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One method for deriving a factorization for QCD processes is to use suc-
cessive integration over fields in the functional integral. In this approach,
we separate the fields into two categories: dynamical fields with momenta
above a relevant cutoff, and background fields with momenta below the cut-
off. The dynamical fields are then integrated out in the background of the
low-momentum background fields. This strategy works well at tree level,
allowing us to quickly derive QCD factorization formulas at leading order.
However, to extend the approach to higher loops, it is necessary to rigor-
ously define the functional integral over dynamical fields in an arbitrary
background field. This framework was carefully developed for the calcula-
tion of the effective action in a background field at the two-loop level in
the classic paper by Abbott «The Background Field Method Beyond One
Loop», Nucl. Phys. B 185, 189 (1981). Building on this work, I specify
the renormalized background-field Lagrangian and define the notion of the
quantum average of an operator in a background field, consistent with the
“separation of scales” scheme mentioned earlier. As examples, I discuss the
evolution of the twist-2 gluon light-ray operator and the one-loop gluon
propagator in a background field near the light cone.

DOI:10.5506/APhysPolB.56.3-A20

1. Reminiscences

Unfortunately, I never met Maxim in person; I only knew his works. On
the contrary, I was fortunate to spend years with Vitya and Mitya at the
LNPI theory group and learned a lot from them. Mitya was always like my
“big brother”, and Vitya was a peer whom I always looked up to. Let me
start with my recollections about Vitya.

I met Vitya in 1970 when we were part of the Leningrad team at the
all-Soviet physics Olympiad. A couple of years later, we ended up at the
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Leningrad University in a small group of students studying “elementary par-
ticle physics”. This was in 1973 when QCD was being formulated, but we
only heard about it a couple of years later when Prof. Gribov gave lectures
on the theory of strong interactions.

After graduating from the university, Vitya and I became “aspirants” —
graduate students at the Leningrad Nuclear Physics Institute. This period
was very exciting; QCD was rapidly developing, and the “Leningrad group”
was one of the best places in the world to study QCD from such experts as
Gribov and Lipatov. Vitya was working on his Ph.D. on a different topic —
Schwinger’s model of confinement — which provided him with a broader un-
derstanding of how quantum field theory operates beyond the calculation of
Feynman diagrams. I believe that knowledge helped him and Mitya develop
an “instanton liquid” model of the QCD vacuum a few years later.

I must admit that, at first, I did not know much beyond Feynman dia-
grams, so I often asked Vitya about various problems outside perturbation
theory. Needless to say, he was always willing to help. While we were not
close friends, we were definitely close peers — we spent 15 years at LNPI
in contact. Even after I left for the U.S., we always met whenever I visited
St. Petersburg.

As I mentioned, if Vitya was my peer, Mitya was like a “big brother”.
During the relatively short time, we worked on QCD sum rules in relation
to exotic mesons, I learned a great deal from him, not only how to derive
formulas but also how to navigate the sometimes uncertain waters of theo-
retical physics. I remember he said that to become well known, one must
study a topic a little bit before the whole community becomes interested in
it. If you study this subject five years before or five years later, you waste
your time — nobody will notice. He once joked that he was probably get-
ting older since he no longer jumped to investigate every new idea coming
from the outside world. This was a completely new perspective for me, as
the culture of the LNPI theoretical department was to study one’s subject
deeper and deeper, without paying attention to events happening in the
outside world. Of course, that approach resulted in having the best experts
in perturbative QCD, but “our vices are the continuation of our virtues” —
we missed out on some important theoretical developments, supersymmetry
being one of them. Mitya was different; after working on pQCD (the famous
DDT paper), he switched to non-perturbative physics and, along with Vitya,
developed the instanton liquid vacuum model.

In the years to come, I always remembered Mitya’s imperative: “Always
be on alert for new ideas floating around”, though I must confess that I did
not follow his advice with enough zeal. Needless to say, we kept in touch
after I left Leningrad, especially when Mitya spent almost a year working at
JLab on pentaquark physics.
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In conclusion, I believe there is no need to praise Mitya’s and Vitya’s
work here — for instance, the instanton liquid is now a well-established
model of the QCD vacuum. I just want to emphasize that they were not
only exceptional physicists but also very good people, and we miss them.

2. Introduction

The background-field technique was invented by Schwinger many decades
ago and since then was extensively used in gauge and gravitational theories,
especially for the calculation of the effective action introduced in the papers
[1–4]. The effective action approach turned out to be very convenient for the
studies of gauge theories with symmetry breaking in the early years of the
Standard Model [5, 6]. In recent years, the effective action was extensively
used for research on the correspondence between BSM models and the so-
called SMEFT — low-energy effective field theory studying possible effects of
addition of higher-dimension operators to SM Lagrangian, see e.g. Ref. [7].

