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The gravitational form factors of the deuteron are calculated in the
framework of non-relativistic chiral effective field theory. Non-relativistic
reduction of the matrix element of the energy-momentum tensor operator
for spin-one systems is worked out, and the gravitational form factors of
the deuteron are extracted from the three-point function of the energy-
momentum tensor using the LSZ reduction formula. The obtained form
factors are compared to results of model calculations available in the liter-
ature.
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This paper is dedicated to the memory of our dear teacher, friend, and
colleague Maxim Polyakov. It provides new insights into the structure of
hadronic and nuclear systems encoded in the gravitational form factors, the
activity that has been initiated by Maxim.

1. Introduction

It is a great honor to contribute to this special issue of Acta Physica
Polonica B dedicated to the memory of Mitya Diakonov, Vitya Petrov, and
Maxim Polyakov. These virtuosos of theoretical physics left deep and lasting
footprints in the field of QCD, and they also played a central role in shaping
the research directions of our institute. One of us (E.E.) came across Mitya,
Vitya, and Maxim in the middle of the 1990s, when he came to Bochum as
a student. While working on different topics, it was a truly unforgettable
experience to enjoy the unique, scientifically vivid atmosphere of the TPII
Institute with lively discussions in the “Strong interaction room” and intense
Russian-style seminars. For a personal recollection of this time, see also
a recent paper by another former TPII member Hyun-Chul Kim [1].
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In the last decade, the main scientific connection between Maxim’s and
our groups at the TPII Institute was, of course, the chiral physics. Over the
years, Maxim was also continuously interested (among a plethora of other
things) in probing the internal structure of hadrons with gravity-induced
interactions, see |2, 3| for some of his seminal contributions to the field.
Naturally, he came up with the idea of approaching this problem using the
language of the effective chiral Lagrangian, generalized to curved space-
time [4]. This was how our way-too-short collaboration with Maxim on this
topic started [5-7].

This paper represents a next logical step towards uncovering the struc-
ture of strongly-interacting systems with gravitational probes. Specifically,
we focus here on the gravitational form factors (GFFs) of the simplest nuclear
system, the deuteron, using the framework of chiral effective field theory
(EFT). Triggered by the seminal papers by Weinberg [8, 9], it offers a sys-
tematic formalism with a controlled improvable accuracy. For recent reviews,
see, e.g., Refs. [10-13]. While the electromagnetic structure of the deuteron
has already been extensively analyzed in the EFT framework using various
approaches [14-22|, the GFFs have, to the best of our knowledge, been only
considered in model calculations using a phenomenological nucleon—nucleon
potential [23, 24]; see also Ref. [25] for a related discussion. In the present
work, we fill this gap and extract the GFFs of the deuteron by calculating
the three-point function of the energy-momentum tensor (EMT) in chiral
EFT and applying the Lehmann-Symanzik—Zimmermann (LSZ) reduction
formalism in analogy to Refs. [14, 20]. We employ the non-relativistic formu-
lation of chiral EFT with pions and nucleons as the only dynamical degrees
of freedom.

Our calculation is restricted to the leading-order (LO) nucleon—nucleon
(NN) potential which, according to Weinberg’s power counting, is given
by derivative-less contact interactions and the one-pion exchange. Non-
relativistic expressions for the EMT insertions at LO, next-to-leading or-
der (NLO), and next-to-next-to-leading order (NNLO) are obtained from
the corresponding Lorentz-invariant expressions by applying the standard
heavy-baryon reduction.

Our paper is organized as follows. In Section 2, we briefly outline a
general formalism to calculate the deuteron form factors in quantum field
theory. The integral equations for the deuteron structure functions are dis-
cussed in Section 3, while the actual calculation of the GFFs is presented in
Section 4. A brief summary of the most important results of this study is
provided in Section 5.

2. Gravitational form factors of the deuteron

Matrix elements of conserved EMT operator for spin-1 systems can be
parameterized in terms of six GFFs — the coefficient functions Ao 1(¢?),
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Do 1(¢?), J(¢*), and E(q¢®) of the independent conserved Lorentz struc-
tures [26]
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where (p, o) and (p/, 0’) are the (four-momentum, spin index) quantum num-
bers of the initial and final states, respectively, ¢ = p’ — p is the momentum
transfer, P = (p+ p')/2, while ¢® = e (p/, 0') and €’ = €*(p, o) are the po-
larization vectors. Further, M is a mass scale introduced to render the GFFs
dimensionless. It is often taken equal to the mass of the system m. However,
to avoid mixing of orders in the non-relativistic 1/m-expansion, we prefer
to distinguish between two mass parameters until the non-relativistic reduc-
tion is performed. The one-particle states |p,o) satisfy the normalization
condition

(', d'p,o) =2p" (27)" 6% (p — P') Gpor. (2)

Up-to-and-including zeroth order in the 1/m-expansion (corresponding
to static approximation) for the kinematics with P* = 0, we obtain the
following expressions [27]:
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where the combinations of the form factors are given by

& (~a?) = Ao (~a?) — =+ 4 (-¢%) ,

J(-¢*) = J (-4,
po(ca) = P i e £
Dy (—q?) = ~2La). )

Above, we have chosen the Cartesian basis for three-dimensional polarization
vectors.

