
Acta Physica Polonica B 56, 3-A1 (2025)

FROM INSTANTONS TO PENTAQUARKS

Victor Petrov

Lecture at the XLVIII PNPI Winter School†

February 2014

Received 15 January 2025, accepted 15 January 2025,
published online 16 April 2025

DOI:10.5506/APhysPolB.56.3-A1

In memory of Dmitry Diakonov

March 30, 2014 would have marked the 65th anniversary of the birth
of D.I. Diakonov, an outstanding theoretical physicist who worked in the
Theoretical Department of PNPI for more than 40 years. We collaborated
with him for over 30 years and were co-authors of over 70 papers. This
lecture is dedicated to his memory.

Fig. 1. D.I. Diakonov, 30.03.1949–26.12.2012.

† PNPI — Petersburg Nuclear Physics Institute. Translated from Russian by M. Eides
(Ed.)
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Mitya Diakonov turned up in the Theoretical Department of the Lenin-
grad Nuclear Physics Institute in 1972, having entered graduate school after
graduating from the University. At that time, the theoretical department,
headed by V.N. Gribov, was the world center for the Regge theory approach
to high-energy scattering. Quantum field theory was not particularly popu-
lar: it was believed that a self-consistent field theory (due to the zero charge)
could not exist.

Mitya’s advisor was Alexey Andreevich Anselm, one of the few people in
the department who retained a love for quantum field theory and continued
to actively study it. As one of his first tasks, he assigned Mitya to explore
spontaneous chiral symmetry breaking in a model 2-dimensional theory1 [1].
This was a model with a four-fermion interaction, which is now called the
Gross–Neveu model. This model was asymptotically free, but these events
precede the formal discovery of asymptotic freedom2. The mechanism of
formation of chiral condensate and spontaneous breaking of chiral invariance
was quite similar to the theory of superconductivity. However, even then,
Mitya clearly realized [2] that this approach is not parametrically justified
and cannot be applied in QCD (although such works appeared later in large
number).

Fig. 2. Mitya Diakonov, 1977.

1 This text mainly contains references only to the works of D. Diakonov, which is
natural for a lecture of this kind. Attempts to restore the full list of literature would
lead to its expansion almost to infinity.

2 Asymptotic freedom in the Yang–Mills theory had already been discovered by
I.B. Khriplovich several years earlier. There were also works by some other au-
thors. A.A. Anselm himself had observed asymptotic freedom in some 2-dimensional
theories. I have always been amazed why these facts had attracted so little attention
before the famous works of Gross, Wilczek, and Politzer.
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A.A. Anselm was always interested in the theory of electroweak interac-
tions and grand unified theories. Mitya’s next two works are focused on the
calculation of the Coleman–Weinberg potential and radiative corrections to
the Weinberg angle in the Standard Model. At that time, these were quite
complicated problems in quantum field theory, the description of the Higgs
effect in different gauges presented certain difficulties. The Weinberg angle
in different grand unification models was calculated in [3], it was Mitya’s
solo work, without co-authors. CP-violation based on Weinberg’s mecha-
nism and the limitations on this violation that could be obtained at that
time were discussed in [4]. This work played a certain role in establishing
the fact that this mechanism is not realized in nature.

Mitya’s youth as a theorist coincided with the “revolution” of 1973–74,
as a result of which QCD arose in the form in which we now know it. Mitya
(unlike many) accepted it with enthusiasm. In 1975, he (together with Mark
Strikman) translates into Russian the R. Feynman book «Photon–Hadron
Interaction», which influenced him very much, and he begins to try his hand
at the physics of hard processes in QCD. His first paper on this topic [5]
arose on his own initiative (in the second year of graduate school), and in
his next work [6] he managed to involve his advisor as well. Both of these
papers were influenced by Feynman’s ideas and were the result of careful
reading of his book.

In passing, by that time the parton model and the questions associated
with it were in the center of attention of the entire Theoretical Department of
PNPI. The problem of combining the parton model and quantum field theory
has always been of concern to Mitya. After it was successfully resolved with
the discovery of the asymptotic freedom, for the first time in the theory of
strong interactions it became possible to calculate something that is within
the scope of the theory. This possibility was very attractive, and Mitya
joined Yu.L. Dokshitzer and S.I. Troyan (DDT), who already were engaged in
hard processes in QCD. The traditions of such calculations in our department
were laid in the famous works of V.N. Gribov and L.N. Lipatov [7, 8].

In a couple of years, DDT completely understood the physics of the main
hard processes and published several works on this topic [9–13]. Particular
attention was paid to the Drell–Yan process (see Fig. 3). They obtained
the famous DDT formula for the distribution of lepton pairs in transverse
momentum
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where DF
a are the parton distributions (which can be measured in deep

inelastic scattering), and TF is the double logarithmic Sudakov form factor

TF = exp
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−αs

3π
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q2t

]
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Fig. 3. Drell–Yan process.

This was one of the first quantitative calculations in perturbative QCD,
and the authors managed to predict not just one number, but an entire
function of the transverse momentum. In 1978, they wrote a Physics Reports
review [14], which made them widely known and which became a classics of
QCD (it was published only in 1980). This review has collected about 800
references in INSPIRE, with the latest dated by 20133.

It would seem that now an obvious path of a QCD theorist, an expert
in perturbation theory and hard processes, was open to Mitya. However, he
believed that the answers to the most interesting questions in QCD cannot
be obtained within the framework of perturbation theory4. Therefore, at
this time he abruptly changes the field of his activity (as he did repeatedly
later), switching to non-perturbative QCD.

At that time, the QCD sum rules came into fashion. Mitya finds here
an untested topic: calculating the mass of a “hermaphrodite” — an exotic
particle consisting of gluon, quark, and antiquark, and published a paper on
this topic together with A. Yung and I. Balitsky [15]. Interestingly, this is
one of the few works on the sum rules, which is a prediction, not a descrip-
tion of already known quantities. Since the mass was unknown in advance,
the authors calculated the contributions of the terms with unusually high
dimensions. In addition, it turned out that this problem is not so simple and
contains some subtleties. As a result, this work did not engage the scientific
community, and they had to return to this topic later [16].