In contrast, in QCD, the background-field method has been applied be-
yond the effective action, primarily to derive factorization formulas for QCD
processes by using successive integration over fields in the functional inte-
gral. The classical example is the QCD sum rules [8], where at first, we
integrate over quark and gluon fields with hard momenta and get perturba-
tive diagrams for coefficient functions in front of the local operators with soft
momenta (vacuum condensates). At this step, it is convenient to treat soft
fields as background fields and use the background-field method. Technical
aspects of using the background-field approach for the QCD sum rules were
discussed in Ref. [9].

Another application of the background-field method is the study of deep
inelastic scattering (DIS) using the light-cone expansion in light-ray opera-
tors [10]. Similar to the approach in QCD sum rules, we begin by integrating
over quark and gluon fields with transverse momenta k⊥ greater than some
factorization scale µ. This step yields coefficient functions that multiply the
light-ray operators with transverse momenta up to µ. At this stage, it is
again convenient to treat fields with k⊥ < µ as background fields and use
the expansion of propagators in the background-field gauge near the light
cone [10]. Recently, this technique has been employed to derive matching re-
lations between lattice calculations of gluon pseudo-PDFs and conventional
light-cone gluon PDFs [11–13].

The background-field method was also used to study the rapidity fac-
torization for high-energy scattering. To understand the high-energy be-
havior of a QCD amplitude, one integrates over fields with rapidity greater
than some “rapidity divide” η, yielding impact factors — coefficient func-
tions multiplying Wilson-line operators with rapidity smaller than η [14]. In
this case, for the purpose of calculating impact factors, gluons (and quarks)
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with rapidity Y < η are treated as background fields. More recently, the
background-field technique has been applied to derive evolution equations
and power corrections to TMD factorization [15–19].

Remarkably, in all these cases, the naive picture of separation between
dynamical fields with momenta above some cutoff and background fields
with momenta below the cutoff works pretty well at the tree level enabling
us to quickly get QCD factorization formulas at the leading order. However,
to get to higher loops, one needs to rigorously define the functional integral
over dynamical fields in an arbitrary background field.

This program was carefully implemented for the calculation of the effec-
tive action in a background field at the two-loop level in the classical paper
[20]. As demonstrated there, if one uses a background-field gauge which
preserves the gauge invariance, one can renormalize only background fields
and leave the quantum dynamical fields inside the loops unrenormalized.

However, to go beyond the effective action and to calculate, for example,
the light-cone expansion of a one-loop propagator in the background field,
one needs to take into account also the renormalization of quantum fields.
In this paper, I specify the renormalized Lagrangian in the background field
and define the notion of quantum average of an operator in the background
field consistent with a naive “separation of scales” scheme. As examples,
I consider the evolution of the twist-2 gluon light-ray operator and the one-
loop gluon propagator near the light cone.

The paper is organized as follows. In Section 3, I define the renormal-
ized Lagrangian in the gluon background field and in Section 4, I illustrate
diagrams which ensure the requirement that a single quantum field cannot
turn to background field(s) in accordance with naive factorization setup.
The evolution of the twist-2 gluon light-ray operator is discussed in Sec-
tion 5 and the one-loop gluon propagator near the light cone in Section 6.
The appendices contain necessary technical details.

3. Renormalized Lagrangian in a background field

First, let us briefly remind how to get an effective action in the back-
ground-Feynman gauge following Abbott’s approach [20, 21]. One defines
the generating functional in the background-Feynman (bF) gauge by the
expression

Z
(
J, Ā

)
= eiW(J,Ā) =

∫
DAµDc̄DcDψ̄Dψ e

i
∫
dz

[
L(A+Ā)+ 1

2(D̄µAa
µ)

2−AµJµ
]
,

(1)
where Ā is the background field, L is the QCD Lagrangian including ghosts
corresponding to the bF gauge-fixing term 1

2(D̄µA
a
µ)

2. We use standard
notation D̄µA

a
ν ≡ ∂µA

a
ν + gfabcĀbµA

c
ν for the covariant derivative.
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The effective action is defined as a Legendre transform of W (J, Ā )

Γ
(
Ã, Ā

)
=W

(
JÃ, Ā

)
−
∫
dx Ja,µ

Ã,Ā
Ãaµ , (2)

where the source JÃ,Ā is that which produces field Ã

Ãaµ(x) =
δW

(
J, Ā

)
δJaµ(x)

=

∫
DΦAµ(x) e

i
∫
dz

[
L(A+Ā)+ 1

2(D̄µAa
µ)

2−AµJ
µ

Ã,Ā

]
. (3)

Hereafter, we denote DAµDc̄DcDψ̄Dψ by DΦ for brevity. As demonstrated
in Ref. [20], the effective action Γ (0, Ā ) defined as

Γ
(
Ā
)
≡ Γ

(
0, Ā

)
=W

(
J0, Ā

)
(4)

with a source J0,Ā = J0(Ā) producing zero field Ã

0 =

∫
DΦAµ(x) e

i
∫
dz

[
L(A+Ā)+ 1

2(D̄µAa
µ)

2−Aa
µJ

a,µ
0 (Ā)

]
, (5)

describes a sum of one particle irreducible (1PI) diagrams with Ā fields as
external legs and quantum A fields inside loops.