Using Eq. (3), we extract below the GFFs of the deuteron from the three-
point function of the EMT operator 7" and two interpolating fields of the
deuteron,

G (p'p) = [ dtadiye "I O[T [DL) T (0) Do()] 10), (6)
using the LSZ reduction formula [14]

. 1
W0 | T Ip, o) = = [(p* = M) (0 = M) G, (0',0) ] 2 sz + (6)

where My = 2my — Ey, is the deuteron mass, Fj, is its binding energy, my
refers to the nucleon mass, while Z is the residue of the deuteron propagator.
The deuteron interpolating field in Eq. (5) is defined as [14]

2
1
D= N'"PN = Z Na,apic,beﬁ,m Pi= % 020472, (7)
a,B,a,b=1

where «, 8 and a, b are the spin and isospin indices, respectively. Notice that
observable quantities do not depend on a particular form of interpolating
fields. The two-point function of the deuteron interpolating fields is given by

12My Z

Gp(p)dye= / d*z e P*(0|T [Dj,, (2)Dy(0)] [0) = dprer M e
d

+N.P.,
(8)

where “N. P.” stands for contributions without the deuteron pole. The vertex
function G2 (p/, p) can be represented diagrammatically as shown in Fig. 1.
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Fig. 1. The three-point function of the EMT operator and two interpolating fields
of the deuteron. Ellipses with D represent the amplitudes of the deuteron in-
terpolating field interacting with a pair of nucleon fields, while T' stands for the
two-nucleon-irreducible part of the vertex function. Solid and wavy lines denote
the nucleons and the EMT insertion, respectively.

3. The deuteron equation

Below, we briefly summarize the derivation of the equation for the deu-
teron structure functions of Ref. [20], applied to the non-relativistic case. In
non-relativistic low-energy EFT, the NN scattering amplitude is obtained
by solving the integral equation

&’k V (p',k) T (k,p)
27)3 myE —k*+ie’

T(,p)=V (. p) - mN/ ( 9)

where E = p?/my denotes the energy of two incoming nucleons in the
center-of-mass frame.

For our calculations, we need the amplitude of the deuteron interpolating
field interacting with a pair of nucleon fields. This quantity in the rest frame
of the deuteron is given by

Bk P;T(pk)
27) myE —k* +ie’

D; (p') =P; + mN/ (10)

where the NN scattering amplitude T' (p’, p) is obtained by solving Eq. (9).
The amplitude D (p’) can be parameterized in terms of two structure func-
tions A7 and As via

D; () = A1 (%) Py 4+ wlh 22 (p7) (09 P, (1)
where we do not show the isospin indices and terms resulting from anti-

symmetrization. Notice that the structure functions A; and A, can be easily
related to the S- and D-state components of the deuteron wave function
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(see also Ref. [28]). To obtain equations for the structure functions A o we
parameterize the NN potential by indicating explicitly the spin indices

Vag.rs (',2) = 0 (P, P) Sardps + va (P, D) (06085 + 0ary0s)
+v2, (9. p) 08,055, (12)
where

o (p',p) = v (p.p) ,

. _abc, b, Ic

(p'.p) = ie™ppvs (P, p) , (13)
vy (P'sp) = S ra(@,p) + 0" vs (P, p) + p"0" vs (P, p)
+ (pap’b +p’“pb> vs (p',p) ,
and v;(p/,p) are scalar functions of p’%, p? and p’ - p. For the structure
functions, we obtain the following system of integral equations:

A (p?) = 1—|—mN/(2d37:;3 G(k:){Al (k%) [v1(p, k) +v2(p, k)+Civs(p, k)]

4, (k) [01 (v1(p. k) + 12(p. ) + 2(p - k)vs(p, )

L2R2(pk) va(p, k) + [(p ) — Cup?] s (p. ) + (k) v, k)}} |

Ag (pQ) = mN/(ng];S G(k) {A1 (kQ) [2Bvy(p, k) + Covs(p, k) + vs(p, k)]

Ay () [02 (1 (p. k) + o, k) + 2 (p - k) v5(p. K))

+Cyvs(p, k) — 2B k:2V3(p, k:) } , (14)

where

B =

(15)

-k 1 AV AV )
pk oL RT3k —kpT
p? 2 p? 2pt

For our calculations of the deuteron GFFs, we consider the regulated
leading-order NN potential of chiral EFT given by

