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1. Remembrance

The horn signal used to call everyone for coffee to the windowless so-
cial room of the Theoretical Physics Department II of the Ruhr Universität
in Bochum. There, among all the friends of the group headed by dearest
Klaus Goeke, many brilliant ideas were coined and discussed, with the three
friends commemorated in this volume playing leading roles. Out of the
many concepts that originated there, those from Maxim and collaborators
continue to be particularly important in our humble research. In particu-
lar, the D (druck) term [1] in the generalized parton distributions, hence
in the gravitational form factors (GFFs) related to matrix elements of the
stress-energy-momentum (SEM) tensor, as well as the interpretation of the
matrix elements of the energy-momentum tensor via the physically intuitive
mechanistic properties of hadrons [2, 3], are at the core of this paper.

2. Stress-energy-momentum tensor in the pion

2.1. Introduction and scope

The SEM tensor has appeared as a universal Noether current in any
Quantum Field Theory textbook since the early days. It has played a de-
cisive role in the theoretical understanding of scale invariance and its viola-
tions [4]. Yet, phenomenological implications for hadronic physics have been
less frequent, mainly due to the impossibility of making direct experimental
or ab initio determinations. The very first mention of the gravitational form
factors that we are aware of was within the context of NN interactions, in
order to characterize the tensor meson exchange [5]. Pagels made the first
study based on analyticity and final-state interactions [6]. The proper tensor
decomposition was written down by Raman [7]. Coupled channel analyses
have been pioneered in Refs. [8, 9], whereas a Chiral Perturbation Theory
(χPT) setup was proposed in [10].

The recent activity in GFFs of the pion has been largely spurred by the
release of accurate lattice QCD data by the MIT group [11, 12], obtained for
all the parton species and close to the physical point, with mπ = 170 MeV.
This ameliorates the seminal studies of the quark parts [13, 14], recently
repeated for mπ = 250 MeV [15], of the gluonic parts [16], or the trace
anomaly component [17] at large mπ. On the experimental side, a method
of extracting GFFs from the γγ∗ → π0π0 data [18] was developed in [19],
with further prospects at Super-KEKB and ILC, where the generalized dis-
tribution amplitudes of the pion could be investigated.

Model calculations of the pion GFFs have been carried out in various
approaches, including [20–35]. In this paper, we extend the meson domi-
nance model [36, 37], applied successfully to the lattice data of [11, 12] (our
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technique was later repeated in [38]), by incorporating explicitly the pertur-
bative QCD (pQCD), computed recently [39, 40], as well as the χPT [10]
pieces. Our analysis is done with the help of the dispersion relations, which
allows us to preserve analyticity when combining various contributions (me-
son dominance, pQCD, χPT) and to satisfy all the required sum rules.

We obtain the transverse densities of the energy-momentum tensor in the
pion and discuss their general features, such as the singular limits at a low
transverse coordinate b, stemming from pQCD, and the high-b asymptotics
following from the threshold behavior of the π–π scattering. For the scalar
(trace anomaly) transverse density, the opposite sign of the low- and high-b
limits proves that it has to change the sign as a function of b. This is
not the case of the charge or the tensor GFFs, which are positive definite.
Finally, we discuss the transverse pressure inside the pion, following from
the gravitational transverse densities.

2.2. The energy momentum tensor

We will use the Hilbert definition of the SEM tensor via the coupling
to gravity, which in the QCD case coincides with the Belinfante–Rosenfeld
definition [41] (see also Appendix E of [42])

Θµν =
i

4
Ψ̄
[
γµ
←→
D µ+γν

←→
D µ
]
Ψ−FµλaF νλa+

1

4
gµνF σλaFσλa+Θ

µν
GF−EOM , (1)

where in the quantized case, one has in addition the gauge-fixing and the
equations-of-motion terms. This object is local, symmetric, Θµν = Θνµ,
conserved ∂µΘ

µν = 0, and from the Lorentz group can be irreducibly de-
composed as a sum of traceful and traceless parts. It is a highly singular
operator which requires renormalization. The trace can be written as an
anomalous divergence of the dilatation current, Dµ = xνΘ

µν , related unam-
biguously to the scale invariance breaking [41], namely

Θ ≡ Θµµ =
β(α)

4α
Gµν2 + [1 + γm(α)]

∑
f

mf q̄fqf . (2)

Here, β(α) = µ2dα/dµ2 = −α[β0(α/4π)+O(α2)] < 0 is the QCD beta func-
tion with β0 = (11Nc−2NF )/3, Nc is the number of colors, NF is the number
of flavors, γm(α) = 2α/π +O(α2) is the quark-mass anomalous dimension,
and f enumerates active flavors. One has α(t) = (4π/β0)/ ln(−t/Λ2

QCD)

with α(t) real for t = −Q2 < 0. We take ΛQ = 225 MeV and NF = 3 in our
numerical studies presented later on.
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2.3. Raman decomposition

The standard tensor decomposition of the SEM tensor matrix element
in the pion state of isospin a, b is

〈
πa
(
p′
) ∣∣Θµν(0)∣∣πb(p)〉 = δab

[
2PµP νA

(
q2
)
+

1

2

(
qµqν − gµνq2

)
D
(
q2
)]

,

(3)
where P = 1

2(p
′ + p), q = p′ − p, and A and D are the gravitational form

factors. For the electromagnetic current, JµQ = Ψ̄γµQΨ , one has

⟨π±
(
p′
)
|JµQ(0)|π

±(p)⟩ = ±2PµF
(
q2
)
, (4)

where F is the charge form factor, to which we shall make frequent references
in the context of our discussion of GFFs for comparison purposes.

The proper decomposition into a sum of two separately conserved ir-
reducible tensors of a well-defined total angular momentum, JPC = 0++

(scalar) and 2++ (tensor), has the form [7]

Θµν = ΘµνS +ΘµνT , ΘµνS =
1

3
QµνΘ ,

ΘµνT = Θµν − 1

3
QµνΘ = 2

[
PµP ν − P 2

3
Qµν

]
A , (5)

where Qµν ≡ gµν − qµqν/q2 (for brevity, we drop here the argument of the
GFFs, which is q2). This decomposition implements a separate conservation
of the scalar and tensor parts, qµΘ

µν
S = qµΘ

µν
T = 0, unlike the and often

used naive decomposition with ΘµνT = Θµν − 1
4g
µνΘ and ΘµνS = 1

4g
µνΘ,

which violated the separate conservation property, since, e.g., qµΘ
µν
S = qνΘ.