Similarly to Eq. (4), I define the vacuum average of operator O in the
background field Ā in the background-Feynman gauge by the formula1〈

Ô
(
A+ Ā

)〉
Ā

=

∫
DΦ O

(
A+ Ā, ψ

)
e
i
∫
dz

[
L(A+Ā,ψ,c)+ 1

2(D̄µAa
µ)

2−Aa
µJ

a,µ
0 (Ā )

]
∫
DΦ e

i
∫
dz

[
L(A+Ā,ψ,c)+ 1

2(D̄µAa
µ)

2−Aa
µJ

a,µ
0 (Ā )

] . (6)

The linear term AaµJ
a,µ
0 (Ā ) in the exponent yields〈

Â
〉
Ā
= 0 , (7)

see Eq. (5). As in the case of effective action (4), this equation ensures that
there is no transition of quantum field A to the background field Ā. This
property is in accordance with the naive factorization requirement that the
“dynamical” field with relevant component of the momentum above some
cutoff cannot go to the “background” field(s) with the momentum below the
cutoff.

1 For simplicity, we do not consider background quark or ghost fields.
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In the leading order, Ja,µ0 = D̄αF̄
a,αµ so the exponent in Eq. (6) takes

the form (for nf flavors of massless quarks)

L
(
A+ Ā

)
+

1

2

(
D̄µA

a
µ

)2 −AνD̄µF̄
µν

= −1

4

(
F̄ aµν

)2
+

1

2
Aaµ

(
D̄2gµν − 2igF̄µν

)ab
Abν − c̄ aD̄µ

(
D̄µ − igµεAµ

)ab
cb

+
∑
f

ψ̄i /̄Dψ − gfabcD̄µA
a
νA

b
µA

c
ν −

g2

4

(
fabcAbµA

c
ν

)2
+ g

∑
f

ψ̄ /̄Aψ (8)

which leads to “bare” propagators in background fields〈
Âaµ(x)Â

b
ν(y)

〉
Ā

=

∫
DΦ Aaµ(x)A

b
ν(y) e

i
∫
dz

[
L(A+Ā )+ 1

2(D̄µAa
µ)

2−AνD̄µF̄µν
]

=

(
x

∣∣∣∣ −i
P 2 + 2igF̄ + iϵ

∣∣∣∣ y)ab
µν

,

〈
ĉa(x)ˆ̄c

b
(y)
〉
Ā

=

∫
DΦ ca(x)c̄ b(y) e

i
∫
dz

[
L(A+Ā )+ 1

2(D̄µAa
µ)

2−AνD̄µF̄µν
]

=

(
x

∣∣∣∣ i

P 2 + iϵ

∣∣∣∣ y)ab ,〈
ψ̂(x)ψ̂(y)

〉
Ā

=

∫
DΦ ψ(x)ψ̄(y) e

i
∫
dz

[
L(A+Ā )+ 1

2(D̄µAa
µ)

2−AνD̄µF̄µν
]

=

(
x

∣∣∣∣ i

/P + iϵ

∣∣∣∣ y) ≡

(
x

∣∣∣∣∣/P i

P 2 + 1
2σF + iϵ

∣∣∣∣∣ y
)
, (9)

where σF ≡ σξηF
ξη = 1

2 [γξ, γη]F
ξη. Here, we use Schwinger’s notations

(x|y) = δ(x − y), (x|pµ|y) = i ∂
∂xµ δ

4(x − y), and (x|Aµ|y) = Aµ(x)δ(x − y).
The operator Pµ is defined by P abµ = iDab

µ = i∂µδ
ab− igfabcĀcµ and the RHS

of the first equation of (9) is understood as(
x

∣∣∣∣ 1

P 2 + 2igF̄

∣∣∣∣ y)
µν

≡
(
x

∣∣∣∣gµνP 2
− 2ig

1

P 2
F̄µνi

1

P 2
− 4g2

1

P 2
F̄µξ

1

P 2
F̄ ξν

+8ig3
1

P 2
F̄µξ

1

P 2
F̄ ξη

1

P 2
F̄ην + . . .