3 928 citations as of December 2024 (ME).
4 He liked to repeat that, in essence, the entire theory of hard processes follows from

the Lienard–Wiechert potential for an ultrarelativistic particle, and therefore cannot
answer important and interesting questions. This is, of course, an exaggeration, but
there is some truth in it.
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By that time, Mitya was deeply interested in non-perturbative QCD. A
small circle for discussions on all non-perturbative topics, which he headed,
formed naturally. One of the central issues was the mechanism of sponta-
neous chiral symmetry breaking (SχSB) in QCD. Sum rules do not address
such questions, they simply take the existence of condensates in QCD as a
given. Meanwhile, SχSB determines the properties of hadrons almost to a
greater extent than the confinement of quarks. It is thanks to SχSB that
there is a nearly massless octet consisting of π- and K-mesons, as well as the
η-meson5. What may be surprising, however, is that there are 8 Goldstone’s
bosons, not 9, as it should be when U(3)R ⊗U(3)L is broken. For some rea-
son, the mass of the ninth meson η′ is not small (and does not vanish, like
the masses of the octet mesons, in the limit of massless quarks). This obser-
vation is known as the “U(1)-problem”. The solution to the U(1)-problem
was found by E. Witten and, as it turned out, is related to the most subtle
properties of QCD.

First of all, due to the Adler anomaly, conservation of the singlet ax-
ial current (with which the η′-meson is associated) is violated. The non-
conservation of this current in QCD is associated with the so-called topolog-
ical charge

Qt =
1

32π2

∫
d4x εµνρλFµνFρλ . (2)

Therefore, the Goldstone theorem for the singlet current can be violated.
However, for this violation to happen, gluon field fluctuations with non-
zero topological charge should exist in vacuum. This is not trivial, because
expression (2) is a total derivative. In fact, as was pointed out in the work
of Mitya and M. Eides [17], existence of a special “ghost” pole in QCD
correlators containing topological charge is necessary for violation of the
Goldstone theorem to occur. The mixing of this pole with the Goldstone
mode explains the appearance of the η′-meson non-zero mass. In the limit
of a large number of colors, this mass is given by the Witten–Veneziano
formula

m2
η′ = 4Nf

⟨QtQt⟩
F 2
π

, (3)

where ⟨QtQt⟩ is the correlator of topological charges in the QCD vacuum
in the absence of quarks (pure gluodynamics), Nf is the number of flavors,
and F 2

π is the axial decay constant of the π-meson.

5 Also notice that in a world with an unbroken chiral symmetry, the nucleon must be
massless or, at least, degenerate with N( 1

2

−
). Neither is observed in nature.
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The problem can be looked at from another angle. Potential energy in
the Yang–Mills theory, as is well known, is periodic with respect to a certain
coordinate K,

K = εijk

∫
d3x

[
Ai∂jAk +

2

3
AiAjAk

]
, (4)

which is the QCD Chern–Simons term (see Fig. 4). There are many min-
ima, and configurations with non-zero topological charge describe, as was
explained by V. N.Gribov, the under-barrier transitions between different
minima: Qt = Kfinal−Kinitial. The topological charge in such processes can
be only an integer.
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K

Fig. 4. Potential energy in the Yang–Mills theory.

The existence of a non-zero mass for the η′-meson demonstrates that
the barriers are penetrable and tunnel transitions do occur. However, the
solution of the U(1)-problem in QCD leads to a new, so-called Θ-problem.
The point is that, as is well known in solid state physics, in a system with a
periodic potential and penetrable barriers states are characterized by a cer-
tain conserved quasi-momentum Θ [17]. Thus, instead of a unique vacuum
in QCD, there must exist a set of states corresponding to different Θ, and
there is no reason to believe that we live in the world with Θ = 0. The prob-
lem is that the CP symmetry of strong interactions is broken in the states
with Θ ̸= 0, what leads, in particular, to a non-zero EDM of the neutron.
Despite all efforts, the Θ-problem has not been resolved yet.

Having figured out the physics of the U(1)- and Θ-problems in [17],
D. Diakonov and M. Eides gave an excellent lecture at our school [18], which
I recommend to anyone interested in the details.
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Fig. 5. Mitya and L. Faddeev, 1981.

Working on the U(1)-problem made a very strong impression on Mitya —
he started to realize that fluctuations with non-zero topological charge, im-
plementing under-barrier transitions could play a principal role in the QCD
vacuum. Such fluctuations — instantons — have been already known for a
long time, starting with the works of Belavin–Polyakov–Schwartz–Tyupkin.
Therefore, we decided to try the hypothesis that non-perturbative vacuum
of QCD consists of instantons. By this time, there appeared also a series
of works by E. Shuryak, who showed that the hypothesis of dominance in
vacuum of instantons with the size ρ ≈ (600MeV)−1 and the average dis-
tance between them approximately three times larger, allows one to explain
a number of phenomenological facts.

However, before starting, it was necessary to come up with a method
for taking into account arbitrary fluctuations in the functional integral that
determines the partition function of QCD. This method turned out to be
Feynman’s variational principle — it can be considered as a generalization
of the usual variational principle for the Schrödinger equation. We tested
Feynman’s principle in a quantum mechanical framework [20], developed
an approximate method for estimating functional determinants (which is
a prerequisite) [21] and returned to QCD.

We adopted the simplest ansatz for non-perturbative fluctuations in vac-
uum, which is a sum of instantons and anti-instantons

Aµ(x) =
∑
I,Ī

AI
µ(x, ρ, U, z)+ Ā

I
µ (x, ρ,O, z) , AI

µ = Oab
ηbµν(xz)ν

(xz)2 + ρ2
, (5)

where zµ is the position, ρ is the size, Oab is the color orientation matrix
of an instanton. The gluodynamics functional integral on this configuration
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reduces to a very non-trivial problem of statistical physics

Z =

∫ ∏
I,Ī

d4zIdρI
ρ5I

(ρIΛ)
b exp (−βUint(ρI , zI , OI)) . (6)

This partition function describes a gas of pseudoparticles interacting with
the potential Uint and characterized by the sizes and color orientations. Gas
temperature β = 8π2/g2 (g is the QCD coupling constant) should be deter-
mined as a result of a self-consistent solution to the problem.

The results of the solution we obtained in [22] turned out to be surpris-
ingly favorable. First of all, the instanton liquid, due to the interaction,
stabilized. The interaction turned out to be not small, βUint ∼ 1, but the
ratio of the average instanton size to the distance between them remained
small

R̄

ρ̄
≈ 3.1 (7)

and it turned out to be exactly the one, which was required to agree with
the phenomenology6.