/14
Vo(p',p) = (Cs+Croi-0
o (0',p) (Cs TO1-02) (p/2+/12) (p? + A2)
gi 01‘(p/—p)02‘(p/—p) AQ_M% 16
Tap2 TV (' —p)2+Mz (P —p)?+4A%’ 1)

which corresponds to
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where Cg and Ct are low-energy coupling constants of the leading-order NN
contact interaction Lagrangian [8, 9], ga is the nucleon axial charge, while
M, and F; are the mass and the decay constant of the pion, respectively. In
the above expressions, we have introduced a smooth cutoff with a parameter
A to regularize ultraviolet divergences. The employed regulator for the one-
pion-exchange potential does not modify its longest-range part (i.e., the left-
hand cut in the on-shell partial-wave two-nucleon amplitude closest to the
physical region) and the physics related to it [29, 30]. For the same reason,
we adopted the effective value of the axial coupling constant ga = 1.29 [31]
that takes into account the Goldberger—Treiman discrepancy. Note that our
regularization procedure violates EMT conservation, which could potentially
lead to the appearance of contributions to the form factors proportional to
positive powers of A, which cannot be absorbed by counter terms of the effec-
tive Lagrangian allowed by symmetries. However, as we will see from our re-
sults, such effects appear to be rather small. A more systematic approach can
be developed by applying a symmetry-preserving regularization [32-34],
which however goes beyond the scope of the current work. We set the
numerical value of the cutoff parameter of the order of the EFT expansion
breakdown scale A ~ Ay ~ 400-600 MeV [35-38|. To analyze the sensitivity
of our results to the choice of the cutoff, we vary it within this range of
A € (400,600) MeV. For the central cutoff value, we choose A = 500 MeV.

To calculate the residue of the two-point function of the deuteron inter-
polating fields it is useful to write the dressed deuteron propagator Gp using
Eq. (11) as

Br A (k)
2n)dmyE —k*+ie

Gp (E,0) = my / +N.P., (18)

where A, (kz2) =/ (kz2) + ’%2 Ao (kz2) and N.P. stands for the non-pole part.
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4. Calculation of the form factors

In this section, we calculate the matrix element of the EMT in the Breit
frame for the initial and final deuteron states with the quantum numbers
(—q/2,0) and (q/2,0"). For the matrix element, we obtain

/| A 2 d3k‘1 d?’kiz ~8
(9/2,0'| T |-q/2,0) = miy (2m)3 (27r)3Do/,cd(k’2)
Tﬁgﬁé;ab,aﬂ (% ko, d —kgskr — 4, —ky — %) DT’aﬁ(kl)

4> o,ab

(kT +p3) (k3 +p)

, (19)

where pg = v/my E} is the deuteron binding momentum and the arguments
of the amplitude in the integrand correspond to the individual momenta
of both nucleons. Comparing the results of calculating the expression of
Eq. (19) with the parameterization of Eq. (3), we extract the GFFs of the
deuteron in the static approximation.

To calculate the order-by-order approximations to the deuteron matrix
element of the EMT, we apply the standard Weinberg power counting for
the few-body sector of chiral EFT [8, 9] to the integral in Eq. (19), see,
e.g., Refs. [39, 40| for details. According to this power counting, the pion
mass and external three-momenta (divided by Ap) count as of order one,
each internal pion (nucleon) line counts as of order minus two (minus one),
the nucleon mass counts as of order minus one (NN power counting, see
Refs. [8-10, 13] for details) and a non-interacting spectator nucleon counts
as of order minus three. Each pionic loop adds four to the overall chiral
order. Interaction vertices originating from the effective Lagrangian of the
order of N count as of chiral order NV, while the vertices corresponding to
EMT have different orders for different components. The EMT correspond-
ing to the first-order Lorentz-invariant Lagrangian generates the vertices
with contributions starting with the order minus one, all other N** order
Lagrangians lead to N*! or higher order contributions in the corresponding
EMT vertices, modulo (enhanced) factors of the nucleon mass in terms with
derivatives acting on the nucelon field. The relevant single-nucleon effective
Lagrangian and the corresponding expression for the energy-momentum ten-
sor can be found in Ref. [4].

In our calculation, we include all diagrams shown in Fig. 2, which contain
contributions to the vertex function up to zeroth order in all components
of the T}, part in the integrand of Eq. (19). Note that chiral expansion
for different components of the deuteron matrix element of EMT starts at
different orders. In particular, the expansion for the 00" component starts at
order —4, whereas the leading contributions to the 0i*" and ij*" components
come from orders —2 and 0, respectively.
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Fig.2. Tree-level diagrams contributing to the vertex function of the EMT op-
erator. Diagrams where the graviton couples to the second nucleon line are not
shown. Solid, dashed, and wavy lines correspond to nucleons, pions, and gravitons,
respectively.

In a fully consistent approach, one would have to include also higher-
order corrections to the nucleon—nucleon potential (T-matrix) as well as
relativistic corrections to the nucleon propagator, at least for Tyg and Ty;.
Obviously, in the present exploratory study, such an unnecessary complica-
tion would provide us with no additional information. Therefore, we stick
to the leading-order NN potential and drop the relativistic corrections to
the nucleon propagator for all gravitational form factors.