∣∣∣∣ y) . (10)

Next, let us discuss renormalization. Without an external field, the MS-
renormalized QCD Lagrangian in the Feynman gauge has the form
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LF
ren = −1

4
Z3

[
∂µA

a
ν − µ↔ ν + gµεfabc

Z1

Z3
AbµA

c
ν

]2
−
(
∂µA

a
µ

)2
2

−Z̃3c̄
a∂µ

(
∂µ − igµε

Z̃1

Z̃3

Aµ

)ab
cb + Z2

∑
f

ψ̄

(
i/∂ + gµε

ZF
1

Z2

/A

)
ψ , (11)

where µ is the normalization point and ε = 2− d
2 . Note that Z1

Z3
= Z̃1

Z̃3
=

ZF
1
Z2

due to the Ward identities, see e.g. the textbook [22].
In the absence of a background field, the counterterms Zi regularize

all UV divergencies in Feynman diagrams. However, in the case of the
background field, these counterterms are not sufficient to make all Green
functions (6) UV finite. For example, let us consider v.e.v. of integral (6)
with O = 1. In the first order in g2, one obtains (see e.g. the textbook [22])∫

DΦ eiS(A+Ā )+
1
2(D̄µAa

µ)
2− source term

≃
∫
DΦ e

i
∫[

dz 1
2
Aaµ(D̄2gµν−igF̄µν)

ab
Abν+c̄ aD̄2

abc
b+ψ̄(i/∂+g /̄A )ψ

]

= exp

{
ig2b0
(4π)2ε

∫
dx F̄ aλρ(x)F̄

a,λρ(x) + UV-finite terms

}
, (12)

where b0 = 11
12Nc − 2

3nf . Thus, to ensure the UV finiteness of Eq. (12),
we need to add counterterm − ig2b0

(4π)2ε

∫
dx F̄ aλρ(x)F̄

a,λρ(x) to the Lagrangian,

which means renormalization Ā(0) = (1 + 1
2δZ)Ā with δZ = g2b0

16π2ε
. In

general, the background field Āµ is renormalized by the factor Z = Z3
3Z
−2
1

such that Ā0 = Z
1
2 Ā

g0Ā
(0)
µ = gµεĀ

so that the covariant derivative D̄µ = ∂µ − igµεĀµ remains gauge-invariant
after renormalization (recall that g0 = g(µ)µεZ−

1
2 ). For this reason, it is

convenient to define

Āa
µ ≡ gµεĀaµ , F̄a

µν ≡ gµεF̄ aµν = ∂µAa
ν − ∂νAa

µ + fabcAb
µAc

ν (13)

so that the background field Aµ does not depend on the renormalization
point and may be chosen, for example, as eλµ(k) e

ikx to compare with con-
ventional calculations involving matrix elements between gluon states. Also,
note that [D̄µ, D̄ν ] = −iF̄µν .
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Thus, the renormalized Lagrangian in the background field Ā has the
form

L
(
A+ Ā, c, ψ

)
− linear source term

= −1

4

Z 1
2 F̄ aµν + Z

1
2
3

(
D̄µA

a
ν − µ↔ ν

)
+ gµεfabc

Z1

Z
1
2
3

AbµA
c
ν)

2

− 1

2

(
D̄µA

a
µ

)2
−Z̃3c̄

aD̄µ

(
D̄µ−igµε

Z̃1

Z̃3

Aµ

)ab
cb + Z2

∑
f

ψ̄

(
i /̄D + gµε

ZF
1

Z2

/A

)
ψ −AaνJ

ν
0

(
Ā
)

= −Z
4

(
F̄ aµν

)2
+
Z3

2
Aaµ

(
D̄2gµν − 2iF̄µν

)ab
Abν − Z1gµ

εfabcD̄µA
a
νA

b
µA

c
ν

−g
2µ2ε

4
Z2
1Z
−1
3

(
fabcAbµA

c
ν

)2
− Z̃3c̄

aD̄µ

(
D̄µ − igµε

Z̃1

Z̃3

Aµ

)ab
cb +

Z3 − 1

2

×
(
D̄µAaµ

)2
+Z2

∑
f

ψ̄

(
i /̄D+gµε

ZF
1

Z2

/A

)
ψ +Aaν

[
Z

1
2Z

1
2
3 D̄µF̄

a,µν−Ja,ν0

(
Ā
)]
.