The coupling constant “froze” also at a relatively small value

β(ρ̄) =

{
12 , SU(2)
15 , SU(3)

, (8)

which ensured self-consistency of the entire approach. The calculations were
carried out in 2 loops (one was not enough) without any fitting parameters.
The distribution of instantons by sizes turned out to be

µ(ρ) = ρb−5 exp

(
−ν ρ

2

ρ̄2

)
, ν =

b− 4

2
, b =

11

3
Nc . (9)

About ten years after our work it was measured on a lattice (see Fig. 6).
The results of the calculations were various correlators in the vacuum of

gluodynamics: gluon condensate, topological charge correlator, ⟨F3
µν⟩, etc.

As is expected in the renormalization-invariant theory, they were expressed

6 A curious confirmation of the large ratio R̄/ρ̄ comes from a comparison with Mitya’s
work on the mass of glukonium [15, 16]. The point is that the mass of this particle
is related to the correlator ⟨G3

µν⟩. In the instanton vacuum, this correlator turns out
to be much larger than naive expectations: ⟨G3

µν⟩ ≈ R2

ρ2
⟨G2

µν⟩3/2. If R2/ρ2 ≈ 1, then
the mass of this exotic particle would be, according to the sum rules, less than 1GeV,
which is absolutely excluded by the experiment. For the parameters we obtained, the
“hermaphrodite” mass is pushed to at least 1.5GeV, which is consistent with other
estimates.
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Fig. 6. Distribution of instantons by sizes (density in fm−5 versus ρ in fm). The
curve corresponds to (9), the dots — lattice measurements [23]. (Figure from
Ref. [24].)

through the cutoff Λ (we preferred the Pauli–Villars scheme, ΛPV). We
obtained approximately〈

F2
µν

〉
32π2

(200 MeV)4 ≈ ⟨QtQt⟩ (190 MeV)4 ≈ (0.7ΛPV)
4 (10)

(experimental values are given in the brackets). The variational principle
guaranteed that this is an estimate from below for the gluon condensate. Un-
fortunately, ΛPV was then (and is now) very poorly known, so we preferred
to formulate our results as a prediction for it. We needed ΛPV ≈ 280MeV
or slightly less. In those years, it was believed that it was in the region
of 100MeV, and we were told that instanton fluctuations constitute only
a small fraction of all vacuum fluctuations of gluodynamics. However, since
then, its value has grown significantly, and now the hypothesis that instan-
ton fluctuations make up the lion’s share of fluctuations in the vacuum seems
plausible. Our estimate of the QCD coupling constant was also confirmed
— indeed, αs ≈ 0.5, as predicted in (8).

The natural next step was to introduce quarks into the instanton vacuum
of pure gluodynamics. For a long time, we could not figure out what is the
mechanism of SχSB in the instanton vacuum. Quarks have zero modes (i.e.,
non-trivial solutions of the Dirac equation /∇(A)ψ = 0) in the instanton
field, it was obvious that they were related to SχSB, but how it is realized
was unclear.
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This mechanism turned out to be delocalization and collectivization of
individual zero modes in the instanton medium [25]. This phenomenon was
well known in the physics of disordered systems (the Anderson model). It
is important that, due to the slow decrease of the overlap integrals of zero
modes, it occurs at any density of the instanton liquid. In addition, due to
the presence of zero mode, the relative magnitude of the chiral condensate
becomes large at low instanton density. Therefore, the calculation of the
chiral condensate in the instanton liquid is parametrically justified, which
distinguishes this case favorably from the formation of condensate in the
perturbative approach.

In the thermodynamic limit distribution of eigenvalues of the Dirac equa-
tion in the instanton medium becomes a continuous function ν(λ),

ν(λ) =

〈〈∑
i

δ(λ− λi)

〉〉
(11)

(⟨⟨. . .⟩⟩ means averaging over the instanton ensemble), which is smeared due
to overlap of the zero modes. According to the Casher–Banks relation the
chiral condensate is connected with the value of this distribution function
at zero 〈

ψ̄ψ
〉

= −πN
V
ν(0) (12)

(N/V — density of the instanton fluid).
In [25] (and some others), we managed to calculate function ν(λ) and

compute the chiral condensate〈
ψ̄ψ

〉
≈ −(255 MeV)3 , (13)

which agrees very well with the experimental value of −(250MeV)3 (at a low
normalization point).

Scattering of quarks off chiral condensate leads to the emergence of an
effective quark mass M(p), which depends on its virtuality (see Fig. 7). This
dependence is determined by the zero modes in the instanton field. The mass
changes on the scale ∼ 1/ρ. Its value at zero determines the mass of the
constituent quark

M(0) ≈ 350MeV . (14)

Averaging over the instanton ensemble leads to an effective interaction
between constituent quarks. In the limit of a large number of colors Nc, this
interaction can be bosonized, and in this way, we can find the spectrum of
mesons in our theory. First of all, in agreement with the Goldstone theorem,
we observe a massless π-meson. The U(1)-problem in the instanton vacuum
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Fig. 7. Effective quark mass as a function of virtuality, dots — lattice measure-
ments. (Figure from Ref. [26] after Ref. [27]).

is solved, and the η′-meson mass follows the Witten formula in the Nf → 0
limit7

m2
η′ = 4Nf

N

V F 2
π

(15)

(in the limit of weak interaction of instantons, the topological susceptibility
⟨QtQt⟩ = N/V ). The axial constant F 2

π can also be calculated

F 2
π = 4Nc

∫
d4p

(2π)4
M2(p)

(p2 +M2(p))2
≈ 98MeV . (16)

Experimentally F 2
π ≈ 93.5 MeV.

The smallness of the packing parameter ρ/R leads to the emergence of
two scales, existence of which has long been suspected in the theory of strong
interactions. The scale 1/ρ determines the masses of all other mesons and the
size of the constituent quark (and all mesons). The scale 1/R determines the
gluon condensate and topological susceptibility. The quark mass occupies an
intermediate position M ∼ 1/

√
Rρ. It is interesting that the same smallness

of the packing parameter explains the smallness of the axial constant, its
ratio to the gluon condensate is determined by the packing parameter

F 4
π

(G2
µν)/(32π

4)
∼

( ρ
R

)4
. (17)

7 The behavior of m2
η′ in the instanton vacuum is not as usual: it is a constant in Nc,

and does not decrease as it should. This has some deep reasons. Therefore, in order
to make it small (only then formula (3) can be applied), one has to use the Nf → 0
limit.
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The theory of instanton vacuum makes it possible to calculate the corre-
lators of meson currents in all channels. This allows for a detailed verifica-
tion of the theory. Agreement with the experiment is generally satisfactory,
although not in all channels (for an example, see Fig. 8).
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Fig. 8. The ratio of correlators in scalar and pseudoscalar channels(
Πscal(q

2)−Πpseudo(q
2)
)
/
(
Πscal(q

2) +Πpseudo(q
2)
)
. (Figure from Ref. [28]).

