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A kinetic model for the dynamics of collisionless spin neutral particles in
a spacetime with torsion is proposed. The fundamental matter field is the
kinetic density f(z,u,s) of particles with four-velocity v and four-spin s.
The stress-energy tensor and the spin current of the particles distribution
are defined as suitable integral moments of f in the (u,s) variables. By
requiring compatibility with the contracted Bianchi identity in Einstein—
Cartan theory, we derive a transport equation on the kinetic density f
that generalizes the well-known Vlasov equation for spinless particles. The
total number of particles in the new model is not conserved. To restore
this important property, we assume the existence in spacetime of a second
species of particles with the same mass and spin magnitude. The Vlasov
equation on the kinetic density f of the new particles is derived by requiring
that the sum of the total numbers of particles of the two species should be
conserved.
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1. Introduction

Matter in general relativity is represented by tensor fields on a four-
dimensional manifold M — the spacetime. To measure distances, as well as
fields strength, the manifold M is equipped with a metric g. For consistency
with special relativity, ¢g is assumed to have the Lorentzian signature. To
write down field equations for the metric ¢ and the matter fields one also
needs a connection on M. In the Einstein theory, this is chosen to be the
Levi-Civita connection, i.e., the unique torsion-free connection V such that
Vg = 0. With this choice, the Ricci tensor Ry is symmetric, and therefore
the Einstein equation

1
Ry — igabR =8Ty (G=c=1) (1)

requires the stress-energy(-momentum) tensor Ty, of the matter to be sym-
metric as well.

(2-A3.1)
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A few years after the publication of general relativity, Cartan proposed
to modify the geometry of spacetime by removing the restriction that the
connection should be torsion-free |3, 4]. One consequence of this general-
ization is that the Ricci tensor is no longer necessarily symmetric, and so
neither is the stress-energy tensor of the matter (assuming that the Einstein
equations still hold in the form of (1) when the connection has a torsion).

Shortly after Cartan’s original work, Pauli [16] proposed that the electron
possessed an additional degree of freedom (besides position and velocity),
which was later identified by Goudsmit and Uhlenbech as a form of intrinsic
angular momentum — the electron spin [23|. In the following years, sev-
eral theories were put forward attempting to describe the electron spin in
classical mechanics, some of which are presented in the review [15]. Car-
tan, among others, suggested that spin could act as a source of spacetime
torsion, thereby establishing a link between microscopic physics and general
relativity. This idea was largely forgotten once the concept of spin found
a successful approach in quantum mechanics (and later quantum field the-
ory), until the articles [12, 20] and the popular review [11] contributed to
its revival. Einstein—Cartan’s theory is nowadays an active (but not pre-
vailing) research topic in the physics community. As spin effects become
important only at exceedingly small scales, and only in the interior of mat-
ter, the current experimental evidence of general relativity does not rule out
Einstein—Cartan’s theory as an alternative description of gravity [10, 22].

The purpose of this paper is to lay down the foundations of a new ki-
netic model for spin particles in a spacetime with torsion. Neglecting spin,
the fundamental matter field in (general relativistic) kinetic theory is a non-
negative function f = f(x,u) representing the number density of particles
at the point x € M with four-velocity u € T, M [1, 6, 18]. In this paper,
we consider an extended particle density f = f(x,u,s), depending also on
the particle spin four-vector s € T, M. The stress-energy tensor T,,(x) and
the spin current S_,“(x) of the particles distribution are defined as suitable
integral moments of f in the (u,s) variables. The stress-energy tensor ap-
pears as a source of curvature in the Einstein equation; the spin current S, °
generates a torsion C;¢ in spacetime, which we assume to obey Cartan’s
equation

Cabc = 8&r (ZSabc + 6aCded — (5bCSadd> .

As the spin current in our model satisfies the Frenkel condition S abb =0,
Cartan’s equation simplifies to

Cp¢ = 1678, 2)
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The metric connection with torsion C,,¢ is denoted by V. The Einstein
equation for the spacetime metric is, under Frenkel’s condition,

~

1 ~ A~
Rap = 59aplt = 87 ap Yap = Tap — Ve (S“bc + 2Sc(ab)> @)

where ﬁab is the Ricci tensor of the connection ¥V and R = E“a. The
system of (2)—(3) is a special case of the system of field equations derived
in [12, 20] by the variational principle; for this reason, (2)—(3) are also known
as Kibble-Sciama equations in the physics literature.

The main difficulty in developing kinetic matter models in Einstein—
Cartan’s theory is to find an evolution equation on the particle density f
that is consistent with the Bianchi identity for the connection @, which
is [17]

2

Combining (2)—(4), we obtain the conservation law of energy-momentum in
the form

~ [~ 1 -~ ~ 1 =
v (Rab . gabR> — _CabCRcb + 5C«bcdRadbC ) (4)

ﬁbzab - —QSabCECb + Sdeﬁadbc . (5)

As opposed to other matter models (e.g., spin fluids [13]), in kinetic theory,
the constraint (5) does not automatically entail evolution equations on the
matter fields; on the contrary, it complicates the task of deriving admissible
kinetic models. In this paper, we introduce an evolution equation on the
kinetic density f(z,u,s) of spin particles which is compatible with (5) and
which generalizes the well-known Vlasov model for spinless particles [1, 18].
The overall interpretation of Vlasov equations is that the kinetic density f
remains constant along the trajectories of the individual particles; in partic-
ular, Vlasov models neglect collisions among the particles.

A questionable feature of our model is that, when applied to a single
species of particles, it violates the conservation law of the total number of
particles. To restore this important property, we assume the existence in
spacetime of a second species of particles with the same mass and spin mag-
nitude of the first species; the evolution equation for the kinetic density
f(x,u,s) of these new particles is obtained by imposing that the total par-
ticles number current computed with the kinetic density f + f should be
divergence-free.

The rest of the paper is organized as follows. In Section 2, we recall some
facts on the classical kinetic theory for spinless particles and the Einstein—
Vlasov system. In Section 3, we review the results on Einstein—Cartan’s
theory used in this paper, including the derivation of system (2)—(3). In
Section 4, we introduce the definition of kinetic density for particles with
spin and show how to construct the tensors T, S,,° from it. Section 5 is



2-A3.4 S. CALOGERO

dedicated to the special case of collisionless spin particles. In Section 6, we
extend our model to the case when two species of particles with the same
mass and spin magnitude are present. In Section 7, we summarize our results
and comment further on their physical meaning.