The Raman separation of the GFFs, when promoted to the operator level
in QCD, also has the feature that the trace of SEM is singular and requires
renormalization, cf. Eq. (2). From this point of view, Θ and A, carrying good
JPC quantum numbers, should be regarded as the basic form factors [36],
whereas D mixes the quantum numbers and is given as a secondary quan-
tity (albeit naturally appearing in the mechanistic properties [2, 3]) by the
combination

D = − 2

3q2

[
Θ −

(
2m2

π −
1

2
q2
)
A

]
. (6)

2.4. Meson dominance versus lattice data

At a phenomenological level, we have found that from the MIT lattice
data [11] at mπ = 170 MeV, one can infer, using χPT to NLO, that in the
range of 0 < −t < 2 GeV2 and for the physical mπ = 140 MeV the GFFs
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can be very satisfactorily described in the single resonance saturation picture
proposed long ago [10]

Θ(t) = 2m2
π +

tm2
σ

m2
σ − t

, (7)

A(t) =
m2
f2

m2
f2
− t

, (8)

with mσ = 0.63(6) GeV and mf2 = 1.27(4) GeV [36]. The gravitational
low-energy constants L11,12,13, as well as the corresponding value of the D
term, D(0) = −0.95(3), have been extracted thereof [37].

3. Transverse densities

3.1. Preliminary

The transverse densities of hadrons in the infinite momentum frame
were advocated in [43–48] as proper objects relating to the probabilistic
interpretation of the parton distributions. In particular, the transverse elec-
tromagnetic (charge) density can be shown to be manifestly positive defi-
nite [45, 46, 49]. Likewise, the transverse Θ++ distribution is also positive
definite (for any hadronic state), as we will demonstrate below. Moreover,
as argued in [50], for spin-0 mesons such as the pion, the 3D Breit-frame
densities are not related to the transverse densities via the Abel transform,
as is the case for the nucleon [51], hence they acquire even more significance.

3.2. Light-cone kinematics for plane waves

We take the conventions p± = (p0 ± p3)/
√
2 = p∓, such that x · p =

p+x− + p−x+ − p⊥ · x⊥ and d4p = dp+ dp− d2p⊥. Also, g++ = g−− = 0
and g+− = g−+ = 1. Let us assume the momentum transfer has only the
q⊥ component, i.e. q+ = q− = 0. The momenta of the pions in the chosen
frame (IMBF, infinite momentum Breit frame) are therefore

p+ = p+
′
= P+ , p− = p−

′
=

1
4q

2
⊥ +m2

π

2P+
, p⊥ = −p⊥′ = −1

2
q⊥ .

(9)
In the light-front quantization (see, e.g., [48] and references therein), the
states on the mass shell are labeled |p+, p⊥⟩. They fulfill the completeness
relation∫

dp+dp−d2p⊥
(2π)4

2πθ
(
p+
)
δ
(
2p+p− − p2⊥ −m2

π

)
|p+, p⊥⟩⟨p+, p⊥| = 1 , (10)
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corresponding to p− = (p2⊥ +m2
π)/2p

+ and p+ > 0, and the invariant nor-
malization〈

p+, p⊥

∣∣∣ p+′
, p⊥

′
〉
= 2p+(2π)3δ

(
p+ − p+′

)
δ2
(
p⊥ − p⊥′) , (11)

which implies the rule to divide with
√
2p+ for the initial and

√
2p+′ for

the final state.
The matrix element of the + component of the electromagnetic current

is 2p+F (q2⊥), and the factor of 2p+ cancels with the one originating from
the normalization (11) (here, this is similar to the instant form case). One
defines the transverse charge density as

F+(b) =

∫
d2q⊥
(2π)2

e−iq⊥·bF
(
q2⊥
)
. (12)

Note that F+(b) corresponds to the + component of the current. The ⊥
components of the current vanish identically in IMBF. For the − component
of the current, we acquire the factor P−/P+ in the integrand, which vanishes
in IMBF when P+ →∞.

Next, let us look at the ++ component of Eq. (3)

Θ++(b) =

∫
d2q⊥

2P+(2π)2
e−iq⊥·b 2P+2

A
(
q2⊥
)
= P+A(b) , (13)

which gives a simple interpretation to A(b) as the relative distribution of
P+ in the transverse coordinate space. Obviously,

∫
d2bΘ++(b) = P+. For

the +− component, we have

Θ+−(b) =

∫
d2q⊥

2P+(2π)2
e−iq⊥·b

[
2P+P−A

(
q2⊥
)
+

1

2
q2⊥D

(
q2⊥
)]

, (14)

where we have used g+− = 1. With the kinematics (9), we get immediately

Θ+−(b) =
1

2P+

∫
d2q⊥
(2π)2

e−iq⊥·b
[(
m2
π +

1

4
q2⊥

)
A
(
q2⊥
)
+

1

2
q2⊥D

(
q2⊥
)]

.

(15)
The −− component is strongly suppressed, ∼ 1/P 3

+, and involves only A in
the chosen frame. The transverse components are

Θij(b) =
1

2P+

∫
d2q⊥
(2π)2

e−iq⊥·b 1

2

[
qi⊥q

j
⊥ − δ

ijq2⊥

]
D
(
q2⊥
)

= δijp(b) +

[
bib j

b2
− 1

2
δij
]
s(b) , (16)
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where p(b) is the transverse pressure and s(b) denotes the transverse shear
forces. The trace GFF is

Θµµ(b) = 2Θ+−(b)−Θ11(b)−Θ22(b)

=
1

2P+

∫
d2q⊥
(2π)2

e−iq⊥·b
[
2

(
m2
π +

1

4
q2⊥

)
A
(
q2⊥
)
+

3

2
q2⊥D

(
q2⊥
)]

=
1

2P+

∫
d2q⊥
(2π)2

e−iq⊥·bΘ
(
q2⊥
)
=

1

2P+
Θ(b) . (17)

The normalizations are
∫
d2bΘµµ(b) = m2

π/P
+ and

∫
d2bΘ(b) = 2m2

π. In
the above formulas, the normalization factors of 1/(2P+) factor out of the
Fourier transforms, in contrast to the instant form quantization, where
1/(2P 0) = 1/(2

√
m2
π + q2⊥/4) remains inside the integral and largely affects

the interpretation, in particular for light hadrons.