The existence of two scales in the instanton vacuum makes it meaningful
to calculate the low-energy Lagrangian, valid for the momenta, smaller than
ρ−1. At these scales, only constituent quarks (with constant mass M) and
π-mesons remain. The effective Lagrangian, which we calculated in [25], has
an extremely simple form

L = ψ̄

[
i∂̂ + iM exp

(
i
π̂γ5
Fπ

)]
ψ . (18)

Here, π̂ = πaλa is the field describing the octet of π-mesons. Notice that the
π̂ field enters without the kinetic term. It arises as a result of integration
over quarks.

Integrating over quarks, we obtain the effective chiral Lagrangian (EχL),
which is valid in the entire momentum region, up to 1/ρ

LEχL = Det

[
i∂̂ + iM exp

(
i
π̂γ5
Fπ

)]
. (19)

It is curious that exactly this EχL was proposed in the work of Mitya and
M. Eides [19] (for completely different reasons) several years earlier. We have
verified that this Lagrangian is consistent with the known experimental data
not only in the leading but also in the next terms of the pion field gradient
expansion.
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The next stage of our work was a theory of baryon states [29]. Several
years before this, E. Witten proposed a theory of baryon states in the limit
of a large number of colors. Witten had shown that in the Nc → ∞ limit,
the nucleon should be a soliton of meson fields, and proposed to implement
this idea in the well-known Skyrme model8. Having in hand a much more
effective chiral Lagrangian derived from the instanton model, it was natural
for us to try to build a nucleon.

Fig. 9. V. Petrov and D. Diakonov. Chiral Theory of the Nucleon, Bochum, 2005.

In the language of our low-energy Lagrangian, the picture of the nucleon
at Nc → ∞ turned out to be very simple: the Nc → ∞ limit meant that
the mean-field method can be applied to the problem, and it was necessary
to find a discrete level for Nc valence quarks in this field. The nucleon mass
was composed of energies of the valence levels in a self-consistent pion field
and the energy of the pion field, which is obtained as a sum of the Dirac
sea energy levels in this field. The minimum of this mass corresponds to the
nucleon and determines the self-consistent field (see Fig. 10).

It took us many years to work on the theory of the nucleon. Our former
students — P. Pobylitsa and M. Polyakov took part in this work. In 1988, we
were also joined by a group from Bochum (Germany), headed by Professor
K. Goeke. All the main characteristics of the nucleon were determined:
mass, σ-term, electromagnetic and axial form factors, coupling constants
with mesons. Generalizing the theory to the case of the SU(3) flavor group,

8 Mitya was very interested in this work. With a lot of effort we worked out its details
(or rather, re-derived all its statements ourselves) and realized Witten’s program
in the Skyrme model. Unfortunately for us, the famous paper of Witten, Adkins,
and Nappi came out earlier. Then we turned our work into a lecture, which Mitya
delivered at the ITEP Winter School in 1984 [30].
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Fig. 10. Discrete level (orang) and pion field energy (green) as a function of field
size. The minimum total energy corresponds to the nucleon–soliton. (Figure from
M. Praszałowicz, this volume, after [31]).

we calculated the splittings in the two main baryon multiplets: the nucleon
octet and the decuplet containing the ∆-resonance (for some examples —
see Table 1). All static properties of the nucleon were described pretty well
and the accuracy of the theory turned out to be somewhere at the level of
10–15%.

Table 1. Dependence of the characteristics of the nucleon on Nc.

Theor. Exp.
σ-term 54 MeV Nc 45–60
ga 1.31 Nc 1.25

gπN∆ 3/2gπNN N
3/2
c

µp − µn 5.2 N2
c 4.71

µ∆N

µp−µN
0.70 1 0.71± 0.1

More important than the coincidence of the numbers was that we were
dealing with a consistent relativistic field theory. Therefore, it was possible
to pose such questions, which, in principle, cannot be placed in either the
quark or Skyrme model. An example of such a question is calculation of the
structure (see work [32]) or wave functions of the nucleon. It was possible
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to calculate the probability of finding 5 or 7 quarks in a nucleon [33] and
so on and so forth. It was also very important for us that both approaches
— the quark model and the Skyrme model — were contained in the the-
ory as limiting cases, and our model smoothly interpolated between them.
The quark model, which, for large Nc, can also be formulated in the mean-
field approximation, is not, however, a relativistic theory, since it does not
take into account components of the nucleon wave function with additional
quark–antiquark pairs (Fig. 11). These components, however, are not sup-
pressed in the Nc → ∞ limit, moreover, the valence quarks in the nucleon
turn out to be fully relativistic particles. It is also significant that the quark
model does not take into account the physics of spontaneous chiral sym-
metry breaking, which is the determining factor for the octet of π-mesons,
and, ultimately, for the nucleon. Finally, a wrong mean field symmetry is
assumed in the quark model (SU(6)-symmetry instead of the hedgehog sym-
metry in the chiral theory of the nucleon), what leads to an incorrect set of
multiplets. Thus, the quark model at large Nc is a nonrelativistic limit of
the quark chiral soliton. The Skyrme model, on the contrary, corresponds
to the limit of a large soliton with ultrarelativistic valence quarks.

0.0 0.5 1.0
0.0

0.5

1.0

x

x(q+q
−
)/2

Fig. 11. The structure function of the nucleon: antiquarks x(ū(x) + d̄(x))/2 [32].
The dots are one of the popular parameterizations of experimental data. This
structure function in principle cannot be calculated in the quark model.

The quark baryon-soliton model and the Nc → ∞ limit allow to bring
order in many questions, in particular in the meson scattering off nucleons,
calculation of the nucleon potential, etc. Mitya always wanted to explain
also nuclear matter with the help of this approach. We have not achieved
much success here, although Mitya and A. Mirlin published an article back
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in 1988 [34], in which they described what is now called a “skyrmion crystal”,
and what is so intensively discussed in connection with the heavy-ion colli-
sion experiments at the LHC. Around the same time, we did some work on
calculating the mass of the singlet dilambda — a new type of 6-quark state
[35]. Experiments to search for it are currently planned at JPARC (Japan).