In this paper, we assume that particles are neutral. Charged spin par-
ticles will of course also generate a torsion in spacetime, but the dominant
effect of spin in the charged case is to induce a magnetic moment on the par-
ticles. The generalization of the model in this paper to the case of charged
particles will be discussed elsewhere.

Notation. We shall often (but not always) use the abstract index
notation to denote tensors and tensor operations [25|. The Latin letters
a,b,c,d, e, h denote abstract indexes. Greek letters denote component in-
dexes and run from 0 to 3; the spatial component indexes are denoted by
i,J,k,... and run from 1 to 3. Single indexes within brackets, as in e(,),
label the vectors of a basis and are not component indexes. The metric has
signature (—, +, +,+) and physical units are chosen so that G = ¢ =h = 1.

2. Kinetic theory for spinless particles

Let (M, g) be a spacetime — i.e., a four-dimensional time-oriented Loren-
tzian manifold. For the moment, we do not make any specific choice for a
connection on M. Let us consider a matter distribution that consists of
a large number of identical point particles with rest mass m > 0. In this
section, we assume that the state of each particle is determined by the
spacetime position x € M and the four-velocity u € T, M of the particle;
in particular, the particles spin is neglected. The particles four-velocity is
constrained by the condition gup(z)utu’ = —1, which has to be satisfied
at every point x € M. The state space of each particle is therefore the
seven-dimensional submanifold of the tangent bundle given by

I = UpenII[z], Hx) = {u € TyM : gop(z)uu’= —1, u future directed} .

In kinetic theory, the state of the matter distribution is described by a
function

f:II —[0,00)
giving the number density of particles in state space.

Remark. The kinetic density f is more commonly defined in the literature
as a function of (z,p), where p = mu is the four-momentum of the particles;
see [1, 6, 18]. Using (z,u) as independent variables has several advantages
in this paper; e.g., it results in the kinetic density having the same physical
dimension for particles with and without spin (in our units), and avoids the
appearance of several constants m in the equations.
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Let dm(x) denote the volume element induced on IT[x] by the metric
volume form on T, M (where we regard T, M as a flat manifold with metric
gap(x) and IT[z] as a submanifold of T, M). All matter fields in spacetime
are obtained by integrating momentum fields defined on IT[z] (microscopic
fields) with respect to the measure f(x,u)dn(x). For instance, the timelike
vector field on M given by

(N))*() = / u f dr(z) (6)
I[x]

represents the particles number current in spacetime. The stress-energy
tensor (i.e., the momentum current) of the particles distribution is

(T @) =m [ s dn(a) (7)

II[z]

Ty is symmetric and satisfies the strong and dominant energy conditions [6].
The Einstein equation in units G = ¢ = 1 reads

1
Rab - iRgab = 87r(Tf)ab . (8)

The Ricci tensor Ry, depends on the connection and is not, in general,
symmetric. However, as the stress-energy tensor is symmetric for kinetic
matter, so must be Ry, on the left-hand side of (8). The latter holds in
particular when the connection is the Levi-Civita one, which we assume to
be the case in the rest of this section.

The evolution equation satisfied by the kinetic particle density f depends
on the type of interaction between the particles. In general, it takes the
form L(f) = 0, where L is an operator acting on the state space IT. If
collisions among the particles are neglected, the operator L is the geodesics
spray and the rebulting equation on f is called the Vlasov (or collisionless
Boltzmann) equation!. To derive an explicit form for the Vlasov equation,
we introduce a local system of coordinates x* in a neighborhood of x € M
and an orthonormal basis e(,) of T;;M such that e(g) is timelike and future
pointing. Let u* denote the components of u € T;; M in the basis e(,,). We use
(z#,u") as local coordinates on the tangent bundle and (X(,,), U(,)) as a basis
for the tangent space of the bundle, where (X, Uy))t) = (Ozntp, Ourtp) for

! The name “Vlasov equation” referred originally to the plasma physics version of the
model [24], but it has by now become common to adopt the same name for the model
applied to gravitational systems.
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all smooth functions ¢ : TM — R. The geodesic spray in these coordinates
is the vector field on the tangent bundle given by

L= el X () + Vo5 v 0 Uy
where e’(‘y) = e (¢#) are the components of e,y in the basis X(,) and ’yaﬁu
are the Ricci rotation coefficients of the frame e(,,); that is,
Tag" = €layels Vaei' ©)
(1)

where e4 ’ is the co-frame dual to e‘(lu). The state space conditions in the
frame e(,) become

nuyuuuy =1, u’ > 0,

u =1+ [ul = —u, (10)

and thus entail

where
u = (ul,u2,u3) = (uy,uz2,us3) , lul? = (u1)2 + (u2)2 + (u3)2 )

The kinetic particle density can be written as a function of (z, ), which we
denote by fy; that is,

felz,u)=f (x, V14 |u|2,u> )

Using Yoy = —Vaps, We find that the Vlasov equation L(f,) = 0 is
uue(yﬂ)axuf* + Vuuiuuuyauif* =0, (11)

where it is understood that u® is given by (10). The invariant volume el-
1,2

ement d7(z) on II[z] in the coordinates (u!,u?,u3) is given by dr(z) =
/| det b| du, where du = du! A du? Adu?® and b is the (Riemannian) metric
induced by 7,,, on the hyperboloid u® = /1 + [u|?, i.e.,
Ui Uj

bij = 0ij — w2 (12)

It follows that d
dr(z) = /| det b du = =5,
u

and so the tensor fields (6)—(7) take the form

(Np)* = (Np) ety (Tp)™ = (T elyels (13a)
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where
du du
V) = [ L SE @ @ =m [ e
U U
R3 R3

(13b)
The Vlasov equation (11) implies that these fields are divergence-free:

Vo (Np) =0, Vy(Tp)*™ =0, (14)

where, for every vector field V* and tensor field P, the divergence in the
orthonormal frame e(,) is computed by the formulas

VoV = €0 VI + 7%, VH, (15a)
VP = (e, 0a P 47,1 PP 4475 PP ) ey (15D)

Remark. With our definition (9) of the Ricci rotation coefficients, which is
the same as in [25], the formulas for the covariant derivative of tensor fields
in an orthonormal frame are obtained from those in a holonomic basis by the
formal substitutions Oy — e?u)(?xa and I'* wp ¥, 5. Where I’ K op are the
Christoffel symbols. For instance, for all vector fields V', we have V, V" =
Opn VV + FVW V% in the coordinates basis X(u) and V, V" = e?‘“)ﬁxaV” +
7. oV in the orthonormal basis e(,).