3.3. Intrinsic properties versus form factors

From a quantum mechanical point of view, intrinsic physical properties
are obtained as expectation values of self-adjoint operators in a normaliz-
able quantum mechanical state |ψ⟩, ⟨A⟩ψ = ⟨ψ|A|ψ⟩. However, form factors
by themselves are non-diagonal matrix elements between plane waves. The
use of the light-cone (LC) coordinates has been promoted as a way to pro-
vide a proper definition of intrinsic properties related to form factors, fully
compatible with the probabilistic interpretation. To establish the connec-
tion, instead of the plane waves, one considers wave packets, which in LC
coordinates and for the pion read

|ϕ⟩ =
∫

d2p⊥ dp+

(2π)32p+
ϕ̃
(
p⊥, p

+
) ∣∣p⊥, p+〉 . (18)

From here we have the scalar product

⟨ϕ|ψ⟩ =

∫
d2p⊥ dp+

(2π)32p+
ϕ̃
(
p⊥, p

+
)∗
ψ̃
(
p⊥, p

+
)

=

∫
d2x⊥ dx−ϕ

(
x⊥, x

−)∗ ψ (x⊥, x−) . (19)

The coordinate and momentum representations are related via the Fourier
transform

ψ
(
x⊥, x

−) = ∫ d2p⊥ dp+√
(2π)32p+

ψ̃
(
p⊥, p

+
)
ei(x⊥·p⊥−p+x−) . (20)
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In [44], wave packets localized sharply around pz → ∞ were considered.
An equivalent way is to integrate over the x− coordinate in the local op-
erator, and define the transverse wave packet distribution in the transverse
coordinate b = x⊥

nψ(b) =

∫
dx−|ψ(b, x−)|2 =

∞∫
0

dp+

4πp+

∣∣∣∣∫ d2p⊥
(2π)2

eib·p⊥ψ̃
(
p⊥, p

+
)∣∣∣∣2 . (21)

For local operators, we consider the x+ = 0 quantization surface. Using
translational invariance, O(x) = eiP ·xO(0) e−iP ·x, and after some straight-
forward manipulations, one obtains the intuitive formula for the expectation
value of the electromagnetic current Jµ

⟨ψ|
∫

dx−J+(b, x−)|ψ⟩ =
∫

d2b′nψ
(
b− b′

)
F
(
b′
)
, (22)

where F (b) is the Fourier transform of the charge form factor in the space-
like momentum space

F (b) =

∫
d2q⊥
(2π)2

F
(
−q2⊥

)
e−iq⊥·b . (23)

Next, we define

n+ψ (b) =

∫
dx−ψ∗ (b, x−) i∂+ψ (b, x−)

=

∞∫
0

dp+

4πp+
p+
∣∣∣∣∫ d2p⊥

(2π)2
eib·p⊥ψ̃

(
p⊥, p

+
)∣∣∣∣2 (24)

to obtain, for the quark part Θ++
q ,

⟨ψ|
∫

dx−Θ++
q

(
b, x−

)
|ψ⟩ =

∫
d2b′n+ψ

(
b− b′

)
Aq
(
b′
)
, (25)

where

Aq(b) =

∫
d2q⊥
(2π)2

Aq
(
−q2⊥

)
e−iq⊥·b . (26)

Obviously, for a localized wave packet nψ(b)→ δ(2)(b) and n+ψ (b)→ p+δ(2)(b),
hence one has

⟨ψ|
∫

dx−J+
(
b, x−

)
|ψ⟩ → F (b) , ⟨ψ|

∫
dx−Θ++

(
b, x−

)
|ψ⟩ = P+A(b) ,

(27)
in accordance with Eqs. (12) and (13).
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3.4. Positivity

In QCD, the EM current and SEM in LC coordinates and with the gauge
A+ = 0 (which is ghost free), one has

J+ = Ψ †
+QΨ+ ,

Θ++
q =

i

2

(
Ψ †
+∂

+Ψ+ − ∂+Ψ †
+Ψ+

)
, Θ++

g =
(
∂+Aa⊥

)2
,

Θ++ = Θ++
q +Θ++

g . (28)

Here, Q is the electric charge, Ψ± = P±Ψ , where P± = γ0γ± are orthog-
onal projection operators satisfying P+ + P− = 1, P2

± = P± = P†
±, and

P±P∓ = 0, and the Aaµ is the gluon field. We note that the gluon com-
ponent, Θ++

g , is manifestly positive definite. Importantly, the sum of the
quark and gluon parts is renormalization group invariant.

The field expansion for the quark field in the transverse coordinate
space [45] at x+ = 0 is

q+(b, x
−) =

∞∫
0

dp+

4πp+

∑
λ

[
bλ
(
b, p+

)
uλ,+

(
p+
)
e−ip

+x−

+d†λ
(
b, p+

)
vλ,+

(
p+
)
eip

+x−
]
, (29)

with b†λ(b, p
+) and d†λ(b, p

+) denoting the particle and antiparticle creation
operators with LC helicity λ, respectively. Then∫

dx−q++q+ =
∑
λ

∫
dp+

4πp+
[
n
(
b, p+

)
− n̄λ

(
b, p+

)]
,∫

dx−q++i∂
+q+ =

∑
λ

∫
dp+

4πp+
[
p+nλ

(
b, p+

)
− p+n̄λ

(
b, p+

)]
, (30)

with nλ(b, p
+) = b†λ(b, p

+)bλ(b, p
+) and n̄λ(b, p

+) = d†λ(b, p
+)dλ(b, p

+) de-
noting the particle and antiparticle number operators, respectively. Thus,
for π+ = ud̄,∫

dx−J+
(
b, x−

)
→︸︷︷︸
π+

∑
λ

∫
dp+

4πp+

[
2

3
nu,λ

(
b, p+

)
+

1

3
nd̄,λ

(
b, p+

)]
, (31)

since generally q†+q+ is positive for quarks and negative for antiquarks.
Thus (31), and consequently F (b), are positive definite.
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For Θ++
q , one also finds positivity,∫

dx−
i

2

(
Ψ †
+∂

+Ψ+ − ∂+Ψ †
+Ψ+

)
= i

∫
dx−Ψ †

+∂
+Ψ+

→︸︷︷︸
π+

∑
λ

∫
dp+

4πp+
[
p+nu,λ

(
b, p+

)
+ p+nd̄,λ

(
b, p+

)]
. (32)

To summarize this section, both F (b) and A(b) are intrinsic properties of
the pion which are positive definite. This allows us to interpret F (b) as the
transverse charge distribution, whereas A(b) is the transverse p+ distribution
in the pion. Note that these two distributions do not contain an interacting
piece. One should keep in mind that the formulas and their interpretation
as a whole depend crucially on the LC kinematics and the gauge A+ = 0.
We will show below that the parton–hadron duality makes the positivity
conditions non-trivial, having important implications for the ππ scattering
in the elastic region, which must be attractive in the corresponding JPC

channels.
In each of the considered channels, f = F,A,Θ, the transverse densities

are defined as the Fourier–Bessel transforms

f(b) =

∫
d2q⊥
(2π)2

e−iq⊥·bf
(
q2⊥
)
=

∫
q⊥dq⊥
2π

J0 (bq⊥) f
(
q2⊥
)
, (33)

where J0(z) is a Bessel function1.