Fig. 12. Pentaquark. D. Diakonov, V. Petrov, M. Polyakov, Bochum, 2004.

Having accumulated experience on the properties of ordinary baryons,
in 1997 we wrote a paper with a prediction of a new exotic antidecuplet of
pentaquark states [36]. This question has had a long history for us. That the
next rotational excited state after the octet and decuplet is an antidecuplet,
we realized back in 1984 (and not only we, of course) and mentioned this in
our lecture [30]. For us, this was a flaw in the theory, and we hoped that
this state would turn out to be so wide that it will be unobservable (roughly
speaking as in the bag model). We acquired even more reasons for this
point of view, when we showed that for highly excited rotational states with
J ∼ Nc, the soliton is deformed, and as a result, linear Regge trajectories
for baryons are obtained [37]. We considered the Skyrme model prediction
of mass to be very unreliable, but we expected this state to be quite heavy.

The situation changed with the arrival of our chiral soliton model. En-
couraged by its successes, we decided to try to calculate the mass and width
of the exotic antidecuplet. The first results amazed us: the antidecuplet
turned out to be very light, and most importantly, extremely narrow. The
width was so small that we even could not estimate it reliably, since it was
obtained by cancellation of two large contributions.

In the published article, at Mitya’s insistence, we used a slightly different
strategy. Since the absolute mass of the antidecuplet was precarious to
calculate, we “tied” it to a known particle from the Particle Data Tables,
namely the nucleon N(1710). We just noted an acceptable agreement of
its mass with the predictions of the chiral soliton model (at the level of the
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Fig. 13. 10-plet of exotic baryons.

same 10%), and its mass was taken as a reference point. Then the mass
of the lightest particle from the antidecuplet (later, according to Mitya’s
proposal, it was called Θ+) turned out to be 1530 MeV. The cancellation in
calculations of its width worried us for a long time until we proved that in
a certain limiting case it should be zero. Nevertheless, we clearly realized
that we could not truly (accurately) calculate it, so in the paper, we limited
ourselves to the estimate of “less than 15 MeV”.

From this moment on, the history of the pentaquark began, which be-
came one of the most dramatic events in baryon spectroscopy. First of all, it
was necessary to persuade experimentalists to test existence of the antide-
cuplet. The main role here belonged to Mitya, who managed to persuade
T. Nakano (LEPS, Osaka) to make an experiment, and in 2003, he reported
the observation of Θ+ with a mass very close to the one we predicted, and
a small width. Almost simultaneously with him, Θ+ was observed in the
experiments of A. Dolgolenko et al. (DIANA experiment, ITEP). The next
were two CLAS experiments from JLAB.

Afterwards, Θ+ was observed in dozens of experiments with varying
degrees of reliability. It was even included in the Particle Data Tables.
However, starting in 2004, experimental works with high statistics began
to appear, reporting “non-observation” Θ+. It is believed that a follow-up
CLAS experiment [40], in which a very low upper limit on the Θ+ production
cross section was established, put an end to the story of Θ+.

Our prediction was also received skeptically in the theoretical community.
Several works have been published criticizing our paper [36], and we had to
respond. Thus, it was claimed that the existence of Θ+ is an artifact of
our model. We took the most popular (although very inaccurate) Skyrme
model and showed that Θ+ also arises in it, and with a close mass [41].
However, the width of this state is not small, since the physics responsible
for the small width is omitted in this model. Predictions of the Skyrme
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Fig. 14. T. Nakano and D. Diakonov.

model for the KN -scattering cross section are in stark contradiction with
experiment: in the low-energy region, a giant peak corresponding to the
Θ+ baryon dominates. The only way to make them compatible with the
experiment is to reduce the width of the pentaquark.

We were also concerned about our proof of the smallness of the width:
we needed a self-evident way to explain its smallness. Such an explanation
was obtained by determining the decay constant in the infinite momentum
frame, in which the calculation of baryon characteristics is greatly simplified.
It turned out that the decay constant is proportional to the overlap integral
of the pentaquark wave function and the 5-quark component of nucleons [42].
The smallness of this constant (which looked like a cancellation of two large
contributions in the rest frame) is due to the small probability of finding
5 quarks in a nucleon. In [42], we estimated the pentaquark width at only
2 MeV.

Mitya was also keenly interested in the experimental side of the issue.
Together with M. Amaryan and M. Polyakov he proposed a new method
for detecting the Θ+-baryon [43], based on interference. The cross section
of the Θ+ production, which is amplitude squared, seems to be small, so
instead of measuring the production cross section one can use interference.
The Θ+ signal can be enhanced in the interference of two processes, where
the product of the strong ϕ production amplitude and the Θ+ production
amplitude is measured. Thus, by studying this interference, one can detect
the exotic Θ+. The idea was implemented by a part of the CLAS collabo-
ration, which, by analyzing the same data, based on which CLAS concluded
that Θ+ was missing [40], observed this exotic resonance at a level better
than 5σ 9. In new experiments and with a new analysis, the LEPS and

9 The rest of the collaboration was quick to distance themselves from this result.
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DIANA collaborations confirmed their old observations (also at the level of
about 5σ). Apparently, there is also other data that speaks in favor of Θ+.
Finally, new experiments to detect pentaquarks are planned (they were just
discussed at the HADRON-2013 conference in Japan). Lastly, thanks to the
efforts of M. Polyakov, V. Kuznetsov and others, another member of the ex-
otic antidecuplet — N(1685) (5-quark cryptoexotic nucleon) (Fig. 13) was
probably discovered. However, in general, it can be said that the scientific
community has not yet been convinced.

Pentaquarks became a theme of Mitya’s constant meditations for many
years. In recent years, he has also proposed a new type of pentaquarks,
composed of heavy quarks. The idea is to consider a heavy quark to be
roughly at rest and weakly interacting with the other, light quarks. The
latter are again described by the quark–soliton model. This scheme works
very well for description of ordinary non-exotic baryons containing c- and
b-quarks. Mitya applied it to exotic particles. The pentaquarks he predicted
are structured differently than the exotic antidecuplet (they are not rota-
tional states), but the arguments for their existence seem to be even more
compelling. From the point of view of SU(3) they form a 15-plet. It turns
out to be very light, some particles may even be stable under strong interac-
tion. The lightest particle, which Mitya called the βc-baryon, should have a
mass of only 2420 MeV (Fig. 15). Under the most conservative assumptions,
about ∼ 106 of such baryons should be produced at the LHC per year.