As for all matter models in general relativity, the equation Vb(Tf)“b =0
represents the conservation law of energy-momentum in differential form; in
light of the contracted Bianchi identity V,(R® — g®R/2) = 0, it must be
satisfied in order for the Einstein equation (8) to admit solutions. Similarly,
the equation V,(Ny)* = 0 is the conservation law of the particles number in
differential form. Since for particles with charge ¢ the electric four-current
is given by ¢(Ny)?, then the identity V,(N¢)* = 0 in the Einstein—Vlasov
model is equivalent to the conservation of charge, and it is therefore required
if one wants to add the Maxwell equations to the system; see [14] for an
introduction to the Einstein—Vlasov—Maxwell system.

In the presence of an additional species of particles with kinetic density
f satisfying the Vlasov equation, the total stress-energy tensor and the total
number current are given respectively by

Tf-i—Tf:Tf_Hz, Nf+Nf:Nf+f

and they are divergence-free as a consequence of each of the tensors T}y, T7,
Ny, Nj being divergence-free.
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3. Introduction to Einstein—Cartan’s theory

3.1. Manifolds with torsion

The purpose of this section is to recall a few important definitions and
formulas in Riemann—Cartan’s geometry. More details can be found e.g.
in [11, 13, 19, 22].

Let ¥V be a metric connection on the manifold M. The torsion C ¢ of
V is defined by requiring

C

a

XYY = (@XY)C - (@YX)C XY
for all smooth vector fields X,Y. By expressing the commutator [X,Y] in
terms of the Levi-Civita connection V as

(X, Y] = (VxY) — (VyX), (16)
we can rewrite the definition of torsion as
Cabc - Kabc - Kbacv

where the contorsion K ;¢ of V is defined by

KXY = <€XY)C ~ (VxY)°.

a

The torsion and contorsion satisfy the properties

1
(Z) Cabc = _Cbaca (”) Kabc = _Kacba (Z”) K, bc = §Cabc+cc(ab) . (17)

a

Property (¢) is obvious, while (i) and (i77) follow by the metric compatibility
condition of V and V. By (iii) we obtain the additional identities

a

1
Ko =Ca® K =50a" Ky =C -
The Ricci rotation coefficients of any orthonormal basis e?ﬂ) in the connec-
tions @, V are related by
77\#”04 = PYMVO( - Kyua )
hence (15) imply the following identities:

VaVe =V, Vo + K,V (18a)
VoP® = V,P* + K, *P? + K,.' P (18b)
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for all tensor fields V¢, P®. More generally, there holds

S by--by . by by, bj rby---bi_1d---by,
VGX c1...cp, VOLX C1...Cl + Kad X J c1...cl
J
dyb1...bg
_E :Kacj X crecyrdecy (19)
J

Let ﬁabcd denote the Riemann tensor of the connection @, that is
B dyayb e S (S d S (S d S d
R,Ax0vb7¢ = (VX (vyz)) . (vy (VXZ)) . (V[Xy]Z)

for all smooth vector fields X,Y, Z. Using (VxY)¢ = (VxY)°+ K XY
Leibniz’s rule, and (16), we find

E = Rabcd+§CLKbcd_ﬁbKacd—i_Kecd(Kabe_Kbae)+KaceKbed_KbceK ed )

abc a

where Rabcd is the Riemann tensor of the Levi-Civita connection V. From

here we see that ﬁabcd has the following symmetry properties in common

with Rabcd

~ ~ ~ ~

Rabcd = 7Rbacd’ Rabcd = 7Rabdc : (20)

However, the remaining fundamental symmetries of R, Cd, namely
R’ + Ry’ + Ryt =0 Ry =R
abc cab beca ’ abcd cdab »

are in general no longer satisfied by Eabcd. Symmetries (20) imply that

there exists only one non-zero independent contraction of ﬁ”ab Cd. Following
the convention in [25]|, we define the Ricci tensor by contracting the second
and fourth index of the Riemann tensor, that is,

~

Rab = /Racbc = Rab + %aKCbC - ﬁcKabc + Kabchdc - [(cad[(dbC ’ (21)

where Ry, is the Ricci tensor of the Levi-Civita connection V2. Moreover,
taking the trace of (21), we find

R=R+2V,K," + K,“K, "+ K,"° K ,° . (22)

The last property of manifolds with torsion that we need is the (con—

tracted) Bianchi identity satisfied by the Einstein tensor Eab Rab gabR /2;
recall that V,E® = 0 holds in the Levi-Civita connection. To derive the

2 In [11], the Ricci tensor is defined as Rap = Ecabc and thus differs from ours by a
sign.
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analogous equation for Eab, we start from the differential Bianchi identity

for the Riemann tensor Rabc , which reads

v[aRbc]d6 + C[athc]hde =0,

see [17, Eq. (4.2.43)]. Contracting a with e and b with d, we arrive to the
following identity:

~ ~ ~ 1 ~
VB = —C Ry + 5 C* Ry, (23)

An alternative way to obtain (23) is by using (21)-(22) to write Eg, in
terms of Ey, and then applying (17) and (19), as well as V,E® = 0, in the
resulting expression. We emphasize, in particular, that identities (23) and
V.E® = 0 are equivalent.