4. Dispersion relations and sum rules

4.1. General properties

All the considered form factors vanish sufficiently fast at large space-like
momenta, hence satisfy the unsubtracted dispersion relations

f
(
−Q2

)
=

1

π

∞∫
4m2

π

ds
Imf(s)

s+Q2
, (34)

where Q2 = −q2 = −t is the space-like momentum transfer squared. The
relations make sense, as asymptotically Im f(s) tends to zero sufficiently fast
(see the following) and the integrals converge. For f = F or f = A, one has

1 Note that the positivity of F (b) or A(b) does not necessarily mean the positivity of
the inverse Fourier-transforms into the space-like form factors F (−Q2) or A(−Q2).
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the conditions f(0) = 1 and limQ2→∞Q2f(Q2) = 0, which are equivalent to
the two sum rules

1

π

∞∫
4m2

π

ds
Im f(s)

s
= 1 , (35)

1

π

∞∫
4m2

π

ds Im f(s) = 0 . (36)

For the scalar part of the gravitational form factor, since Θ(0) = 2m2
π, we

get the mass-sum rule

1

π

∞∫
4m2

π

ds
ImΘ(s)

s
= 2m2

π . (37)

The once-subtracted form of (34) is

Θ
(
−Q2

)
= 2m2

π −
1

π

∞∫
4m2

π

ds
Q2

s

ImΘ(s)

s+Q2
, (38)

where one can immediately see that the condition limQ2→∞Θ(−Q2) = 0 is
equivalent to Eq. (37). By a miracle of analyticity, the low-energy condition
for Θ(0) translates into the asymptotic vanishing of Θ(−Q2). For Θ, there
is no sum rule of the form of (36), since the spectral strength decays too
slowly, ImΘ(s) ∼ 1/ ln3 s (see Section 4.3).

The slope-sum rules

df(t)

dt

∣∣∣∣
t=0

≡ f ′(0) = 1

π

∞∫
4m2

π

ds
Im f(s)

s2
(39)

have significance when comparing to χPT and the data. In particular,

Θ′(0) =
1

π

∞∫
4m2

π

ds
ImΘ(s)

s2
= 1 +O

(
m2
π

f2π

)
, (40)

where fπ = 93 MeV (95 MeV for the lattice mπ = 170 MeV [36]). Combining
Eqs. (37) and (39) for Θ, we get

2m2
π

(
1− 2Θ′(0)

)
=

1

π

∞∫
4m2

π

ds
(
s− 4m2

π

) ImΘ(s)

s2
. (41)
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The left-hand side is negative because from χPT it follows that Θ′(0) =
1 + O(m2

π/f
2
π) > 1/2, hence there must be a region in s where ImΘ(s) is

negative. Since it is positive at the origin, it must change the sign. Sum
rule (36) immediately yields that the spectral strengths of F and A also need
to change the sign.

4.2. Sum rules and modeling

In modeling form factors in Q2, one usually distinguishes three regions,
indicated in Fig. 1: low Q2 dominated by threshold expansions and/or χPT,
the high Q2 where pQCD can be applied, and the intermediate region dom-
inated resonances. The difficulty of modeling in Q2 lies in the appropriate
smooth matching of various regions in a way that preserves analyticity. This
is a serious obstacle, as any step functions or their smoothed versions would
unavoidably lead to spurious behavior in the complex t plane. Moreover,
asymptotic expansions in space-like momenta are obviously not meant per se
as analytic functions. An alternative, vastly used to avoid these problems, is
to carry out the modeling in the time-like region, which amounts to assum-
ing proper physically motivated formulas for Im f(s) along the cut. Here,
also we have three regions: the low-s range, described with χPT and ex-
tending from the threshold up to Λ2

χ ∼ m2
ρ, the high-s range controlled by

pQCD, and extending from Λ2
p upwards, and the intermediate range where

resonances dominate. Importantly, we can use physical time-like scattering
data to obtain Im f(s), which is practical in the elastic channel thanks to

ΚΚ

Im s

Re s

f0(500)

f0(965)

ChPT ResonancespQCD

s<0 (space−like) s> 0 (time−like)

ππ

Fig. 1. Different regions in the complex s plane used in the spectral modeling.
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Watson’s final-state theorem, or when the number of open channels is not
too large (typically, in the pion case, one considers only ππ–KK̄ coupled
channels [9].)

According to the dispersion relation (34), the spectral strength from
a given range in s feeds all the values of Q2 (or in general, complex t),
such that analyticity is guaranteed. In particular, as we will see below,
resonances and χPT provide some strength also to the 1/Q2 tails, which
is globally canceled by the contribution from pQCD, in harmony with the
asymptotic sum rule. The role of the constraints following from the disper-
sive sum rules of Section 4 on modeling of the spectral strengths has been
little considered2. Of particular relevance are sum rules (36) and (37), which
relate to the asymptotic behavior of form factors in the space-like region,
and provide global (i.e., involving all the values of s) constraints. From this
perspective, the large mismatch of the experimental or lattice QCD space-
like form factors with the pQCD asymptotics in the available Q2 range is
due to a missing (negative) strength in the corresponding spectral density
at some sufficiently high s [37]. We will explore this issue in the following
parts of this paper.

4.3. Asymptotic consistency

The leading pQCD asymptotic expressions in Q2 are

fp
(
−Q2

)
≃ cf

16πf2πα
(
−Q2

)
Q2

= cf
64π2f2π

β0Q2 ln (Q2/Λ2)
, (42)

Θp

(
−Q2

)
≃ −4β0α

(
−Q2

)2
f2π = − 64π2f2

β0 ln
2 (Q2/Λ2)

, (43)

where the subscript p indicates pQCD, α(−Q2) = α(t) = 4π/[β0 ln(−t/Λ2)],
β0 = 1

3(11Nc − 2Nf ) = 9 with 3 active flavors, and Λ = 225 MeV. To
treat the F and A channels uniformly, since here they differ by a factor
of 3, we introduce the constant cf , with cF = 1 and cA = 3. Analytic
continuation to time-like s yields, along the upper edge of the cut, α(s+iϵ) =
4π/(β0(L− iπ)), with the short-hand notation L = ln(s/Λ2). Then the
spectral densities are

1

π
Im fp(s) = −cf

64π2f2π
β0s (L2 + π2)