The leading contribution to the form factors is given by diagram (a)
in Fig. 2 (and its partner diagram where the graviton couples to another
nucleon) with one EMT insertion in a single-nucleon line. It has the following
form:

. d3k
(a/2.0/| 50 |=a/20) = 4md | 555D+ a/4)

Tyva(k +q/2,k — q/2)DE(k — q/4)

, (20)

[(k +a/4)* + pi] [(k — a/4)* + p]

where, up to the accuracy of our calculation, we have
k:2 ielmnalkmqn q2
Too.a(k 2,k —q/2) = — Z +2c9 ¢*
00,a(k +q/2, q/2) mN+2mN pr. +cs 1 +2c0q7,

: L. m

i€ c
Tosalk+/2,k — q/2) = ks + =70 4 (gt (k- a)ai]

]ﬂkj ialqm C8
miN‘i‘ . (ki€jtm+Ej€itm) — —

Tjalk+a/2,k ~q/2) = 2

[4%6ij—aiq5] -
(21)
Here, cg and cg are coupling constants of the subleading pion—nucleon La-

grangian in curved spacetime [4] and k — ¢/2 and k + q/2 denote three-
momenta of the incoming and outgoing states of the nucleon, respectively.
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Currently, there is no way to estimate the value of the low-energy constant cg,
so we set cg = 0 in all numerical calculations. In the power counting scheme
we employ, the disconnected contributions stemming from diagram (a) of
Fig. 2 are of orders —4, —2, —1, and 0.

The connected two-nucleon diagrams in Fig. 2 are all of chiral order
zero. The regularized contributions of diagrams (b) and (c) to the vertex
function T, (k2+q/4, —k2+q/4; k1 —q/4, —k1—q/4) at the accuracy of our
calculations have the following form (graviton coupling to both, the upper
and lower vertices):

giTl-Tz 01~I;:02-12:A2—M7%

Toop+c = . . ;
‘ R R M2 ka2
Toipre = 0, (22)
) ~
grT1 T2 | o1-k ( I i g ~‘i)
Tiipre = — 28,09 - ke + ko] + K
ij,b+c 4F7% ];;2 I M721_ ij 02 + op) + 09
-k e e —oN | AZ = M2
b (—zaij o1k + Kol + kﬂoi) —
k4 M2 k4 A2

The regularized contributions of diagrams (d) and (e) have the form

2 1. 1. 2 2 42 2
gAT1 T2 o1-koy-k 1 A2—M2 A2 M
TOO,d-‘rE: A 2 9 ! 2~2 |:M7%+kk:| —5 u ) ﬂ—a
4F7T (k —|—M7%> (k _|_M7%) k°+A2% + A2
Toidre =0,
2 o koo -k e .
T%j,d—&-e _ QAZ;—, T2 o1 g2 |:k‘zk2] +EE — (SZ](ME +k- ki)

e (E2+M§> (l?:2+M7%)
/12 _M2 /12 _M2
Xy
k™ + A% k" + A2

(23)

and the result of diagram (f), which corresponds to the coupling of the EMT
to the leading order NN contact interaction vertex, reads

T,y = —2(Cs + Cr)g"”, (24)

where we used the shorthand notation with k = k; — ko — q/2 and k =
k1 — k2 + q/2. Notice that the one-loop corrections to the single-nucleon
EMT are also formally of order zero. However, their contributions result
merely in the renormalization of the nucleon mass, nucleon field, and the cg
and ¢g coupling constants. We have not shown the one-pion-exchange two-
nucleon irreducible diagrams where the EMT couples to a single-nucleon line,
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because their contributions are canceled by 1/my corrections to the one-
pion-exchange nucleon—nucleon potential. This is completely analogous to
the well-known cancellation of the analogous time-ordered perturbation the-
ory contribution to the three-nucleon force at NLO by iterations of the one-
pion-exchange potential including the 1/my correction, see, e.g., Ref. [11].

Using the above expressions, we calculated the GFFs of the deuteron by
solving the integral equations for the deuteron amplitudes and calculating
the matrix elements of EMT numerically. We fixed the coupling constant of
the S-wave nucleon—nucleon contact interaction by reproducing the binding
energy of the deuteron. In Figs. 3 and 4, we show our results using A =
500 MeV together with the results of Ref. 23] for the deuteron GFFs in
the parameterization of Eq. (3)!. The notation for chiral orders of various
form factors follows from the explicit expressions for the matrix elements in
Egs. (21)-(23):

1.0 0
08 — LO+NLO+NNLO

N 0 eeee- LO+NLO .
06 —-- LO h

—— LO+NLO+NNLO
----- LO+NLO

- LO

« He and Zahed

&o
&

« He and Zahed

400 600 800
q, MeV

Fig. 3. Numerical results for the gravitational form factors £ and J of the deuteron
using the cutoff parameter A = 500 MeV. Definitions of the EFT orders are given
in the text. We compare our results with the GFFs by He and Zahed given in
Fig. 3 of Ref. [23]. Notice that our two curves for J coincide due to vanishing NLO
contribution to this form factor.