3.2. Einstein—Cartan equations

In this section, we review the argument in [11, 12, 20| to derive the field
equations (2)—(3) in Einstein—Cartan’s theory. The starting point is the
Lagrangian density

Llg. K.9) = 1~ Lalg. K) + L (9,2.97)
where

Lc(g,K) = Ry/]g] (lg| = —detyg)

is the gravitational term, and EM(g, v, V![/) is the matter term, depending

on the matter field ¥ and its covariant derivative V& (and thus on the
contorsion K). As shown in [11, Appendix]|, the variation of L5 with the
respect to the metric is, up to a divergence term?,

1 0Lg

\/E 5gzzb

where the operator V* and the tensor P, ¢ are defined by

A 1
Vi=Va+Cy', Py = 3 (Cabc 40,5 Chg” = 6° Cadd) -

Hence, the Lagrangian field equation 6£/0g,, = 0 reads

— _fab _ v (Pabc _ pbea Pcab> 7 (24)

2 Ly

\/@ 5gab '

3 We have a different sign in (24) than in [11] due to our convention on the definition
of the Ricci tensor.

Eab + VZ (Pabc _ Pbca + Pcab) — 87TTab, Tab — (25)
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Similarly, it is found that
1 (SEG o 2P ba

\/méKvabC a ©

and so the Lagrangian field equation d£/0K ;¢ =0 is

Pcba = 87TSCba ) g be L 0Lm

© T gl 0K,

The tensor S, is the spin current. As this suffices for the applications to
kinetic theory discussed later, we continue this section assuming that the
spin current satisfies the Frenkel condition

(26)

Saba == 0 . (27)
Assuming (27), we obtain
a (& 1 (&
Pap" =0, Py"=35Cu",

V: (Pabc _ pbea + Pcab> _ ﬁc <;Cabc + Cc(ab)> ’

and therefore (25) and (26) simplify to

~

Eab = 8772ab7 Eab = Tab - §c (Sabc + 2SC(ab)) 5 (28)
Cabc = 167TSabc . (29)

Using the Bianchi identity (23) in (28)—(29), we find
%bzab = _Zsabcﬁd) + Sde.ﬁadbc . (30)

Identitiy (30) is the local conservation law of energy-momentum in Einstein—
Cartan’s theory.

3.8. General relativistic form of the Finstein—Cartan equations

- Hap = 87| (Sua® +25% ) ) (S + 25y )

+%gab (Sede + 2Se(ca)) (Sdec T 2SC(dE>) } . (31a)
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By Cartan’s equation (29), the identity (¢i¢) in (17) and formula (21) for

Ry (with K¢ = C,* = 0), we can rewrite (28) in the general relativistic
form

1
R, — igabR = 87T(Tab + Hab) , (31b)

in which the spin current appears as an external matter field with stress-
energy tensor Hy,. By (31) and the contracted Bianchi identity V,(R® —
g®R/2) = 0, the conservation law (30) is equivalent to

VT =J%,  J%:= —V,HY. (32)

For our purpose, it is preferable to use the conservation law of energy-
momentum in the form of (32), rather than (30), and therefore in the fol-
lowing we shall write the Einstein equation for the metric in the form of (31)
instead of (28). We emphasize, however, that it is the original geometric in-
terpretation of S ;¢ as the spacetime torsion (up to a constant) that justifies
the definition of the tensor H,;; moreover, Hg;, is not an actual stress-energy
tensor and so there is no physical reason to require that it should satisfy the
energy conditions commonly imposed on Tg; in general relativity.

Remark. The tensor H,, simplifies if the spin current, or equivalently the
torsion tensor, is assumed to satisfy further algebraic properties (besides the
Frenkel condition). For instance, a rather common case study is that of a
totally antisymmetric torsion [5, 7]; that is, Cy(e) = 0, and thus Sy = 0.
In this case, S is the dual of a vector field V, i.e., Sgpe = €apeaV?, and the
tensor H,, simplifies to

1
Hyp = —167 (Va% + 2gabvc‘/c> .

4. Kinetic theory of spin particles

In the rest of the paper, we shall complete the Einstein—Cartan theory de-
scribed in the previous section by constructing the matter model within the
formalism of kinetic theory for spin particles. The fundamental matter field
in this theory is the kinetic density f(x,u, s) of particles with four-velocity u
and four-spin s. In contrast to the Lagrangian approach presented in Sec-
tion 3.2, neither the matter field equations nor the stress-energy tensor Ty
will be derived by a variational principle. Instead, we rely on the relation
between kinetic theory and (relativistic) particles mechanics to justify the
definitions of the tensor fields Tj, S,,°. Subsequently, we derive an evolu-
tion equation on the kinetic density f for collisionless particles with spin by
an argument similar to the one presented in Section 2 and requiring com-
patibility with the conservation law (32). Finally, in Section 6, we introduce
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a similar model in the presence of two species of particles with the same
mass and spin magnitude by imposing that the their total number should
be conserved.

4.1. Kinetic density of spin particles

There exist two common representations for the spin of a particle in rel-
ativistic mechanics: as a spacelike four-vector s* satisfying the constraints
s"ug, = 0 and s%, = o2, or as a skew-symmetric tensor ¢ satisfying
bapt? = 0 and Pgpo™ = o2 /2, where o is a given positive constant. The
first representation is due to Thomas [21], while the second one was intro-
duced, independently and almost at the same time, by Frenkel [8]. The two
representations are equivalent, as the variables s%, ¢ are related by the
identities

bab = (Spau))” Sq = 2u"(Bap)* ,

where y* denotes the dual of y. In this paper, we shall employ both repre-
sentations of the spin variable. Specifically, the Thomas four-vector s* will
appear as an independent variable in the kinetic particle density, while the
Frenkel tensor ¢4, will be used for the definition of spin current.

To formalize the definition of kinetic particle density, we introduce the
vector bundle

Q = UZGM(TmM)2 )

whose elements we henceforth identify with the triples (z, u, s), where z € M
and u,s € T, M. The vector bundle @ is also a smooth, twelve-dimensional
manifold. The state space of spin particles is the nine-dimensional subman-

ifold of @) given by
Ha — UmGMHU[w] - Qa
HU[x] {(uv S) € (TxM)z : gabuaub = —1,

Gaps®s® = 02, gaps®u® = 0, u future directed} .