, (44)

1

π
ImΘp(s) = − 128π2f2πL

β0 (L2 + π2)2
. (45)

The formulas are valid at s > Λp, a large scale where pQCD sets in.
2 To our knowledge, the only work which discusses the issue (for the case of the charge

form factor of the pion) is [52].
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At first glance, there seems to be a sign clash between Eqs. (44) and (42),
since the kernel 1/(s+Q2) in the dispersion relation (34) is positive definite.
The resolution is linked to the asymptotic sum rule, as we demonstrate
below. Changing the integration variable into L = ln(s/Λ2), we get

fp
(
−Q2

)
= −cf

64π2f2π
β0Q2

∞∫
L0

dL
1

Λ2eL/Q2 + 1

1

L2 + π2
, (46)

where L0 = ln(Λ2
p/Λ

2). At large Q2, the factor 1/(Λ2eL/Q2+1) approaches
the step function θ[ln(Q2/Λ2)− L], hence

fp
(
−Q2

)
≃ −cf

64π2f2π
β0Q2

ln(Q2/Λ2)∫
L0

dL

L2 + π2

= −cf
64π2f2π
β0Q2

[
arctan

(
ln
(
Q2/Λ2

)
/π
)
− arctan(L0/π)

]
= cf

64π2f2π
β0

[
1

Q2 ln (Q2/Λ2)

]
+
df
Q2

+ . . . , (47)

where in the last line we have expanded for asymptotic Q2. The dots indi-
cate sub-leading terms in the large-Q2 expansion. Note that the first term
reproduces, as a check, Eq. (42) with the correct sign, while the second term
is negative, with

df = cf
64π2f2π
β0

[
−1

2
+

1

π
arctan(L0/π)

]
= −cf

64π2fπ
2

β0L0
+ . . . , (48)

where for clarity we have expanded for large Λp/Λ and the dots mean terms
sub-leading in L0. The df/Q2 term (dominant over the 1/[Q2 ln(Q2/Λ2)]
term) is canceled by other contributions to the asymptotics via the sum
rule (36).

For Θ, we get a similar calculation

Θp

(
−Q2

)
≃ −128π2f2π

β0

∞∫
ln(Q2/Λ2)

dL
L

(L2 + π2)2
= − 64π2f2π

β0 ln
2 (Q2/Λ2)

+ . . . ,

(49)
which agrees as a check with Eq. (43). Note that in contrast to the previous
f = F,A case, for Θ, there is no “super-leading” term that needs to be
canceled, in accordance with the fact that there is no asymptotic sum rule
of the form of Eq. (36) for Θ.



Transverse Densities of the Energy-momentum Tensor and . . . 3-A18.15

4.4. Elastic region and threshold behavior

In the elastic region, above the two-pion and below the four-pion pro-
duction threshold, 4m2

π ≤ s ≤ 16m2
π, Watson’s theorem states that

f IJ (s) =
∣∣f IJ (s)∣∣ eiδIJ (s) , (50)

where δIJ(s) are the corresponding ππ elastic scattering phase shifts in the
isospin I and spin J channels. This in particular implies that

Imf IJ (s) =
∣∣f IJ (s)∣∣ sin δIJ(s) , (51)

which for attractive interactions with 0 ≤ δIJ(s) ≤ π is positive. Current
analyses are consistent with the elastic regime, to hold in practice in the
extended range of 4m2

π ≤ s ≤ 4m2
K . Phenomenologically, one has resonance

saturation for the three form factors f = F,Θ,A for Breit–Wigner masses√
s = mR, where δIJ(m

2
R) = π/2 with mR = mρ, mσ, mf2 , respectively.

Also, δIJ(4m
2
K) < π, such that positivity holds

ImA(s), ImF (s), ImΘ(s) ≥ 0 , 4m2
π ≤ s ≤ 4m2

K . (52)

Parametrization of the leading threshold behavior of the π–π scattering am-
plitude tIJ(s) = (e2iδ

I
J (s)−1)/ρ(s), where ρ(s) = (1−4m2

π/s)
1
2 , in the isospin I

and spin J channels is

tIJ(s) = aIJ

(
1

4
s−m2

π

)J
(53)

(which is real). Our convention follows [53], such that the combinations
aIJm

2J are dimensionless. Using Watson’s theorem, one obtains for the cor-
responding form factors the threshold formula to leading order

Im f IJ (s) =
∣∣f IJ (4m2

π

)∣∣ aIJ
√
1− 4m2

π

s

(
1

4
s−m2

π

)J (
1 +O

(
s− 4m2

π

))
.

(54)

4.5. χPT

The NLO expressions from χPT are [9, 10]

1

π
ImFχ(s) =

1

96π2f2π
s

(
1− 4m2

π

s

) 3
2

, (55)

1

π
ImΘχ(s) =

1

32π2f2π

(
2m2

π + s
) (

2s−m2
π

)(
1− 4m2

π

s

) 1
2

, (56)

whereas ImAχ(s) is NNLO in chiral counting, hence numerically tiny, and
we do not include it in the forthcoming model analysis applied to the lattice
data. The formulas are assumed to be valid up to a scale Λχ.
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5. Transverse densities from spectral strengths

With the help of the dispersion relation (34) plugged into (33), one can
write the transverse densities for all channels in the form [54]

f(b) =
1

2π2

∞∫
4m2

π

dsK0

(
b
√
s
)
Im f(s) , (57)

where the order of integration over s and q⊥ has been flipped, which is al-
lowed since the integrals exist. For the cases of F (b) and A(b), the positivity
shown in Section 3.4 is a non-trivial condition since, although K0 > 0, the
sum rules for their spectral densities imply that ImF (s) and ImA(s) cannot
be positive.

Vector-meson dominance for the transverse F (b) was exploited in [55].
A recent and precise analysis considering time-like BaBar data up to s ≤
9 GeV2 with a modulus-phase dispersion relation [56] and consideration of
sum rules [57] allows for a confident estimate for b ≥ 0.1 fm [58].

5.1. Behavior at b→ 0

From Eq. (57) we can readily obtain the low-b behavior of the transverse
densities for the case of f = F,A, expanding K0(b

√
s), where the leading

term at low b is − ln b. However, this piece cancels from Eq. (57) due to the
asymptotic sum rule (36), as derived below. This generic feature is consistent
with the asymptotic behavior of f(Q2) falling off faster than 1/Q2.