! Notice that while we plot the figures for ¢ up to 800 MeV to compare to Ref. [23], our
chiral EFT results cannot be trusted at such large values of the momentum transfer.
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......
cees
LR
.........
.....
......
.o

LO+NLO

0 200 400 600 800 0 200 400 600 800

« He and Zahed

0 100 200 300 400 500
q, MeV
Fig.4. Numerical results for the gravitational form factors D; using the cutoff
parameter A = 500 MeV. Definitions of the EFT orders are given in the text. We
compare our results with the GFFs by He and Zahed given in Fig. 3 of Ref. [23].

— For the form factors & and &, the LO contribution involves diagram
(a) apart from the cg term that forms the NLO contribution, while the
remaining diagrams constitute the NNLO terms.

— For the form factor J, the whole contribution up to the accuracy of
our calculation is generated by diagram (a).

— For the form factors Dy, Dy, and D3, the LO term emerges from di-
agram (a) proportional to cg, while the remaining non-vanishing dia-
grams contribute at NLO.

Our calculated form factors &, &, and J show, as functions of ¢ = |q/,
a similar behavior to those of Ref. [23]|. Note that the deviation from 1 of the
& form factor at ¢ = 0 (corresponding to the mass of the deuteron) is tiny,
which indicates that the effect of the violation of the EMT conservation due
to the non-invariant regularization and the neglected relativistic corrections
is rather small. We fixed the value of the coupling constant cg to cg =
—2.77 GeV~!, such that our calculated value of Dgy(0) coincides with that
of Ref. [23]. The extracted value of cg is of natural size, which allows us to
analyze the convergence of the chiral expansion. The resulting g-dependence
of our form factor Dy is very similar to that of Ref. [23]. On the other
hand, our curve for D5 has a different shape, while the form factor D3 shows
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qualitatively different behavior. This is because the results of Ref. [23], when
recalculated in the GFFs of the parameterization of Eq. (3), lead to D3 which
has a singular behavior at the origin, while this is not the case for our results.
We checked that our numerical results show a very mild cutoff dependence
for values of A between ~ 400 and 600 MeV. The variation of the form
factors is comparable with or smaller than the highest-order contribution
considered. As argued above, residual cutoff dependence is expected to be
further reduced if a symmetry-preserving regulator is used.

The curves in Figs. 3 and 4 demonstrate a reasonable convergence rate of
the chiral expansion for the deuteron gravitational form factors when going
from the LO to NLO and then to NNLO results. The only exception of
the rapid convergence is the small-g region of the form factor D3, which
is caused by the fact that the leading-order term proportional to the cg
coupling constant vanishes at ¢ = 0. One of the factors that accelerate the
convergence is a small typical momentum of the nucleons inside the deuteron
(due to its small binding energy), which enters the convolution integrals in
Egs. (19) and (20).

5. Summary

In this work, we have calculated the GFFs of the deuteron in the frame-
work of chiral effective field theory with pions and nucleons as dynamical
degrees of freedom. We extracted the GFFs by applying the standard LSZ
formalism to the three-point function of the EMT operator and the deuteron
interpolating fields. To obtain the deuteron “wave function” in momen-
tum space, we modified the system of integral equations for the deuteron
of Ref. |20] by adjusting it to our non-relativistic approach. To regularize
the nucleon—nucleon potential consisting of the contact interaction and the
one-pion-exchange parts, as well as the two-nucleon diagrams contributing
to the EMT, we applied a smooth cutoff regularization.

We solved the integral equations for the deuteron, calculated the matrix
element of the EMT numerically, and compared the obtained GFFs of the
deuteron to the results of Ref. [23] by recalculating the latter in terms of
our parameterization. We have fixed the free parameter cg that appears
in our calculations by fitting it to the value of Dy(0) from Ref. [23] and
determined the coupling constant of the S-wave nucleon—nucleon contact
interaction by reproducing the binding energy of the deuteron. The results
of two calculations are found to show a similar behavior as functions of the
momentum transfer for &, &, Dy, and J, while the GFF for Dy shows
a different pattern. As for the form factor Ds, the (recalculated) result of
Ref. [23] has a singular behavior for vanishing ¢ while D3(0) is finite in our
case. We have observed a rather rapid convergence of the chiral expansion for
the gravitational form factors of the deuteron and a mild cutoff dependence
of the results.



3-A19.14 J.YU. PANTELEEVA ET AL.