(14)

With one-loop accuracy, it can be rewritten as

L
(
A+ Ā, c, ψ

)
−AaνJ

a,ν
0

(
Ā
)

= −1

4

(
F̄ aµν

)2
+

1

2
Aaµ

(
D̄2gµν − 2iF̄µν

)ab
Abν − c̄ aD̄µ

(
D̄µ − igµεAµ

)ab
cb

+
∑
f

ψ̄i /̄Dψ − gµεfabcD̄µA
a
νA

b
µA

c
ν −

g2µ2ε

4

(
fabcAbµA

c
ν

)2
+ gµεψ̄ /Aψ

−1

4
δZ
(
F̄ aµν

)2
+

1

2
δZ3A

aµ
(
D̄2gµν − 2iF̄µν − D̄µD̄ν

)ab
Abν

−c̄ aD̄µ
(
δZ̃3D̄µ − igµεδZ̃1Aµ

)ab
cb

−δZ1gµ
εfabcD̄µA

a
νA

b
µA

c
ν −

g2µ2ε

4
(2δZ1−δZ3)

(
fabcAbµA

c
ν

)2
+ δZ2

∑
f

ψ̄i /̄Dψ

+δZF
1 gµ

ε
∑
f

ψ̄ /Aψ + Aaν

[
1

2
(δZ + δZ3) D̄µF̄

a,µν − δJa,ν0

]
, (15)

where

δZ3 =
g2

16π2ε

(
5

3
Nc −

2

3
nf

)
, δZ1 =

g2

16π2ε

(
2

3
Nc −

2

3
nf

)
,
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δZ2 = − g2

16π2ε

N2
c − 1

2Nc
, δZ =

g2

16π2ε

(
11

3
Nc −

2

3
nf

)
,

δZ̃3 = −δZ̃1 =
g2

16π2ε

Nc

2
, δZF

1 = − g2

16π2ε

(
Nc +

N2
c − 1

2Nc

)
. (16)

Also, in this order

δJν0 (x) =
g2Nc

16π2

(
8

3
Nc −

2

3
nf

)(
x

∣∣∣∣ln µ2p2
∣∣∣∣ z)[∂2Āµ(z)− ∂ν∂µĀν(z)

]
,

(17)
as we will demonstrate below.

4. First perturbative diagrams for the source

It is instructive to see how the linear term in Eq. (15) (the last line in the
RHS) ensures the condition ⟨Aµ⟩Ā = 0. At the g2 level, only the first three
diagrams in Fig. 1 contribute. The result of the calculation of the gluon loop
in the diagram in Fig. 1 (a) is∫

d−p

2i

1

(p2 + iϵ) [(q − p)2 + iϵ]
Γµν,λ(p, q − p)Γ bF

µν,ρ(p, q − p)

=
Γ
(
2− d

2

)
(4π)

d
2 (−q2)2−

d
2

B

(
d

2
,
d

2
− 1

)
5
(
q2gλρ − qλqρ

)
, (18)

where

Γµν,λ(p, q − p) = (2p− q)ρgµν + (−q − p)νgµρ + (2q − p)µgνρ (19)

is (proportional to) the tree-gluon vertex, while

Γ bF
µν,λ(p, q − p) = (2p− q)ρgµν + 2 (qµgνγ − qνgµγ) (20)

is a similar vertex for the emission of a background field Ā by two quantum
gluons which can be read off the term 1

2A
aµ(D̄2gµν − 2iF̄µν)abAbν in the

Lagrangian (15). (The full list of Feynman rules in the background-Feynman
gauge is presented in Ref. [20]).

The ghost contribution in Fig. 1 (b) is proportional to

−
∫
d−p

i

pγ(2p− q)ρ
(p2 + iϵ) [(q − p)2 + iϵ]

=
Γ
(
2− d

2

)
(4π)

d
2 (−q2)2−

d
2

B

(
d

2
,
d

2
− 1

)
q2gγρ − qγqρ

d− 1
(21)
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xx x x x

x
+ .. . +

xx x

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 1. Quantum field in Ā background. Tails with crosses denote background
fields, black circle denotes the source.

and the quark one in Fig. 1 (c) to

−
∫
d−p

i

Tr
{
/pγλ(/p− /q)γρ

}
(p2 + iϵ) [(q − p)2 + iϵ]

= −8
(
q2gλρ − qλqρ

)
B

(
d

2
,
d

2

)
Γ
(
2− d

2

)
(4π)

d
2 (−q2)2−

d
2

. (22)

The sum of these contributions with corresponding color and flavor factors is

(
q2gλρ − qλqρ

)
B

(
d

2
,
d

2
− 1

)
Γ

(
2− d

2

)
(4π)

d
2
(
−q2

)2− d
2

×
[
5d− 4

d− 1
Nc −

2(d− 2)

(d− 1)
nf

]
=
(
q2gλρ − qλqρ

) [1
ε
+ ln

µ2

q2

](
8

3
Nc −

2

3
nf

)
+O(ε) , (23)

so we get〈
Âµ(q)