Fig. 15. 15-plet of exotic baryons containing the c-quark.

We have repeatedly returned to the theory of instanton vacuum, trying
to clarify some of its elements. An interesting situation arose in the early
to mid-90s in connection with the baryon number violation (BNV) in the
Standard Model. It is known that BNV is possible in the Standard Model
due to instanton transitions, but the probability of it is negligibly small
(exp(−4π/αEW) ≈ 10−70). A. Ringwald drew attention to the fact that in
BNV processes at high energies, production of each additional particle con-
tributes a factor of 1/g2. Thus, we can hope that in processes with creation
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of a huge number of particles, n ∼ 1/g2, the exponential factor will be ab-
sent and the cross section will be of order one. Ringwald’s work generated
great interest and led to a large number of publications on this topic. It was
rather quickly realized that in the leading semiclassical approximation, the
cross section of the process with BNV is described by the formula

σBNV = exp

(
−2× 8π2

g2
f(ε)

)
, (20)

where ε is the ratio of the energy of colliding particles to the mass of the
sphaleron ε = E/Msphl (Msphl ∼ 1/g2). Function f , universal for a given
theory, was named the Holy Grail function.

In my opinion, the task of fully computing the Holy Grail function is one
of the most interesting in quantum field theory. In the electroweak theory
for small ε, it is a powers series in ε2/3

f(ε) = 1− 3

4
ε4/3 +

(
3

8
− 3

16
+

1

16

)
ε2 + cε8/3 log ε+ . . . (21)

The first nontrivial term (tree) was calculated in the work of V. Za-
kharov, the second (1-loop) — in our work [46] (the first term in the paren-
theses corresponds to the massless pure Yang–Mills theory, the second arises
from taking into account the mass of the W boson, and the third — from
multiple production of Higgs bosons) and simultaneously by several other
authors. The third term (2-loop) was calculated in the work of Mitya and
M. Polyakov [47].

Although the computation of (21) is possible in the language of dia-
grams, it is clear that the Holy Grail function has an entirely semiclassical
origin. As has been shown in our work [48], function (21) (and with it the
cross section of BNV) can be calculated if a complex singular solution of
the equations of motion in Minkowski space, that satisfies certain bound-
ary conditions, is known. The imaginary part of the action on this singular
solution determines function (21), and the real part determines the evo-
lution of the configuration in real space-time and at t→ ∞ describes the
momentum distribution of the produced particles. We have developed a
generic semiclassical approach, allowing to solve the problems of this type.
In general, the problem turned out to be extremely meaningful, it combines
such questions as the behavior of high orders of perturbation theory in field
theory, multiple particle production at the threshold, counting of high-order
diagrams, etc. It has not been fully solved to this day.
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In [48], we showed that the function f(ε) cannot become less than 1/2
(i.e. the BNV cross section always remains small, although at high energies,
one can win back a factor of ∼ 1035!). It is a product of two factors. The first
one is the probability of a tunneling sub-barrier (instanton) transition, which
increases with energy and at ε ∼ 1 reaches values of order one. The second
one contains the square of the overlap amplitude of the original wave function
(2 particles with high energy) with the final one (many particles ∼ 1/g2 with
small energies). This factor decreases monotonically with energy. Long ago,
V.N. Gribov gave simple quantum-mechanical arguments, which show that
the overlap amplitude is equal to the square root of the sub-barrier factor
at energy ε ∼ 1. Therefore, f(ε) = 1/2 and at higher energies, it begins to
increase.

The practical significance of these calculations for the theory of the in-
stanton vacuum is that, as shown in [48], the Holy Grail function is related
to the instanton–anti-instanton interaction by a Fourier transform

e−βU ĪI
int(R) =

∫
dε

2π
eiεR exp [−β(f(ε)− 2)] , (22)

where R is the distance between I and Ī. The marker that BNV places
on this process allows to separate the purely non-perturbative contribu-
tion from the perturbation theory contribution and correctly determine the
instanton–anti-instanton contribution, as well as the interaction between
them (see Fig. 16). The contribution of instanton and anti-instanton can
be reconstructed from the BNV cross section, by squaring the well-defined
single-instanton amplitudes and using the unitarity relation. This procedure
determines the imaginary part of the corresponding contribution, while the
real part is restored using dispersion relations. The situation here is exactly
the same as for perturbation theory diagrams: one can reconstruct the entire
series of perturbation theory from the Born graph and the unitarity relations.
In the same way, single-instanton BNV amplitude is sufficient to obtain the
contribution of an arbitrary number of instantons and anti-instantons.

Fig. 16. Contribution of I and Ī determined through the BNV cross section.



3-A1.22 V. Petrov

With the help of the derived relations, we obtain the interaction of instan-
tons and anti-instantons at large distances in the most attractive orientation

Uint(R, ρ1, ρ2) = −6
ρ21ρ

2
2

R4
+ 12

ρ21ρ
2
2

(
ρ21 + ρ22

)
R6

− 72
ρ41ρ

4
2

R8
log

R2

ρ2
+O

(
ρ8

R8

)
,

(23)
where ρ1,2 are the sizes of I and Ī, R is the distance between them. At small
distances, the instanton and anti-instanton repel (according to the results
[48], logarithmically), what is ultimately connected with the growth of f(ε)
for large ε. This contradicts the usual idea of the attraction between I and
Ī at small distances, which arises because IĪ field and zero field are not
separated by a barrier. This IĪ configuration corresponds to the already
taken into account contribution of perturbation theory, and the attraction
itself arises due to the mixing of this configuration with the perturbative
sector. Notice that the formulae like (23) are exact, in contrast to our
representation of Uint, obtained from the variational ansatz.