We thank the authors of Ref. [23] for providing us with their calculated
numerical results for the deuteron GFFs. This work was supported in part by
ERC NuclearTheory (grant No. 885150), by BMBF (grant No. 05P21PCFP1),
by the MKW NRW under the funding code NW21-024-A, by DFG and
NSFC through funds provided to the Sino-German CRC 110 “Symmetries
and the Emergence of Structure in QCD” (NSFC grant No. 11621131001,
DFG Project-ID 196253076 — TRR 110), by the Georgian Shota Rustaveli
National Science Foundation (grant No. FR-23-856) and by the EU Horizon
2020 research and innovation program (STRONG-2020, grant agreement No.
824093).

REFERENCES

[1] H.C. Kim, «Pentaquarks and Maxim V. Polyakovy», Acta Phys. Pol. B 56,
3-A10 (2025), this issue, arXiv:2411.13292 [hep-ph].

[2] M.V. Polyakov, «Generalized parton distributions and strong forces inside
nucleons and nuclei», Phys. Lett. B 555, 57 (2003), arXiv:hep-ph/0210165.

[3] M.V. Polyakov, P. Schweitzer, «Forces inside hadrons: Pressure, surface
tension, mechanical radius, and all that», Int. J. Mod. Phys. A 33, 1830025
(2018), arXiv:1805.06596 [hep-phl].

[4] H. Alharazin, D. Djukanovic, J. Gegelia, M.V. Polyakov, «Chiral theory of
nucleons and pions in the presence of an external gravitational fieldy, Phys.
Rev. D 102, 076023 (2020), arXiv:2006.05890 [hep-phl].

[5] J. Gegelia, M.V. Polyakov, «A bound on the nucleon Druck-term from chiral
EFT in curved space-time and mechanical stability conditions», Phys.
Lett. B 820, 136572 (2021), arXiv:2104.13954 [hep-ph].

[6] E. Epelbaum, J. Gegelia, U.-G. Meifiner, M.V. Polyakov, «Chiral theory of
p-meson gravitational form factors», Phys. Rev. D 105, 016018 (2022),
arXiv:2109.10826 [hep-ph].

[7] E. Epelbaum et al., «Definition of Local Spatial Densities in Hadrons», Phys.
Rev. Lett. 129, 012001 (2022), arXiv:2201.02565 [hep-phl].

[8] S. Weinberg, «Nuclear forces from chiral Lagrangians», Phys. Lett. B 251,
288 (1990).

[9] S. Weinberg, «Effective chiral Lagrangians for nucleon—pion interactions and
nuclear forces», Nucl. Phys. B 363, 3 (1991).

[10] E. Epelbaum, H.-W. Hammer, U.-G. Meifner, «Modern theory of nuclear
forcesy, Rev. Mod. Phys. 81, 1773 (2009), arXiv:0811.1338 [nucl-th].

[11] R. Machleidt, D.R. Entem, «Chiral effective field theory and nuclear forces»,
Phys. Rep. 503, 1 (2011), arXiv:1105.2919 [nucl-th].

[12] H.-W. Hammer, S. Konig, U. van Kolck, «Nuclear effective field theory:
Status and perspectivesy, Rev. Mod. Phys. 92, 025004 (2020),
arXiv:1906.12122 [nucl-th].


http://dx.doi.org/10.5506/APhysPolB.56.3-A10
http://dx.doi.org/10.5506/APhysPolB.56.3-A10
https://arxiv.org/abs/2411.13292
http://dx.doi.org/10.1016/S0370-2693(03)00036-4
http://arxiv.org/abs/hep-ph/0210165
http://dx.doi.org/10.1142/S0217751X18300259
http://dx.doi.org/10.1142/S0217751X18300259
https://arxiv.org/abs/1805.06596
http://dx.doi.org/10.1103/PhysRevD.102.076023
http://dx.doi.org/10.1103/PhysRevD.102.076023
https://arxiv.org/abs/2006.05890
http://dx.doi.org/10.1016/j.physletb.2021.136572
http://dx.doi.org/10.1016/j.physletb.2021.136572
https://arxiv.org/abs/2104.13954
http://dx.doi.org/10.1103/PhysRevD.105.016018
https://arxiv.org/abs/2109.10826
http://dx.doi.org/10.1103/PhysRevLett.129.012001
http://dx.doi.org/10.1103/PhysRevLett.129.012001
https://arxiv.org/abs/2201.02565
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1103/RevModPhys.81.1773
https://arxiv.org/abs/0811.1338
http://dx.doi.org/10.1016/j.physrep.2011.02.001
https://arxiv.org/abs/1105.2919
http://dx.doi.org/10.1103/RevModPhys.92.025004
https://arxiv.org/abs/1906.12122

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

Gravitational Form Factors of the Deuteron 3-A19.15

E. Epelbaum, H. Krebs, P. Reinert, «High-Precision Nuclear Forces From
Chiral EFT: State-of-the-Art, Challenges and Outlook», Front. Phys. 8, 98
(2020), arXiv:1911.11875 [nucl-th].

D.B. Kaplan, M.J. Savage, M.B. Wise, «Perturbative calculation of the
electromagnetic form factors of the deuterony», Phys. Rev. C' 59, 617 (1999),
arXiv:nucl-th/9804032.