The kinetic particle density in the Thomas representation is therefore a
function

fiIl, — [0,00). (33)

To make this construction more explicit, we shall now introduce a specific
set of coordinates on the state space I1,. Let e(,) be an orthonormal frame
on the tangent bundle, with e being timelike. Let z# be a local system
of coordinates on M and u", s* denote the components in the frame e(,) of
the four-vectors u, s; (z%, ut, s”) are local coordinates on Q. We write

s = (81782753) - (51582)83) ) u = (UI,U2,U3) - (u17u23u3) 3
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and follow the notation introduced in Section 2. The state space conditions

on (T, M)? in the frame e, read
Nuut'u” = -1, u’ >0, Nuut's” =0, N st's” = o2, (34)
By nuufu” = —1 and u® > 0, we have
u = \/1+ |u]2 = —ug. (35)

From 7, s#u” = 0, we infer s - u = 5%, where a - b denotes the standard

Euclidean product of the three-dimensional vectors a, b. It follows that

£=2""_ —S0 - (36)

10
Next, we observe that o
Nuwst's” = hyjs's’, (37)

where b;; are the components of the hyperbolic metric (12). The matrix
(hi;) is positive definite. Let /b denote the square root of b, that is,

<\/6>U =05 ugu# [<\/H>_1} ~hat %’ %

(1+u0)’ ij

where (v/h)~! is the inverse of v/h. By (37), we may introduce the unit
vector w € S? as

) 0
wj:l(\/aytsi, i.e., w—1<s—1j_uou>- (39)

7 (o

By (39), the quantity ocw is the spin vector in the rest frame of the particle.
Moreover, by (36) and (39),

s:a<w+m)u>, s =ow-u. (40)
It follows that IT,[z] ~ R3® x S? and so the particle density (33) can be
written as a function of (z, u,w); see (49) below. By further introducing the
angles 6, ¢ through

w = (sin # cos p, sin  sin p, cos ) , (0,¢) €10,7] x [0,27), (41)

then f becomes a function of (z,u,0,¢). However, except for a few calcu-
lations where it is convenient to do so, we shall not employ the spherical
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coordinates (6, ). The orthonormal components of the Frenkel tensor ¢,y
in the coordinates (u,w) are given by

(¢01, P02, P03) = %(w Au),

1

b = 5Emaps “u’ = (¢23, P31, P12) = —%UO (\/5) w, (42)

d’;w = _d)r/ua

where €43 denotes the four-dimensional Levi-Civita permutation symbol.

4.2. Spacetime matter fields

To define the stress-energy tensor and the spin current in spacetime, we
first need to introduce a volume form on II,[z], which we do as follows.
Consider the natural metric on (T, M)?

QS((“? S)?(“*ﬂs*)) :g(u7u*) +g(375*)' (43)

Since ®(y,y) = 0% — 1 holds for y = (u,s) € II,[x], then for 02 = 1 the
metric induced on I,[x] by & is degenerate and thus its volume form is
singular. Therefore,

in the rest of the paper we assume that o # 1.

Let $, be the metric induced by & on Il,[z] for ¢ # 1 and let dm,(z)
be its metric volume form. The particles number current (Ny)* and the
stress-energy tensor (Tf)“b for particles with spin are given by

(Ng)(x) = / u? fdry(z), (Ty)*(x) =m / uf dmg(x). (44)

Ho‘[w] HO’["E]

Due to the interpretation of f as the particles number density on state
space and of u as the particles four-velocity, these are the only physically
reasonable definitions of the fields (N)® and (7). Likewise, in agreement
with the general definition of spacetime currents in kinetic theory, the spin
current should be given by the integral over I1,[z] in the measure fdm,(z)
of a microscopic field of the form k,u®, where ko, = Kgp(u, s) is a skew-
symmetric tensor representing the spin variable of the individual particles.
Choosing kqp to be the Frenkel tensor ¢, leads us to define the spin current
in spacetime as

(Sp) () = / dat’ (). (45)

I [z]
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In particular, (Sy),,° satisfies (Sf),,° = —(Sf),," and, using dapu’ = 0, the
Frenkel condition holds
(Sf)ap” = 0. (46)

The definitions of the tensor fields Ny, T, Sy will now be written in the
coordinates system (u,w) on II,[x] introduced in Section 4.1. We begin by
computing the volume form dr,(z) in these coordinates. We claim that
du dw

10

drg(x) = oV/|1 — 02| , (47a)

where du = du' A du? A du?® and dw is the standard surface element on the
unit sphere; that is, employing the spherical coordinates representation (41)

of we §2,
dw =sinfdf Ady. (47b)

To prove (47), let y = (u,s) = (v/1+ |u|?,u,s°, s) and z = (u,0,¢). De-
note by H the 5 x 5 matrix of components of §), and by G the 8 x 8 matrix
of components of &. Let 0,y be the 5 x 8 matrix

8y:( Ot Ous >:<8uu Ous )
’ Oyt o, 0 Ope)s )
A B
_ T _
1= s = (g ¢ )
where A, B,C are the matrices

A = (8 u)n(9ut)T + (9us)1(9us)T
B = (0us)n (0(6,0)5) -

10
C = (9.0)5) 1 (0.6)8) = "2< 0 sin20 > :

Then

Therefore,
det(H) = det(C) det (A — BC'BT) = o*sin® Odet(D), D=A——.

The computation of det(D) is very long and so we present only the result*,
which is )

(u)?

hence, dm,(x) = /| det(H)|du dd A dy is given by (47).

4 Part of this computation has been carried out with Mathematica.

_170

det(D) =
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It follows that the tensors of (44)—(45) in the coordinates (u,w) read

a a du dw
(Np)" = (N7 efy. oy = [, S s
R3 x .52
a v oa . L, dudw
(Tp)™ =1" e(u)el()u)’ (Ty)*" (z) =m / u'u” fo W
R3x .52
(48b)
c [o% V) c [e] « dudw
(571" = (S el ety (89,7 @) = [ ot 52 (380)
R3 x .52

where ¢, are given by (42) and
folz,u,w) = o%y/|1 — 02|

ow-u
Xflz,/1+|uPuow - uow+ ——r———u| . (49)
< | 14+ /14 |ul? )

By (48), f, is the kinetic particle density in the variables (u,w) € R? x S2.