We have always been aware that the main drawback of the QCD in-
stanton vacuum model is the absence of quark confinement. The problem,
however, seemed too difficult: confinement means the area law for the Wil-
son loop

W (C) =

〈
P exp i

∫
C

dxµAµ

〉
∼ exp(−σS) . (24)

However, even the original object, the non-Abelian P -exponent (Wilson
loop), cannot be written down in an acceptable and computable form. This
was the first problem, with which we started: we managed to find some
new representation for the Wilson loop [49]. The formula is a functional
integral over directions of the field na in color space, where the action is the
Chern–Simons term. Our formula turned out to be quite general — it is
valid for any gauge theory (for example, for the theory of gravity, where the
role of the field Aµ is played by the Christoffel symbols, and the role of the
Wilson loop is played by parallel transport along a closed contour) and in
an arbitrary representation for the Wilson loop. Using this representation,
we also proved a non-Abelian Stokes’ theorem [50], expressing the Wilson
loop through an integral over a surface. We subsequently used these tools
more than once in the study of the Wilson loop.

We have calculated the potential between two heavy quarks in the in-
stanton vacuum [51]: as expected, at infinity it goes to a finite limit and
generates only a finite (and also small, of the order of 100 MeV) renormal-
ization of the quark mass. We looked at confinement from another per-
spective as well. The most popular confinement mechanism, proposed by
S. Mandelstam, is the dual Meissner effect — a condensate of monopoles
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should form in the QCD vacuum. Unfortunately, even this very notion is
not defined, since there are no elementary monopoles in QCD. Therefore,
it was necessary to reformulate the Mandelstam criterion (existence of a
monopole condensate) in another language. We introduced the probability
Φ(L) of finding a monopole loop of size L in vacuum (this quantity is gauge-
invariant and can be measured on a lattice). In work [52], it was shown
that if for large loop sizes Φ(L) ∼ 1/L3, then a massless pole is formed in
the correlator of monopole currents (this statement is equivalent to conden-
sation), and the Wilson loop decreases exponentially with area. Thus, this
statement completely replaces the Mandelstam criterion. It is interesting to
notice that there is a monopole loop of size ρ inside an instanton of size ρ.
Therefore, if the instanton size distribution behaved like 1/ρ3, then there
would be confinement in the instanton vacuum [53]. Unfortunately, this is
apparently impossible: such a distribution would lead to a long-range order
in the instanton medium.

By this point, we had realized the main contradiction of the confinement
phenomenon: confinement means very long-range correlations in a certain
type of quantities (such as the Wilson or Polyakov loop) and, conversely, a
small correlation radius of local operators, such as the correlators of field
strengths squared. The latter are well described in the instanton vacuum,
while the former are not described at all. It is very difficult to imagine a
vacuum that has both properties at the same time. Quantities of the first
type are gauge-invariant only globally, not locally, so we came to the idea
of formulating the Yang–Mills theory in gauge-invariant terms, in the hope
that the resulting theory will have a finite correlation radius.

We solved this problem in 3 and 4 dimensions (completely only for the
color group SU(2)) [54, 55], introducing dual variables on the lattice and
taking the continuous limit. To our surprise, we got some version of the
Regge gravity, but with a certain “ethereal” term, violating general covari-
ance (which the Yang–Mills theory, of course, does not possess). The entire
content of the Yang–Mills theory was determined by this ether term (of a
simple form), without it the theory was empty and led to some variant of
topological theory. At d = 3 and for the group SU(2), the theory reduced
to Einstein’s gravity, which is thus a topological theory. This statement had
already been derived before us by E. Witten. We, however, proposed new
types of topological theories, including those in 4 dimensions. All of them
belonged to the class of the so-called BF (Batalin–Fradkin) theories, which
are now being intensively studied as candidates for the role of a consistent
theory of gravity. Our theories had a grandiose symmetry, which included as
a small subgroup the group of diffeomorphisms. The “ethereal” term softly
violated this symmetry, turning the topological theory into the Yang–Mills
gauge theory. We have not been able to figure out the dynamics of these
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theories, although we have returned to this issue several times. I still think
it is a very interesting topic to think about.

Fig. 17. Discussing confinement. G. ’t Hooft and D. Diakonov.

Gradually, we came to the conclusion that the properties of confinement
could be understood, only by considering QCD at non-zero temperature (and
density). The point is that at T ̸= 0, all possible degrees of freedom become
excited. Confinement means that a significant part of them have infinite
mass. This is especially evident in the limit of a large number of colors,
where only Nc-independent number of hadrons survive, when numbers of
N2

c −1 gluons and Nc quarks go to infinity. Therefore, the behavior of ther-
modynamic quantities cannot be described in a model in which confinement
does not take place.

Mitya has already made forays in this direction — so, he calculated
the corrections to the well-known Weiss potential for the Polyakov loop in
the limit of high temperatures [56]. He also applied the instanton vacuum
model to figure out the QCD behavior at very high densities. In this case,
he showed that the phenomenon of color superconductivity (in the spirit of
F. Wilczek) arises, and calculated the magnitude of the color condensate
[57]. The work of P. van Baal, who showed that at temperature T ̸= 0,
instantons melt into dyons in states with the non-zero Polyakov loop, which
appeared at that time, played an important role. This work was all the more
important because by that time we had made an excursion into the SUSY
version of QCD [58] (with the aim of explaining the well-known paradox



From Instantons to Pentaquarks 3-A1.25

with the gluino condensate in supersymmetric theories) and knew well that
it is the dyons that are responsible for confinement in compactified, exactly
solvable supersymmetric theories. As a result, we came up with the following
plausible picture of confinement emergence in QCD at non-zero temperature.

It is well known that the order parameter for the confinement and de-
confinement phases is the so-called Polyakov loop

P =

〈
P exp

1/T∫
0

dtA4(x)

〉
. (25)

In the confinement phase P = 0, and in the deconfinement phase, it is dif-
ferent from zero, which is a manifestation of the center group (a subgroup of
the color group SU(Nc)) symmetry violation. Matrix P is not invariant with
respect to gauge transformations, but its eigenvalues are gauge-invariant. In
the SU(2) group, they can be parameterized as {eiv, e−iv} (vT is the average
field A4 in a given state).

Let us construct effective potential for v. At high temperatures, this
can be done using perturbation theory, the corresponding potential is called
the Weiss potential. It is a periodic function with minima at v = 0, 2π, . . .
corresponding to P = 1 (see Fig. 18). The average value of the field v
is close to this minimum, i.e. in vacuum P = 1, i.e. we are in the de-
confinement phase. Perturbative corrections in the coupling constant and
non-perturbative contributions arise at lower temperatures.
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Fig. 18. Effective potential for the Polyakov loop in perturbation theory, dyonic
vacuum, and SUSY theories.