D.R. Phillips, T.D. Cohen, «Deuteron electromagnetic properties and the
viability of effective field theory methods in the two-nucleon system», Nucl.
Phys. A 668, 45 (2000), arXiv:nucl-th/9906091.

M. Walzl, U.-G. Meifner, «Elastic electron—deuteron scattering in chiral
effective field theory», Phys. Lett. B 513, 37 (2001),
arXiv:nucl-th/0103020.

D.R. Phillips, «Higher-order calculations of electron-deuteron scattering in
nuclear effective theory», Phys. Lett. B 567, 12 (2003),
arXiv:nucl-th/0304046.

D.R. Phillips, «Chiral effective theory predictions for deuteron form factor
ratios at low Q2», J. Phys. G: Nucl. Part. Phys. 34, 365 (2007),
arXiv:nucl-th/0608036.

S. Kélling, E. Epelbaum, D.R. Phillips, «Magnetic form factor of the
deuteron in chiral effective field theory», Phys. Rev. C' 86, 047001 (2012),
arXiv:1209.0837 [nucl-th].

E. Epelbaum, A.M. Gasparyan, J. Gegelia, M.R. Schindler, «Deuteron
electromagnetic form factors in a renormalizable formulation of chiral
effective field theory», Fur. Phys. J. A 50, 51 (2014),
arXiv:1311.7164 [nucl-th].

A.A. Filin et al., «Extraction of the Neutron Charge Radius from a Precision
Calculation of the Deuteron Structure Radius», Phys. Rev. Lett. 124, 082501
(2020), arXiv:1911.04877 [nucl-th].

A.A. Filin et al., «High-accuracy calculation of the deuteron charge and
quadrupole form factors in chiral effective field theory», Phys. Rev. C' 103,
024313 (2021), arXiv:2009.08911 [nucl-th].

F. He, 1. Zahed, «Deuteron gravitational form factors: Exchange currents,
Phys. Rev. C 110, 014312 (2024), arXiv:2401.09318 [nucl-th].

F. He, 1. Zahed, «Gravitational form factors of light nuclei: Impulse
approximationy, Phys. Rev. C 109, 045209 (2024),
arXiv:2310.12315 [nucl-th].

A. Freese, W. Cosyn, Phys. Rev. D 106, 114013 (2022).

M.V. Polyakov, B.D. Sun, «Gravitational form factors of a spin one
particley, Phys. Rev. D 100, 036003 (2019), arXiv:1903.02738 [hep-ph].

J.Y. Panteleeva, E. Epelbaum, J. Gegelia, U.-G. Meifiner, «Electromagnetic
and gravitational local spatial densities for spin-1 systemsy, J. High Energy
Phys. 2023, 237 (2023), arXiv:2305.01491 [hep-ph].


http://dx.doi.org/10.3389/fphy.2020.00098
http://dx.doi.org/10.3389/fphy.2020.00098
https://arxiv.org/abs/1911.11875
http://dx.doi.org/10.1103/PhysRevC.59.617
http://arxiv.org/abs/nucl-th/9804032
http://dx.doi.org/10.1016/S0375-9474(99)00422-4
http://dx.doi.org/10.1016/S0375-9474(99)00422-4
http://arxiv.org/abs/nucl-th/9906091
http://dx.doi.org/10.1016/S0370-2693(01)00727-4
http://arxiv.org/abs/nucl-th/0103020
http://dx.doi.org/10.1016/S0370-2693(03)00867-0
http://arxiv.org/abs/nucl-th/0304046
http://dx.doi.org/10.1088/0954-3899/34/2/015
http://arxiv.org/abs/nucl-th/0608036
http://dx.doi.org/10.1103/PhysRevC.86.047001
https://arxiv.org/abs/1209.0837
http://dx.doi.org/10.1140/epja/i2014-14051-8
https://arxiv.org/abs/1311.7164
http://dx.doi.org/10.1103/PhysRevLett.124.082501
http://dx.doi.org/10.1103/PhysRevLett.124.082501
https://arxiv.org/abs/1911.04877
http://dx.doi.org/10.1103/PhysRevC.103.024313
http://dx.doi.org/10.1103/PhysRevC.103.024313
https://arxiv.org/abs/2009.08911
http://dx.doi.org/10.1103/PhysRevC.110.014312
https://arxiv.org/abs/2401.09318
http://dx.doi.org/10.1103/PhysRevC.109.045209
https://arxiv.org/abs/2310.12315
http://dx.doi.org/10.1103/PhysRevD.106.114013
http://dx.doi.org/10.1103/PhysRevD.100.036003
https://arxiv.org/abs/1903.02738
http://dx.doi.org/10.1007/JHEP07(2023)237
http://dx.doi.org/10.1007/JHEP07(2023)237
https://arxiv.org/abs/2305.01491

3-A19.16 J.YU. PANTELEEVA ET AL.