Remark. Upon introducing the spin average of the kinetic particle density
fo as

f*(.’L',U): fg(x,u,w)dw,
/

the tensor fields N¢, Ty in (48) reduce to the particles number current and
the stress-energy tensor (13) of spinless particles. Therefore, in the absence
of torsion, the particles spin averages out and gives no contribution to the
spacetime geometry.

If only a species of particles with kinetic density f is present, the Cartan
equation (29) for the spacetime torsion is

Cu = 1677(Sf)abc (50a)

and the Einstein equation (31b) for the metric is

1
Rap = 59abR = 87 ((Tf)ap + (Hy)ab) (50b)

where (Hy)qp is given as in (31a) with S = Sy. In particular, the conserva-
tion law of energy-momentum (32) takes the form

Vb(Tf)ab = (Jf)a, (Jf)a = —Vb(Hf)ab. (51)
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Suppose now that an additional species of spin particles with the same
mass m and spin magnitude o is present and let f be the kinetic density of
the new particles. The total stress-energy tensor, particles number current,
and spin current are given by

Tr+Tp=Tpp, Nyt Np=Npypo o Sp+57=5p7

and, therefore, the Einstein—Cartan equations in this case are the same
as (50) with the substitutions

Sp—=Spy7s Ty =Ty, Hyp— Hy, 5.

The conservation law of energy-momentum (32) in the presence of two
species of particles reads

Vo (@) + (T7)"| = Vo (1) = ()" (52)

A simple but important observation at this point is that J;, 7 # Jg+.J7 and,
therefore, requiring (51) to hold for each species of particles does not imply
that (52) is satisfied. Instead, some kind interaction between the particles
of one species with the particles of the other species is necessary.

5. The Vlasov equation for spin particles

The purpose of this section is to derive a Vlasov equation for spin parti-
cles that is consistent with the conservation law (51). We start our argument
with a vector field W on the bundle Q = U,¢ (T M)? of the following form:

W = u’Bet(xﬁ)X(a) + A“U(M) + BVS(V) , (53)

where (X (), U()s S))¥ = (Oza), Ountp, Osv1p) for all smooth functions ¢ :
Q — R, (z%,ut, s”) are the local coordinates on @ introduced in Section 4.1
and A*, B* are functions of (z,u,s). The vector field W is tangent to the
state space Il if and only if, for all curves

(2%(7), u(1),s"(7)) C Q

such that

dax® dut ds¥

dixr — uﬁeaﬁ) 7 % = AM(x,u,s), dST = B"(z,u,s), (54)
there hold

d d
gmwuuu’/ - E”uusuuy - EWWS“SV =0.
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Equivalently, the functions A*, B* must satisfy
Atu, =0,  Afs,+Bfu,=0,  Bfs,=0. (55)

Assuming (55), we may express W in the coordinates (u,w) € R3 x % on
I1,[z] introduced in Section 4.1. To achieve this, let

ow - u
Yz, u,w) =9 [ 2,y/14+ |[u2, 0w -u,ow+ —————u (56)
1+ /14 |ul?

be the restriction of ¢ = ¥(x,u, s) on {(u,s) € R® : (34) hold}.

Lemma 1. For all A*, B* satisfying (55), there holds

J 0
AP (Dunt))s + B (Danth)s = A'Dyith + (‘f) (Bi R quZ’) Dot

1+
(VB AW i
O+ o) O
where sV =cow-u, u’ = \/1+|ul? and J, = (1,32, .2), Bi = (55 —
wiw’)d,,;, denotes the gradient operator on S2.

Proof. See Appendix. O

For the purpose of computing the left-hand side of (32), it is convenient
to split the functions A*, B* as

AP = fyaﬁ“uo‘uﬁ + at, Bt = fyaﬁ“uo‘sﬁ + b, (57)

where v, ﬁ“ are the Ricci rotation coefficients of the orthonormal frame e,

in the Levi-Civita connection V and a*, b* are arbitrary functions of (x, u, w)
that satisfy
al'u, =b's, = a"s, +b'u, =0,

or, equivalently,
a = ——, ===, (u’s — s%u) - (s’a —u’b) =0.  (58)

The identity in Lemma 1 applied to the vector fields (57) can be written in
the form

(F)s = (a5 u0® + ") 0usthe + (v w457 ) Bt (59)
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for all smooth functions ¢ = 1(x, u, s), where
F= (fyaﬁﬂu“uﬁ + a”) O + <’ya5“uas’3 + bﬂ) Dsh | (60)

and y' = y'(z, u,w) are given by

. k .
0 S SRR A | g B0 et
y—1+u0 (w ud; wju)—i—a(\/H)jbj T a0 Uék—l- o
(61)
As
vui= 5 (VB) (0 — )i = —— Loy (us — s%u)-(sa — u%b)
Lo J ' o2 (u0)? ’

the third equation in (58) is equivalent to y - w = 0. Thus, choosing a*, b*
satisfying (58) is equivalent to

(i) choosing a = (a',a?,a?®) arbitrarily and setting a® = a - u/u’;

(#1) introducing n = n(z,u,w), such that

n-w=0; (62)

(iii) choosing b® such that y* = n’, where y' is given by (61);
(iv) setting b° = b - s/s°.

We conclude that the most general equation W(f,) = 0 on the kinetic
particle density is

uaefa)f)xufg + (’yaﬁiuauﬂ + ai> Oyi fo + (vakiuawk + nl) d.,if, =0, (63)
where a,n are arbitrary, up to the constraint in (62).

Remark. To express (63) in terms of the angles (6, ) in (41), one has to
use the transformation

9% cosfcosp —sing
(sinf) ™0, —sinf 0

relating the gradient on S? in the Cartesian and spherical coordinates.