〉
Ā

Fig. 1 (a)−(c)
=

g2

16π2
qλqρ − q2gλρ

q2

[
1

ε
+ ln

µ2

q2

](
8

3
Nc −

2

3
nf

)
Ā(q)

=
g2

16π2q2

(
8

3
Nc −

2

3
nf

)[
1

ε
+ ln

µ2

q2

] [
∂2Āµ(q)− ∂ν∂µAν(q)

]
(24)

which corresponds to〈
Âµ(x)

〉
Ā

Fig. 1 (a)−(c)
=

g2

16π2

(
8

3
Nc −

2

3
nf

)
∫
dz

(
x

∣∣∣∣ 1p2
[
1

ε
+ ln

µ2

p2

]∣∣∣∣ z)[∂2Āµ(z)− ∂ν∂µAν(z)
]
. (25)
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Now, to get the full expression for ⟨Aµ(x)⟩Ā in the g2 order, we need to
take into account the contribution of the linear term in Eq. (15)〈
Âµ(x)

〉
Ā

Fig. 1 (i)
=

δZ + δZ3

2

(
x

∣∣∣∣ 1p2
∣∣∣∣ z) D̄ξF̄ξµ(z)

− g2

16π2

(
8

3
Nc −

2

3
nf

)∫
dz

(
x

∣∣∣∣ 1p2
[
1

ε
+ ln

µ2

p2

]∣∣∣∣ z)[∂2Āµ(z)− ∂ν∂µAν(z)
]
.

(26)

It is easy to see that δZ+δZ3
2 term exactly cancels the UV contribution in

Eq. (25). As to the finite term in Eq. (25), the finite source δJ was cho-
sen to exactly cancel it. Thus, with the definition (6), we get ⟨A⟩Ā = 0 at
the g2 level in the first order in the background field. As demonstrated in
Appendix A, the second line in Eq. (26) is generalized to a gauge-invariant
expression if all orders in the background field are taken into account at
the g2 level, and after that, the first line in Eq. (26) is canceled exactly. In
higher orders in g, the source should be chosen in a way to ensure ⟨A⟩Ā = 0
property at every order. Note, however, that by gauge invariance the only
UV-divergent linear term should be proportional to D̄µF̄ aµνA

a,ν (see Ap-
pendix A) which means that J0(Ā) is UV-finite.

Looking at the diagrams in Fig. 1, we see that J0(Ā) differs from δΓ (Ā)
δĀ

by
replacement one of the bF vertices (20) with the usual three-gluon vertex (19).
It is worth noting that in, say, scalar theory J0(ϕ̄) =

δΓ (ϕ̄)

δϕ̄
and the compli-

cation in our case is due to the fact that Jµ in Eq. (3) depends both on Ā

and Ã.

5. Renormalization of twist-2 gluon light-ray operator

As an example, let us consider the twist-2 gluon LR operator in pure
gluodynamics

ÔF = g2F̂ aξn(n)[n, 0]
abF̂ ξ,bn (0) , (27)

where n2 = 0. Here, we use standard notations nµV µ ≡ Vn and

[x, y] ≡ Pexp

ig
1∫

0

du (x− y)µAµ(ux+ ūy)


for the straight-line ordered gauge link between points x and y. Hereafter,
ū ≡ 1− u.

As is well known, the counterterms in the Lagrangian (11) are not suf-
ficient to regularize matrix elements of the operator (27) so one needs to
regularize this operator with extra counterterms. To find those, instead of



3-A20.12 I. Balitsky

considering matrix elements of our LR operator between gluon states, we will
consider the matrix element of the operator OF in the background field Ā
defined by Eq. (6)〈

ÔF

(
A+ Ā

)〉
= OF

(
Ā
)

+g2fabcFξ
n(λn)

〈
Âbξ(0)Â

c
n(0)

〉
Ā
+ g2fabc

〈
Âbξ(λn)Â

c
n(λn)

〉
Ā
Fξ

n(0)

+
〈(
D̄ξÂ

a
n − D̄nÂ

a
ξ

)
(λn)

(
D̄ξÂan − D̄nÂ

ξ,a
)
(0)
〉
Ā

+ig2

〈(
D̄ξÂ

a
n − D̄nÂ

a
ξ

) λ∫
0

du
(
[λn, un]Ân(un)[un, 0]

)ab〉
Ā

Fξ,b
n (0)

+ig2Fξ,a
n (λn)

〈 λ∫
0

du
(
[λn, un]Ân(un)[un, 0]

)ab (
D̄ξÂ

b
n − D̄nÂ

b
ξ

)〉
Ā

+ . . . ,

(28)

where Aab ≡ (Tm)abAm in the adjoint representation ((Tm)ab = −ifmab).
The dots stand for higher-order terms in the expansion in quantum field A.
Note that in the RHS of Eq. (28), we omitted terms F̄αn(λn)⟨(D̄αA

a
n −

D̄nA
a
α⟩Ā and ⟨(D̄αA

a
n − D̄nA

a
α⟩ĀF̄αn(0) because they vanish due to Eq. (7).