For the transverse charge density, the singular behavior at the origin was
first noticed by Miller [59], who considered a Fourier–Bessel transform of the
asymptotic 1/[Q2 ln(Q2/Λ2)] tail. Here, we repeat this analysis starting from
Eq. (57), which for b≪

√
s, we rewrite in the form

f(b) ≃ cf
64π3f2π
β0

1

2π2

1/b2∫
Λ2
p

ds
1

2
ln
(
sb2
) 1

s
(
ln2 (s/Λ) + π2

)
= cf

49πf2π
3β0

[
ln ln

(
1

b2Λ2

)
+

ln
(
b2Λ2

p

)
ln
(
Λ2
p/Λ

2
)] . (58)

The first term (positive singularity) is of the shape found in [59], whereas
the second term (negative and dominant over the first term) is canceled by
other contributions to the spectral density to satisfy the asymptotic sum
rule (36), according to the discussion in Section 4.3. Hence,

f(b) ≃ cf
49πf2π
3β0

ln ln

(
1

b2Λ2

)
. (59)
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For the scalar transverse density, obtaining the low-b limit is more subtle,
as the spectral density is not damped with the 1/s factor, as was the case
of f = F,A. Scaling the integration variable by introducing s = S/b2, we
can write

Θ(b) = −64πf2π
β0b2

∞∫
Λ2
pb

2

dSK0

(√
S
) ln

[
S/
(
Λ2b2

)][
ln2 (S/Λ2b2)

]
+ π2)2

= −128πf2π
β0

1

b2 ln3
(

1
b2Λ2

) + . . . , (60)

where we have expanded for b → ∞ and used
∫∞
0 dS K0(

√
S ) = 2. The

singularity is negative and integrable with
∫
d2 b, as it should.

5.2. Behavior at b→∞
Generally, ππ scattering analyses find that the elastic channel practically

extends up to the KK̄ threshold, thus

f IJ (b) =
1

2π2

4m2
K∫

4m2
π

dsK0

(
b
√
s
) ∣∣f IJ (s)∣∣ sin δIJ(s) +O (e−2mKb

)
, (61)

such that for b≫ 1/(2mK) ∼ 0.2 fm, one has F (b), Θ(b), A(b) > 0, since the
three cases correspond to attractive interactions with 0 ≤ δIJ(s) ≤ π. The
very high-b behavior of the transverse densities is dictated by the s behavior
near the threshold s = 4m2

π. Using Eq. (54) in Eq. (57), we readily obtain
the asymptotic behavior of the transverse densities at b→∞

f IJ (b) = m2
π

∣∣f IJ (s = 4m2
π

)∣∣ (2J + 1)!! e−2bmπ
[
aIJm

2J
]

2J+1π (bmπ)
J+2

. (62)

For the cases of interest, and using the values of the aIJ coefficients extracted
by the Bern [60] (upper values in the formula below) and Madrid–Cracow [61]
(lower values) groups, we can write

F (b) = m2
π

∣∣F (s = 4m2
π

)∣∣ 3 e−2bmπ

4π(bmπ)3

({
0.0379(5)

0.0377(13)
+O

[
(bmπ)

−2
])

,

A(b) = m2
π

∣∣A (s = 4m2
π

)∣∣ 5 e−2bmπ

8π(bmπ)4

({
0.00175(3)

0.00178(3)
+O

[
(bmπ)

−2
])

,

Θ(b) = m2
π

∣∣Θ (s = 4m2
π

)∣∣ e−2bmπ

2π(bmπ)2

({
0.220(5)

0.220(8)
+O

[
(bmπ)

−2
])

. (63)
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Thus, at b→∞, the approach of the above transverse densities to 0 is from
above, which reflects the attractive nature of the π–π interactions in the
channels of interest, manifest in the positivity of aIJ . Combining (63) with
Eqs. (58) and (60), we immediately conclude that Θ(b) must change the
sign, whereas the limits are consistent with the positive definiteness of F (b)
and A(b).

Using the NLO χPT formulas (56) we get, to the leading order in m2
π,

F (b) =
mπ e

−2mπb

32π2f2πb
3

+O
(
b−5
)
, (64)

Θ(b) =
21m4

π e
−2mπb

32π2f2πb
2

+O
(
b−4
)
, (65)

where to this order we take |F (s = 4m2
π)| = 1 and |Θ(s = 4m2

π)| = 6m2
π.

6. Modeling spectral densities with resonances, pQCD, and χPT

According to what has been said above, a generic model for spectral
densities has the form

Im f(s) = Im fχ(s)θ
(
Λ2
χ − s

)
+ Im fR(s) + Im fp(s)θ

(
s− Λ2

p

)
, (66)

with the χPT, resonance, and pQCD regions. This division is rough, as in
reality there is no strict separation. For instance, in the scalar channel, χPT
merges smoothly with the σ meson, building a continuous wide structure in s
from the threshold up to the f0(980) mass squared. On the other end, the
towers of Regge states continue up to the perturbative region at large s,
where they in fact mimic pQCD according to the parton–hadron duality
principle (an example for F is provided in [62]). We do not enter these
issues here, but just take Eq. (66) as useful to estimate the size of various
contributions to the sum rules from Section 4. We take

Λχ = 0.6 GeV , Λp = 3 GeV (67)

to evaluate the χPT and pQCD contributions to sum rules.
For narrow resonances (which is a feature of the large-Nc limit), the

resonance contribution to the spectral densities takes the form of sums of
δ functions
1

π
Im f(s) =

∑
i

aiM
2
i δ
(
s−M2

i

)
,

1

π
ImΘ(s) =

∑
i

biM
4
i δ
(
s−M2

i

)
,

(68)
where Mi are the resonance masses in the appropriate spin–isospin channel
and ai, bi are their dimensionless coupling parameters. In approximations
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with just one resonance, which work phenomenologically remarkably well in
the description of the data in the available Q2-range, one takes the lowest
mass in a given channel. In particular, for F , A, and Θ, one takes M1 = mρ,
mf2 , and mσ, respectively, with corresponding a1 or b1 close to unity. Even
in modeling with more resonances, these lowest states are expected to be
dominant.

However, models with only one dominant resonance cannot satisfy the
sum rules, as can be seen from the numbers collected in Table 1. The
first column of the table describes the type of the sum rule. The following
columns give the χPT contribution to the sum rule, the dominant resonance
contribution, and the LO pQCD contribution. The last column gives the
sum-rule value, to which all the components should sum up. We note that if
we wish to satisfy the charge sum rules for F or A, we need to take a1 ≃ 1,
as the χPT and pQCD corrections are small, but then the asymptotic sum
rule (36) is badly broken. Therefore, as argued in [36], one needs additional
negative contributions to the spectral densities at large s, such that the
asymptotic sum rules are mended, but the charge sum rules preserved.

Table 1. Contributions to the sum rules.