The next step is to choose the vectors a,n in (63) in such a way that
the constraint in (51) is satisfied. This step requires computing V(7))
from (63), which we do by using the following lemma.
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Lemma 2. Let ¢ = ¢(x,u,s) be given and 1, = V.(z,u,w) be defined as
n (56). Assume that f, solves (63) and that the vector fields afy, nf, are
smooth. Let

dud
g[/”(x): / QIZ)*(.’E,’U,,UJ)’LLVfO- Zow'

R3 x .52
Then

dud
efy)aﬁw" = / [e(ﬁy)u’j@xﬂ% + (F)« +7’Ba6u Py } fs M

R3x 52

/((,’79 N+ Oy-a—

R3x .52

>¢*f0d“dw,

a-u

(u?)?

where F' is given by (60).
Proof. See Appendix. O

Applying Lemma 2 with ¢ = w*, and using F'(ut) = va[g“uauﬁ + a, we
find

du dw

Vo (T)"™ =m / [(é?w-n—l—@u-a—

R3 x 52

)] o

In order to turn the previous equation into an identity valid for all kinetic
densities f,, we let

a-u 1
((?wn—i-aua—(lt())?) uu‘i‘a'u: va(Tf)uy, (65)
where M is the Lorentz invariant mass function

du dw

R3x 52
From (65) and a*u, = 0, we obtain

a-u u, Vo, (T)H
ﬁw-nJr@u-a—(uo)g:— : _/\Elff) : (66)

Substituting (66) in (65), we find that the constraint in (65) is equivalent to
choosing a* as

1
at = /\/Tf (08 + ut'ug) Vo (Ty)™, (67)
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i.e., as the projection of the vector field M;lvb(Tf)“b onto the plane or-
thogonal to u. Using (67) in (66) gives the following equation on n:

wp Vo (Tp)*

n=—4

(68)

As the right-hand side of (68) is independent of w € S2, we may write n as

u, N, (T
My

n(r,u,w) = —4 £(r,u,w), (69)

where the vector &(z, u,w) satisfies
£-w=0, J,-£=1. (70)

There exist of course infinitely many vectors & satisfying (70). Before pre-
senting one example, we derive the evolution equation satisfied by the par-
ticles number current Ny, which is independent of the choice of §. This
equation on Ny follows by applying Lemma 2 with 1, (z,p,s) = 1, which
gives

V., (Np)” = / <¢w‘n+8u-a—

R3x.S52

a-u du dw
(u9)2) 7

w0

and so, by (66),

(N Vu(Ty)™
My

In conclusion, we have derived the following Vlasov equation on the kinetic

density f, = f,(z,u,w) of particles with mass m and spin magnitude o

D (71)

U €y Oon fo + (Wﬁl“a“ﬂ ai) Oyi fo + (vak’uaw’“ +n ) Boifo =0, (T2a)
where
1

at = ./\/lf (5 + u'uy) Vo (T n' = —4

u, Vo (Tr)™

M; &, (72b)
and & = (€1,€2,€3) is an arbitrary vector that satisfies (70). We also ob-
tained that the evolution equation for the particles number current is (71).

When only one species of particles is present, the term V, (T)* in (71)—
(72) must be replaced with (J;)” in order for the constraint in (51) to be
satisfied. In particular, the Vlasov model for one species of particles derived
in this section does not preserve the total number of particles.
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Example of solution to (70)
The constraint € - w = 0 implies that £ is the projection on the plane
orthogonal to w of a (dimensionless) vector field e(x, u,w), that is,

E=wANA(wAhc). (73a)

A simple choice for the vector ¢ is to take it parallel to the relativistic velocity
v = u/u’. Specifically, we make the ansatz

c=((2)v, z=w-v. (73b)

Replacing the ansatz (73) into (70) and computing the divergence on S?, we
obtain the following equation on the function (:

¢'(2) (2% = |vf?) +22¢(2) = 1,

the solution of which is
C(2) C—z
|v]2 — 22”7

where C' is an arbitrary function of |v|. Choosing C' = 0, we arrive to the
following final form of the vector &:

£E=

w-v

T oA (wA),
|w/\'v|2w (wAv)

and, therefore, to the following final form of the vector n:

Vo(TH)* w-v

u
n =4+~
My |w A v|?

wA (wAv). (74)

Remark. For the choice (74) of the vector n, the assumption in Lemma 2
that the vector field n f, should be smooth is satisfied when f, = O(|nAu|?)
as [n Au| — 0.

6. The Vlasov system for two species of particles

The Vlasov model derived in the previous section violates the conserva-
tion law of particles number. In this section, we shall restore this fundamen-
tal property by postulating the existence in spacetime of a second species of
particles interacting with the particles of the first species. We assume that
the particles of the new species also have mass m and spin magnitude o.

Let fy(z,u,w) be the kinetic density of the new particles; the Vlasov
equation on f, is

uo‘e’(‘a)axu fo+ <'yaﬂiuo‘uﬂ + Ezi) Oyi fo + (yakiuawk + ﬁz) d.,ifs =0, (75a)
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where
i Lo i v i UuVy (Tf)wj i
The evolution equation for the number current of the new particles is there-
o (57), 9. (1)
Nf) Vv, (Tp)"
I ! v~ f
Vi (V) = - (76)

As pointed out at the end of Section 4.2, when two particle species are
present it cannot be assumed that the conservation law of energy-momentum
holds in the form of (51) for each single species, since otherwise the constraint
in (52) would be violated. To overcome this inconsistency, we postulate that
the stress-energy tensors of the two particle species satisfy

Vo (T = x(@) (Jpa)" s Ve (T)™ =x(@) (Jpip)" (77

for some functions , ¥ such that

x(z) + x(z) = 1. (78)

Replacing (77) in (71) and (76), we find the following equation on the total
particles number current of the two species:

o RYZ (Nf)u (Jf-i-f)# _ (Nf)u (Jf-i-f)#
Vi[NP + (47)*] = ~xlo) g wt)=E

Hence, we obtain that (Ny)* + (Np)# is divergence-free when

o) (Np), (Tpap)" (N7), (Tpep)”

X Tf + X(IE MJF =0. (79)

Solving the system of (78)—(79) and replacing the solution x, x in (77), we
obtain

=

Jrp) M
Vi (Tr)™ =~ p )y Vst My ) (Jrep)"s  (80a)

v, (17)" =

) (‘]f+f)a : (80b)
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Thus, our final system on the kinetic densities f,, f5 for the particles of the
two species is (72)—(75) with (80) replaced in the definitions of the vectors
a,a,n,n. This system couples the dynamics of the kinetic densities f,, f,
and is consistent with the conservation law of energy-momentum (52). The
total number of particles of each individual species is not conserved, but
their sum is.