The four terms in the RHS of this equation are shown in Fig. 2. These
diagrams were calculated in Ref. [10] and the result has the form〈

ÔF

(
A+ Ā

)〉
= OF

(
Ā
)
+
g2µ2ε

16π2ε

1∫
0

du dv K(u, v)OF

(
u, v; Ā

)
+UV-finite terms , (29)

where
OF

(
un, vn; Ā

)
= F̄a

αn(un)[λn, 0]
abF̄α

n(vn) (30)

and the gauge link is also made from Ā fields. The gluon–gluon kernel has
the form

K(u, v) = −4(1− ū− v + 3ūv)θ(u− v)− δ(ū)

 v̄2
v

+ δ(v)

1∫
0

dv′
(v̄′)2

v


−δ(v)

u2
ū

− δ(ū)

1∫
0

du′
u′2

ū

+ 3δ(ū)δ(v) , (31)

where the convention
1∫
0

dxδ(x) = 1 is assumed.
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(d) (e)

x

(a)
(b)

x 0 0

(c)

x 0

0x x 0

Fig. 2. Gluon light-ray operator at one loop.

The corresponding counterterm must subtract the UV divergence from
Eq. (29) so the renormalized LR operator Ôµ

F (n, Â) has the form

Ôµ
F = ÔF − g2(µ)

16π2ε

1∫
0

dudv K(u, v)ÔF (u, v) , (32)

where ÔF (u, v) = g2F̂ aξn(un)[un, vn]
abF̂ ξ,bn (vn) in accordance with Eqs. (27)

and (30). By differentiating with respect to µ, one obtains (recall that
d ln g(µ)
d lnµ = −ε− g2

16π2 b0)

µ
d

dµ
Ôµ
F = − g2µ2ε

16π2ε

1∫
0

dudv K(u, v)Ôµ
F (u, v) (33)

which corresponds to the well-known result

µ
d

dµ

[
F aαn(n)[n, 0]

abFαn(0)
]µ

= −g
2Nc

4π2

1∫
0

dudv

[
K(u, v)− b0

2Nc
δ(ū)δ(v)

] [
F aαn(un)[un, vn]

abFαn(vn)
]µ

.

(34)

6. Light-cone expansion of one-loop propagator
in a background field

As was mentioned above, the Lagrangian (14) is relevant for the cal-
culation of diagrams with quantum fields beyond the tree approximation.
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For example, for the calculation of the one-loop gluon propagator in the
background field, one needs the counterterm

1

2
δZ3A

aµ
(
D̄2gµν − 2iF̄µν − D̄µD̄ν

)ab
Abν (35)

to cancel the corresponding UV divergence in the loop. This was checked by
explicit calculation of the quark-loop contribution to the gluon propagator
in Ref. [23].

The quark-loop contribution to the gluon propagator in the bF (back-
ground-Feynman) gauge has the form〈

Âaµ(x)Â
b
ν(y)

〉
quark loop

=

∫
dz1 dz2

(
x

∣∣∣∣ 1

P 2gµα + 2iFµα

∣∣∣∣ z1)am
×tmγα

(
z1

∣∣∣∣ 1/P
∣∣∣∣ z2) tnγβ (z2 ∣∣∣∣ 1/P

∣∣∣∣ z1)(z2 ∣∣∣∣ 1

P 2gβν + 2iFβν

∣∣∣∣ y)nb . (36)

To get the argument of coupling constant for the rapidity evolution of gluon
TMD by BLM procedure [24], one needs to calculate it near the light cone
(x − y)2 = 0 in the background field with the only component F−i(x+)
with one-F accuracy. The relevant diagrams for the gluon propagator are
shown in Fig. 3. The UV parts of diagrams in Fig. 3 (b), (c) are canceled by
1
2δZ

F
3 A

aµ(∂2gµν − ∂µ∂ν)
abAbν part of the counterterm (35) which is present

in the usual QCD Lagrangian (here δZF
3 = − g2nf

24π2ε
is the quark part of

δZ3). On the contrary, the UV divergence in Fig. 3 (a) diagram requires full
Eq. (35) contribution, and the calculation of that diagram provides a check
of the explicit form of counterterm (35).

(a) (b) (c)

Fig. 3. Quark loop correction to gluon propagator in the background field.