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

I. Fachruddin, C. Elster, W. Glockle, «New forms of deuteron equations and
wave function representationsy», Phys. Rev. C 63, 054003 (2001),
arXiv:nucl-th/0101009.

P. Reinert, H. Krebs, E. Epelbaum, «Semilocal momentum-space regularized
chiral two-nucleon potentials up to fifth ordery, Fur. Phys. J. A 54, 86
(2018), arXiv:1711.08821 [nucl-th].

A.M. Gasparyan, M.F.M. Lutz, E. Epelbaum, «Two-nucleon scattering:
Merging chiral effective field theory with dispersion relations», Fur.
Phys. J. A 49, 115 (2013), arXiv:1212.3057 [nucl-th].

E. Epelbaum, W. Glockle, U.-G. Meifsner, «The two-nucleon system at
next-to-next-to-next-to-leading order», Nucl. Phys. A 747, 362 (2005),
arXiv:nucl-th/0405048.

D. Djukanovic, M.R. Schindler, J. Gegelia, S. Scherer, «Improving the
ultraviolet behavior in baryon chiral perturbation theory», Phys. Rev. D 72,
045002 (2005), arXiv:hep-ph/0407170.

D. Djukanovic, J. Gegelia, S. Scherer, M.R. Schindler, « NN scattering in
higher-derivative formulation of baryon chiral perturbation theory,
Few-Body Syst. 41, 141 (2007), arXiv:nucl-th/0609055.

H. Krebs, E. Epelbaum, «Toward consistent nuclear interactions from chiral
Lagrangians. II. Symmetry preserving regularization», Phys. Rev. C' 110,
044004 (2024), arXiv:2312.13932 [nucl-th].

E. Epelbaum, H. Krebs, U.-G. Meifsner, «Improved chiral nucleon—nucleon
potential up to next-to-next-to-next-to-leading order», Fur. Phys. J. A 51,
53 (2015), arXiv:1412.0142 [nucl-th].

R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, «Quantifying
truncation errors in effective field theory», Phys. Rev. C' 92, 024005 (2015),
arXiv:1506.01343 [nucl-th].

E. Epelbaum et al., «Towards high-order calculations of three-nucleon
scattering in chiral effective field theory», Fur. Phys. J. A 56, 92 (2020),
arXiv:1907.03608 [nucl-th].

E. Epelbaum, «High-precision nuclear forces: Where do we stand?», PoS
(CD2018), 006 (2019).

E. Epelbaum, «Four-nucleon force using the method of unitary
transformation», Fur. Phys. J. A 34, 197 (2007),
arXiv:0710.4250 [nucl-th].

H. Krebs, «Nuclear currents in chiral effective field theory», Fur. Phys. J. A
56, 234 (2020), arXiv:2008.00974 [nucl-th].

U. van Kolck, «Few nucleon forces from chiral Lagrangiansy, Phys. Rev. C
49, 2932 (1994).


http://dx.doi.org/10.1103/PhysRevC.63.054003
http://arxiv.org/abs/nucl-th/0101009
http://dx.doi.org/10.1140/epja/i2018-12516-4
http://dx.doi.org/10.1140/epja/i2018-12516-4
https://arxiv.org/abs/1711.08821
http://dx.doi.org/10.1140/epja/i2013-13115-7
http://dx.doi.org/10.1140/epja/i2013-13115-7
https://arxiv.org/abs/1212.3057
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://arxiv.org/abs/nucl-th/0405048
http://dx.doi.org/10.1103/PhysRevD.72.045002
http://dx.doi.org/10.1103/PhysRevD.72.045002
http://arxiv.org/abs/hep-ph/0407170
http://dx.doi.org/10.1007/s00601-007-0194-2
http://arxiv.org/abs/nucl-th/0609055
http://dx.doi.org/10.1103/PhysRevC.110.044004
http://dx.doi.org/10.1103/PhysRevC.110.044004
https://arxiv.org/abs/2312.13932
http://dx.doi.org/10.1140/epja/i2015-15053-8
http://dx.doi.org/10.1140/epja/i2015-15053-8
https://arxiv.org/abs/1412.0142
http://dx.doi.org/10.1103/PhysRevC.92.024005
https://arxiv.org/abs/1506.01343
http://dx.doi.org/10.1140/epja/s10050-020-00102-2
https://arxiv.org/abs/1907.03608
http://dx.doi.org/10.22323/1.317.0006
http://dx.doi.org/10.22323/1.317.0006
http://dx.doi.org/10.1140/epja/i2007-10496-0
https://arxiv.org/abs/0710.4250
http://dx.doi.org/10.1140/epja/s10050-020-00230-9
http://dx.doi.org/10.1140/epja/s10050-020-00230-9
https://arxiv.org/abs/2008.00974
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1103/PhysRevC.49.2932

	1 Introduction
	2 Gravitational form factors of the deuteron
	3 The deuteron equation
	4 Calculation of the form factors
	5 Summary