Sum rule χPT Dominant res. pQCD Total
Charge, F , Eq. (35) 0.01 ∼ 1 −0.002 1
Asymp., F , Eq. (36) [GeV2] 0.003 m2

ρ∼ 0.6 −0.1 0

Charge, A, Eq. (35) NNLO ∼ 1 −0.005 1
Asymp., A, Eq. (36) [GeV2] NNLO m2

f2
∼ 1.6 −0.3 0

Mass, Θ, Eq. (37) [GeV2] 0.03 m2
σ ∼ 0.2–0.6 −0.02 2m2

π = 0.02

Slope, Θ, Eq. (40) 0.1 ∼ 1 −0.0004 1 +O(m2
π)

6.1. Model with two resonances

Here, we consider a model where a second resonance, to be treated as
an effective negative strength, is included in each channel3. With two reso-
nances (+pQCD +χPT), for f = F,A we get from the sum rules (35) and
(36)

a1 + a2 + cnr = 1 ,

M2
1a1 +M2

2a2 + anr = 0 , (69)

3 An alternative scenario based on a fractional power based on asymptotics of radial
Regge trajectories [62] (see also [37]) will be treated elsewhere [58].
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where ‘nr’ indicates the (known) non-resonant (χPT + pQCD) contribu-
tions. Both sum rules can obviously be satisfied now, with the solution

a1 =
(1− cnr)M2

2 + anr
M2

2 −M2
1

,

a2 = −(1− cnr)M2
1 + anr

M2
2 −M2

1

, (70)

whereby

f
(
Q2
)
=

(1− cnr)M2
1M

2
2 − anrQ2(

M2
1 +Q2

) (
M2

2 +Q2
) + fnr

(
Q2
)
. (71)

Since f(Q2) = 1, we have cnr = fnr(0). On the other hand, in the limit of
Q2 →∞, we find anr = limQ2→∞Q2fnr(Q

2) (cf. discussion in Section 4.3).
For the case of Θ, we take the mass and slope sum rules

b1M
2
1 + b2M

2
2 + unr = 2m2

π ,

b1 + b2 + vnr = S , (72)

where S = 1 +O(m2
π/f

2
π) is the desired slope. The solution is

b1 = −M
2
2 (S − vnr) + unr − 2m2

M2
2 −M2

1

,

b2 = −M
2
2 (S − vnr) + unr − 2m2

M2
2 −M2

1

, (73)

hence,

Θ
(
−Q2

)
=

(
2m2 − unr

)
M2

1M
2
2 +

[(
2m2 − unr

) (
M2

1 +M2
2

)
− (S − vnr)M2

1M
2
2

]
Q2(

M2
1 +Q2

) (
M2

2 +Q2
)

+Θnr

(
−Q2

)
. (74)

Near the origin

Θ
(
−Q2

)
= 2m2 − unr +Θnr(0)−

[
S − vnr +Θ′

nr(0)
]
Q2 +O

(
Q4
)

(75)

(the prime indicates the derivative with respect to t), hence unr = Θnr(0)
and vnr = Θ′

nr(0). Asymptotically, the resonance contribution falls off as
1/Q2, hence the asymptotics of the full Θ originates from the non-resonant
(pQCD) part, as discussed earlier.
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We remark that the considered model, although schematic in the sense of
placing all the needed negative strength in a single narrow resonance placed
far away in s, is generic. The same features are expected from more involved
modeling, where the negative strength is distributed over an extended region
in s, or in Regge-type modeling with infinitely many resonances. A problem
with more realistic modeling is the multitude of model parameters, not pos-
sible to fix with the presently available data, so much freedom/overfitting is
left. We expect that the large negative strength in the spectral density is
distributed at high s, beyond the range of the presently available time-like
data.

6.2. F

For shortage of space, we do not present the results from the model for
the charge form factor F . We only mention that taking M1 = mρ and
M2 sufficiently high, one can describe the space-like data in a satisfactory
manner, in particular, the flatness of Q2F (Q2) reaching up to Q ∼ 3 GeV.
Importantly, both F (Q2) and F (b) are positive definite. The case is quali-
tatively the same as for A, described in detail below.

6.3. A

For A, we neglect the tiny NNLO χPT contribution, but retain the LO
pQCD piece. The results shown in Fig. 2 are for theM1 set to the PDG value
of the f2(1275) meson and for several large values of M2. The comparison
with the MIT lattice QCD data [11] in the left panel shows that values of
M2 from ∼ 5 GeV upwards are admissible, whereas M2 = 2 GeV is visibly
too low. The values of the couplings for M2 = 5 GeV are a1 = 1.06 and
a2 = −0.056, while cnr = −0.004, in satisfaction of the charge sum rule. Of
course, the coupling of the second resonance is negative, and its contribution
to the asymptotic sum rule is large due to the large value of M2 > M1. The
anatomy of A is shown in the right panel of Fig. 2. We note a very slow
approach to the asymptotic pQCD limit, which reflects the large value of
M2 required by the data. Asymptotically, the 1/Q2 tail contribution from
the resonances is exactly canceled by the pQCD contribution of Eq. (46)
via sum rule (36), leaving the proper pQCD asymptotic tail of Eq. (42). In
Fig. 3, we present the corresponding transverse density (multiplied by 2πb).
We note that it satisfies the positivity condition A(b) > 0 (cf. Section 3.4).
The left panel shows the comparison of several values of M2, whereas the
right panel shows the various components of A(b), with the cancellation at
low b as discussed around Eq. (58).
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Fig. 2. Left: The tensor gravitational form factor of the pion multiplied by Q2,
in the model with two resonances and pQCD for M1 = mf2 = 1.275 GeV and
several values of M2 indicated in the figure. Right: Anatomy of Q2A(Q2) for
M1 = mf2 = 1.275 GeV and M2 = 5 GeV. Full result (solid), the resonance
contribution (dashed), the pQCD contribution (dot-dashed) of Eq. (46), and the
asymptotic limit of Eq. (42) (long dashed). The lattice MIT data are from [11].
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Fig. 3. Left: Tensor gravitational transverse density of the pion in the model with
two resonances and pQCD for M1 = mf2 = 1.275 GeV and several values of M2.
Right: Anatomy of A(b) for M1 = mf2 = 1.275 GeV and M2 = 5 GeV. Full result
(solid), the resonance contribution (dashed), the pQCD contribution (dot-dashed),
and the asymptotic limit of Eq. (58) (long dashed).