3-A1.26 V. Petrov

At v ̸= 0 (and temperatures not low), instantons melt, as already men-
tioned, into dyons, so it is natural to construct a vacuum model based on
dyons. However, this theory differs from the theory of instanton vacuum
in many ways. By definition, dyons are pseudoparticles that have non-zero
electric and magnetic color charges. There are 4 types of dyons in the SU(2)
group, which correspond to four possible values ±1 of both charges and inter-
act via a weakly decreasing (Coulomb) potential. Under no circumstances,
this interaction is small at large distances (for instantons, the interaction
decreases at least as 1/R4). This interaction is quantum, i.e. it is con-
tained in the 1-loop correction to the dyonic configuration. The existence
of strong long-range interactions greatly complicates the theory. On the
other hand, a dyon has fewer collective coordinates, it has neither size nor
color orientation. The only collective coordinate is the position of a dyon in
4-dimensional space-time. When two dyons merge into an instanton, these
2×4 = 8 variables form 8 collective coordinates of instanton (group SU(2)):
4 — for position, one — for size and 3 coordinates for color orientation.

First of all, it was necessary to calculate quantum corrections to the
dyonic configuration. Unlike the instanton, this was not done, and we,
together with our students N. Gromov and S. Slizovsky, determined the
quantum weight of the dyons in [59]. We constructed a theory of dyonic
vacuum in [60].

It turned out that the effective potential for the Polyakov loop induced
by dyons has minima at v = π, 3π, . . . (not at v = 0, 2π, . . .), where P = 0.
Qualitatively, this effective potential coincides with the potential in SUSY
theories, but in those theories, the situation is simpler, since the contribution
of perturbation theory is missing (the contributions of gluons and gluinos
completely cancel out). Therefore, there is no phase transition in super-
symmetric theories. In QCD, however, there is a competition between the
perturbation theory and dyon contributions. As the temperature decreases,
the dyon contribution begins to dominate, and at a certain temperature
Tc the minimum abruptly (first-order phase transition in all groups except
SU(2)) shifts to the point v = π, corresponding to P = 0. Hence, the
confinement–deconfinement phase transition occurs at T = Tc.

The theory of the dyon vacuum agrees with the lattice measurements not
only qualitatively but also quantitatively. We calculated phase transition
temperatures and topological susceptibility for different values of Nc and
compared them with the available lattice data. The agreement is at the
level of 10%, the trends of change of the values in our data and on the
lattice coincide (see Table 2).
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Table 2. Comparison of the dyon vacuum theory with lattice measurements for the
phase transition temperature Tc and topological susceptibility ⟨Q2

t ⟩ in units of the
string tension σ.

Nc 2 3 4 ∞
Tc 0.7425 0.6430 0.6150 0.5830

lattice 0.7091 0.6462 0.6344 0.5970
⟨Q2

t ⟩1/4 0.5 0.439 0.4831 434
lattice 0.420 0.399 0.387 0.376

By calculating the correlator of two Polyakov loops, we showed that the
potential between heavy quarks actually increases linearly with distance, and
at the point of the phase transition, the linear potential abruptly turns into
zero. It is interesting that at the same time the spatial Wilson loop almost
does not change. This corresponds to the lattice data. On the other hand,
we have verified that at low temperatures, the “spatial” tension becomes
equal to the tension determined from the linear potential. This shows that
at low temperatures the theory indeed goes to the 4-dimensionally invariant
limit.

An interesting question is about the tension of the string in different
representations. In a theory with the group SU(Nc), there should existNc−1
different string tensions corresponding to Nc − 1 antisymmetric irreducible
representations (other representations can be reduced to these by screening
with some number of perturbative gluons). We have obtained the following
general formula:

σk = σ0 sin
πk

Nc
. (26)

This formula agrees very well with the lattice data, even better than the
famous “Casimir scaling” which is thought to be derived from the lattice data.
Interestingly, the same formula arises in the exactly solvable supersymmetric
Seiberg–Witten model.

Since dyons are produced by melting instantons, our theory of the dyon
vacuum should smoothly match the instanton model. There is one exception:
the topological susceptibility is of order one in the dyon vacuum (as it should
be), and not of order Nc, as in the instanton vacuum. The gluon condensate
is proportional to Nc and is equal (for Nc = 3)〈

G2
µν

32π2

〉
≈ (240 MeV)4 . (27)

This is quite close to both the value obtained in the instanton vacuum and
to the experimental data.
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Unfortunately, we did not manage to fully trace the connection between
the dyon vacuum and the instanton model, since our methods lose their
applicability at low temperatures.

In recent years, Mitya has become interested in the theory of gravity.
We wanted to have an example of a consistent gravity theory based on field
theory (rather than on strings). However, it seemed obvious that Einstein’s
gravity is just a low-energy limit of some more general self-consistent the-
ory. Mitya treated gravity in exactly the same way as an effective chiral
Lagrangian, considering Einstein’s gravity as a first term in a gradient ex-
pansion. In this regard, he did work that, oddly enough, no one had done
before him: classified all possible actions of a given order in gradients.

A more general, than Einstein’s, theory of gravity, of course, contains
torsion, so the authors of [61] still had to figure out what it leads to. The con-
clusion was that torsion only induces a 4-fermion interaction of the “current-
by-current” type, with a structure similar to the weak interaction, but with
a constant many orders of magnitude smaller. Therefore, it is unlikely to be
observed under any conditions.

Fig. 19. Quantum gravity. A. Vladimirov and D. Diakonov, 2012.

Any quantum theory of gravity contains a fundamental problem that
worried Mitya a lot and which we discussed with him many times: its action
is not positive definite. The functional integral with such an action diverges
for large values of the gravitational field. It seems there are only two pos-
sible solutions to this problem: either the integration domain in the correct
theory of gravity is bounded in some way (this is not easy to do, because the
boundary should not violate unitarity and causality), or the theory contains
only fermion fields for which the functional integral converges with any ac-
tion, and the graviton is a composite particle. Mitya (unlike me) adhered
to the second point of view. In [62], he and A. Vladimirov formulated a
program for constructing theories with a composite graviton and gave some
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simple (two-dimensional) examples, how such a theory could work. Mitya
had high hopes for this program, but he did not have time to move along
this path far enough.

***
On Thursday, December 20, 2012, Mitya and I, as always, were working

at my place in Gatchina — discussed baryon resonances in the chiral theory
of the nucleon10. I parted with him Friday evening, and the next day, in the
morning, he suffered a severe heart attack, and three days later, despite all
medical efforts, he died.
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