7. Conclusions

In this paper, we have introduced a new general relativistic kinetic model
for the dynamics of spin neutral particles with positive mass in a spacetime
with torsion. The main assumptions of the model are:

(i) the four-velocity u and four-spin s of the particles are constrained by
uts, = 0 and s"s, = o? for a positive constant o # 1;

(ii) the particles do not collide;

(#i) the particles spin induces a torsion in spacetime that obeys Eintein—
Cartan’s theory.

We have derived the most general transport equation on the kinetic particle
density f(x,u,s) that is consistent with assumptions (i)—(i1); see (63). This
equation is defined up to the choice of two arbitrary vectors, which can be
chosen so that the model is compatible with the Bianchi identity (i.e., the
conservation law of energy-momentum) in Einstein-Cartan’s theory. The to-
tal number of particles is not conserved by the single species particle model,
which led us to assume the existence in spacetime of an additional species
of particles with the same mass m and spin magnitude o. The evolution
equation for the kinetic density f(z,u,s) of these new particles has been ob-
tained by imposing that the total particles number current computed with
the kinetic density f + f should be divergence-free.

According to Egs. (72)—(75), the particles motion is not geodesic. In
fact, along their trajectory x = z(7), the momentum p(7) = mu(r) of the
two particle species satisfies, respectively,

dp’ i o B i dp’ ioa B, =i
Y et d) Gt a)
where a’, @’ are given by (72b) and (75b). Thus, the deviation from geodesics
motion is different for the particles of the two species: in one case it is
determined by the force ma, in the second case, by the force ma. Both
these forces are induced by the spacetime torsion. Similarly, the direction w
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of the rest frame spin vector for the two particle species obeys, respectively,

st _
dr

v
dr

i, o k

i, a k ’Yakuw+n

= Yor U W +n

where n’,n! are given in (72b) and (75b). The first term on the right-hand
side of the previous equations is the change of w due to the rotation of the
frame e(,), while the terms n’, i’ represent the rotation of w induced by the
spacetime torsion. Again, this effect is different for the two particle species.

In the typical applications of the Vlasov equation (11) for spinless par-
ticles, f. stands for the kinetic density of galaxies, or even clusters of galax-
ies [2]. In our model, the kinetic densities f,, f, are to be interpreted as the
densities in state space of elementary particles. In this respect, the problem
to which our model could be applicable is the study of the early universe
dynamics.

Since we assume that particles are neutral and have positive mass, then
our model applies, for instance, to neutrinos. Within this application, it is
tempting to identify the two particle species with neutrinos/antineutrinos
pairs, but this interpretation is not without issues. In fact, according to
the Standard Model, neutrinos and antineutrinos are distinguished based on
their weak isospin, and thus on their weak interaction, while in our model,
they differ by how torsion acts on them. Moreover, the difference between
the action of gravity on neutrinos and antineutrinos predicted by our model
has never been observed.

Finally, we remark that the results presented in this paper are entirely
different from those in [9], which pertain to exact solutions of the standard
Vlasov equation for particles without spin on a background symmetric man-
ifold with a given simple torsion.

I am grateful to Hakan Andréasson for his comments on this article.

Appendix
Proof of Lemma 1
We have

Ouithe = —5 (Duot)s + (Duith)s + owi(Dot).

oWiU ow - Uu j
+1+ 0( Ogih)s + 1+u0 (\/6)2 (045), , (A1)

0piths = oui(000)s +0 [(\/6>_1]j (05i®))x - (A.2)

7
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Inverting (A.2), we obtain

@) = =500} + - (Vh) Ousii (A3)

where we used that (v/h)iu; = uj/u’. By (A ) we have

J
2

W 0u). = U (D00, + L0000 (A4)
Using (A.3) and (A.4) in (A.1), we find, after some simplifications,
0ute = (000, + (Ouit)e + s (O0). + 5 (0,00)
uwt Wx = u0 uO W )* ut W) * 1+ 40 st ¥ )« u0 O )x
su; (\/E)k Wk
—_— e+ O 1)y . A.
@21+ w0) PPl T oy Y (45)
Hence, using A*u,, = Atu; — A% = 0, we obtain
i " Ats, s0 L
A'0yithy = A*(Ount))s + 7(6501/))* + I uOA (Osn))«
(Vh),, A'w” j
WV ik s . A
+ u0(1 4 u?) w0yt (A.6)
Furthermore, again by (A.3),
1 J o
Auaxuwhzzgf(v%) ALQ, 50, (A.7a)
AH i
B Out)e = @) + = (VB Bl (A.Th)

where for the second identity we used A*s, + B*u, = 0. Combining (A.6)
and (A.7), we find

j
Aﬂ&ww*+BW&MM*=x¥%W@+(€pi<Bt_§A§EU¢*

1+ud
- uO(l + uo) Wt A

Now, on the right-hand side of (A.8), we replace 9,,; = d,; + w;jwkd,r to
get

RHS (A.8) = A'Q b +

(\Cb)] <Bi - s )«%w]w*

Amk ' ‘
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Since
0

(\/H)j (B’ — 0 A)w; = = (Afv, + B'u,) =0,

o

the proof is complete.

Proof of Lemma 2

We have
d d
(O = / fo € Ous o=
R3xS2
dud
+ / pael),0 xﬁfaﬂzuﬂ.
R3x 52

By (63), the second integral is

_ /w* ((’Yaﬁiuauﬁ—i—ai) Oyi fot+ (’Yakluawk—kn ) aw’fo’) M
R3 x .52

B / (<%‘BiUQUB+ai>8U’w* (’Vaklu“wk—i—n )amw* +’Yﬂa@u%*>fa dl;gw

R3x .52
+ / i (@wmi-i-f)uiai—aiui/ (u0)2> £,

R3x .52

du dw

u0

Y

where we integrated by parts in the variables w,w and used that

, u®uP u®
Vap Oui ( u0 > = 'VBa,Bﬁa . (’Yakzuawk> =0.

(We also make the tacit assumption that f, decays to zero as |u| — oo
sufficiently fast so that the boundary terms arising from the integration
by parts in the u variable vanish.) The proof now follows from (59) with

y’L — n’L.
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