6.4. Θ

The results for the scalar gravitational form factor in the model with two
resonances are displayed in Fig. 4. We use an effective sigma meson of mass
mσ = 800 MeV and several values of M2. The slope is set to S = 0.9 [36, 37].
As it is apparent from the plot in the left panel, the lattice data are yet not
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accurate enough to discriminate between different values of M2, with values
from ∼ 2 GeV upwards admissible. The right panel shows the anatomy of
Θ(−Q2). In Fig. 5 we show 2πbΘ(b). We note a singularity at b → 0, the
crossing of zero at b ∼ 0.2 fm, and a non-monotonic behavior of a lower
values of b. The anatomy is displayed in Fig. 6. We note that in the range
∼ 0.01–1 fm, the resonance contribution dominates.
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Fig. 4. Left: The scalar gravitational form factor of the pion in the model with two
resonances, pQCD and χPT for M1 = mσ = 800 MeV and several values of M2.
Right: Anatomy of Θ(Q2) for M1 = mσ = 800 MeV and M2 = 5 GeV. Full result
(solid), the resonance contribution (dashed), the pQCD contribution (dot-dashed)
of Eq. (46), the χPT contribution (dot-dot-dashed), and the asymptotic limit of
Eq. (42) (long dashed). The lattice MIT data are from [11].
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Fig. 5. Left: Scalar gravitational transverse density of the pion in the model with
two resonances and pQCD for M1 = mσ = 800 MeV and several values of M2.
Right: The same as the right panel but for b in the logarithmic scale.
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Fig. 6. Left: Anatomy of 2πbΘ(b) for M1 = mσ = 800 MeV and M2 = 5 GeV. The
asymptotics at low b is from Eq. (60). Right: The same as the right panel but with
the focus on large b and asymptotics from Eq. (65).

6.5. Transverse pressure

Finally, we look at one of the mechanistic properties of the pion, namely,
the transverse pressure, obtained from the two gravitational transverse den-
sities. From Eq. (16), by contracting with δij (i, j = 1, 2), one readily finds

2P+p(b) = −1

4

∫
d2q⊥
(2π)2

e−iq⊥·bq2⊥D
(
−q2⊥

)
= −1

6

∫
d2q⊥
(2π)2

e−iq⊥·b
[
Θ
(
−q2⊥

)
−
(
2m2

π+
1

2
q2⊥

)
A
(
−q2⊥

)]
, (76)

where Eq. (6) has been used. With the behavior of Θ(−q2⊥) and A(−q2⊥)
near 0, we find that

∫
d2b p(b) = 0. Also, 2P+

∫
d2b p(b) = 1

4D(0), which is
the transverse version of the relation given in [3]. From Eq. (76) and the b
representations of the form factors, we find

2P+p(b) = −1

6
Θ(b) +

m2
π

3
A(b)− 1

12
A1(b) , (77)

where

A1(b) = −
∫

d2q⊥
(2π)2

e−iq⊥·bq2⊥A
(
−q2⊥

)
=

∫
d2q⊥
(2π)2

e−iq⊥·b × 1

π

∞∫
4m2

π

ds

[
s

s+ q2⊥
− 1

]
ImA(s)

=
1

2π2

∞∫
4m2

π

dsK0(b
√
s ) s ImA(s) , (78)
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and the term with −1 in the square bracket (that would yield a singular
contribution proportional to δ2(b)) cancels thanks to the asymptotic sum
rule (36). Derivation as for Eq. (60) gives at low b the singularity

A1(b) = −
196πf2π
β0

1

b2 ln2
(

1
b2Λ2

) + . . . , (79)

which is one power of the log stronger than the singularity inΘ(b) of Eq. (57).
From here, we can see that p(b) tends to positive infinity in the b→ 0 limit

2πp(b) =
49πf2π
3β0

1

b2 ln2
(

1
b2Λ2

) +O [ 1(
b2 ln3 b

)] . (80)

On the other end, at b→∞ it approaches 0 from below, hence must change
the sign. This is in compliance with stability, where a positive pressure in
the inner region is balanced with a negative pressure outside.

The above statements concerning pressure arrival are general. We now
pass to an illustration in the model used in the previous sections, with two
resonances in each channel. The results are shown in Fig. 7. We note the
dominance of the resonance contribution in the range of ∼ 0.01–1 fm, and
remarkable smallness of the χPT component, which nevertheless becomes
dominant at large b (above ∼ 3 fm), as required by the limits (63).
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Fig. 7. Left: Transverse pressure in the pion, 2πb 2P+p(b), in the model with two
resonances per A and Θ, pQCD, and χPT. We take mf2 = 1.275 GeV, mσ =

800 MeV, and several values of M2, the same for both channels. Right: Anatomy
of the transverse pressure for M2 = 5 GeV.
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7. Conclusions

In this contribution, we have reviewed some general features of the grav-
itational form factors and the related transverse densities of the pion. We
have used analyticity and the available information from π–π scattering and
pQCD to draw general conclusions on the behavior of these quantities. In
particular, the scalar gravitational transverse density (related to the trace
anomaly) must change the sign as a function of the transverse coordinate
b. On the other hand, the tensor gravitational transverse density (similarly
to the electromagnetic charge case) is positive definite for all values of b,
as deduced in the light-front quantization framework in the A+ = 0 gauge.
This positivity feature allows for a probabilistic interpretation.

The basic properties of the spectral densities, form factors for space-
like momenta, and the transverse densities are collected in Table 2, with
references to the explicit formulas in the text. The signs of the low and
high values of the arguments are indicated. For the spectral densities, the
“low” limit means the behavior right from the 2π production threshold, while
“high” means the asymptotic limit. For the other cases “low” means at zero.

Table 2. Summary of the gravitational properties of the pion.

Quantity Low limit Intermediate range High limit
ImF (s), ImA(s) + Eq. (54) changes sign − Eq. (44)
ImΘ(s) + Eq. (54) changes sign − Eq. (45)
F (−Q2), A(−Q2) + 1 + Eq. (42)
Θ(−Q2) + 2m2

π changes sign − Eq. (43)
F (b), A(b) + Eq. (59) positive definite + Eq. (63)
Θ(b) − Eq. (60) changes sign + Eq. (63)

We have also discussed the implications of the recent MIT lattice QCD
analysis of the pion GFFs in the space-like region for 0 < Q2 < 2 GeV2,
which roughly maps into the b > 0.1 fm region, and shows that the data
can be well described within the meson dominance approach. While a single
resonance per channel suffices to satisfy the sum rules following from the
short-distance constraints of pQCD (the large-Q2 behavior), we have added
the needed negative contribution to the spectral densities in the form of
a delta function and argued it has to appear at sufficiently high s, at least
a few GeV2, not to spoil the agreement with the lattice data.
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