1 + u0)
uj∂ωjψ∗ . (A.5)

Hence, using Aµuµ = Aiui −A0u0 = 0, we obtain

Ai∂uiψ∗ =Aµ(∂uµψ)∗ +
Aµsµ
u0

(∂s0ψ)∗ +
s0

1 + u0
Aµ(∂sµψ)∗

+

(√
h
)
ik
Aiωk

u0(1 + u0)
uj∂ωjψ∗ . (A.6)

Furthermore, again by (A.3),

Aµ(∂sµψ)∗ =
1

σ

(√
h
)j
i
Ai∂ωjψ∗ , (A.7a)

Bµ(∂sµψ)∗ =
Aµsµ
u0

(∂s0ψ)∗ +
1

σ

(√
h
)j
i
Bi∂ωjψ∗ , (A.7b)

where for the second identity we used Aµsµ + Bµuµ = 0. Combining (A.6)
and (A.7), we find

Aµ(∂uµψ)∗ +Bµ(∂sµψ)∗ = Ai∂uiψ∗ +

(√
h
)j
i

σ

(
Bi − s0

1 + u0
Ai

)
∂ωjψ∗

−
(√

h
)
ik
Aiωk

u0(1 + u0)
uj∂ωjψ∗ . (A.8)

Now, on the right-hand side of (A.8), we replace ∂ωj = /∂ωj + ωjω
k∂ωk to

get

RHS (A.8) = Ai∂uiψ∗ +

(√
h
)j
i

σ

(
Bi − s0

1 + u0
Ai

)
/∂ωjψ∗

−
(√

h
)
ik
Aiωk

u0(1 + u0)
uj /∂ωjψ∗ +

(√
h
)j
i

u0σ

(
u0Bi − s0Ai

)
ωjω

k∂ωkψ∗ .
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Since (√
h
)j
i
(u0Bi − s0Ai)ωj = −s

0

σ
(Aµvµ +Bµuµ) = 0 ,

the proof is complete.

Proof of Lemma 2

We have

eβ(ν)∂xβΨν =

∫
R3×S2

fσ u
νeβ(ν)∂xβψ∗

dudω

u0

+

∫
R3×S2

ψ∗u
νeβ(ν)∂xβfσ

dudω

u0
= I + II .

By (63), the second integral is

II = −
∫

R3×S2

ψ∗

((
γ i
αβ u

αuβ+ai
)
∂uifσ+

(
γ i
αk u

αωk+ni
)
/∂ωifσ

) du dω

u0

=

∫
R3×S2

((
γ i
αβ u

αuβ+ai
)
∂uiψ∗+

(
γ i
αk u

αωk+ni
)
/∂ωiψ∗+γ

β
αβu

αψ∗

)
fσ

dudω

u0

+

∫
R3×S2

ψ∗

(
/∂ωini + ∂uiai − aiui/

(
u0
)2)

fσ
dudω

u0
,

where we integrated by parts in the variables u,ω and used that

γ i
αβ ∂ui

(
uαuβ

u0

)
= γβαβ

uα

u0
, /∂ωi

(
γ i
αk u

αωk
)
= 0 .

(We also make the tacit assumption that fσ decays to zero as |u| → ∞
sufficiently fast so that the boundary terms arising from the integration
by parts in the u variable vanish.) The proof now follows from (59) with
yi = ni.
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