After some simple but lengthy calculations, one obtains [23]

g2Tr taγα

(
z1

∣∣∣∣ 1/P
∣∣∣∣ z2) tbγβ (z2 ∣∣∣∣ 1/P

∣∣∣∣ z1)
− iδZ3

2

(
D̄2gµν − 2iF̄µν − D̄µD̄ν

)ab
δ(z12)

=
ig2

4π2

gαβ
(
z1

∣∣∣∣P 2 ln
µ̃2

−P 2

∣∣∣∣ z2)−
(
z1

∣∣∣∣Pα ln µ̃2

−P 2
Pβ

∣∣∣∣ z2)+ ig

1∫
0

du
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×
[
u

(
Fαξ(zu)

(
z1

∣∣∣∣pξp2
∣∣∣∣ z2)) ←P β −Pα

(
ūFβξ(zu)

(
z1

∣∣∣∣pξp2
∣∣∣∣ z2))

+

(
z1

∣∣∣∣2 ln µ̃2

−p2
− 5

2

∣∣∣∣ z2)Fαβ(zu)

+2iūu

(
z1

∣∣∣∣pξp2
∣∣∣∣ z2) (DαFβξ(zu) + α↔ β)

]}
, (37)

where µ̃2 ≡ µ̄2MSe
5/3. This form is very convenient for light-cone expansion

since any function of P 2 can be rewritten in terms of the integral of a heat
kernel (the light-cone expansion of heat kernels is presented in Appendix B).
Substituting this expression to Eq. (36) and expanding near the light cone,
we obtain after some algebra [23]

〈
Âaµ(x)Â

b
ν(y)

〉ab
quark loop

=
g2

24π2

i
x
∣∣∣∣∣∣gµν ln

µ̃2

−p2

p2
− pµpν

ln µ̃2

−p2

p4

∣∣∣∣∣∣ y
+

i

8π2∆2

×
[
ln

−µ̃2∆2

4
− 1 + 2γ

] 1∫
0

du[x, ux] (u∆νFµ∆(xu)− ū∆µFν∆(xu)) [ux, 0]

− i

16π2∆2

1∫
0

du[x, ux] (ū ln ū∆νFµ∆(xu)− u lnu∆µFν∆(xu)))[ux, 0]

+
iΓ
(
d
2 − 2

)
32π

d
2 (−∆2)

d
2
−2

1∫
0

du[x, ux]

([
− 2

d− 4
− ln

−µ̃2∆2

4
+ ψ

(
d

2
− 1

)
− γE

+6− 4 ln ūu+ u lnu+ ū ln ū
]
Fµν(xu)

+

[
2

d− 4
+ ln

−µ̃2∆2

4
− ψ

(
d

2
− 1

)
− 2 + γE

]
ūu [DµFν∆(xu) + µ↔ ν]

−
[
u2 lnuDµFν∆(xu) + ū2 ln ūDνFµ∆(xu)

])
[ux, 0]

}ab
+O

(
DµFµν ,F2

)
,

(38)

where ∆ ≡ x− y, xu ≡ ux+ ūy, ψ is the logarithmic derivative of gamma-
function, and γE is the Euler constant. The gluon-loop contribution to the
gluon propagator in the background field can be obtained in a similar way,
although the calculations are expected to be much more involved.
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7. Conclusions

As outlined in Introduction, the background-field method is commonly
employed to derive a factorization for certain processes by applying succes-
sive integration over fields in the functional integral. In this framework,
fields with momenta above a relevant cutoff (such as transverse momentum
in collinear factorization or longitudinal momentum in rapidity factoriza-
tion) are treated as quantum fields, while those with momenta below the
cutoff are treated as background fields. A fundamental requirement is that
quantum field cannot turn into background field(s).

At the one-loop level, this distinction is clear and unambiguous. How-
ever, at higher loops, this requirement becomes less well-defined. In this
context, the Lagrangian (14) formalizes the condition that quantum fields
cannot be transformed into “classical” background fields.

As previously noted, calculating the effective action does not require
the renormalization of quantum fields or the inclusion of counterterms for
both background and quantum fields in the Lagrangian. However, to extend
beyond the effective action and, for instance, compute one-loop propagators
in background fields near the light cone, it is necessary to account for the
full set of counterterms as outlined in Eq. (15).

The author is grateful to V. Braun and A. Vladimirov for valuable dis-
cussions. This work is supported by D.O.E. contract DE-AC05-06OR23177
and by grant DE-FG02-97ER41028. This work is also supported by the U.S.
Department of Energy, Office of Science, Office of Nuclear Physics, within
the framework of the Saturated Glue (SURGE) Topical Theory Collabora-
tion.

Appendix A

The source J0(Ā ) at one-loop level in all orders in the background field

In this section, we calculate the explicit form of the source δJ0(Ā ) in the
leading order in g2 but in all orders in the background field. The quantum
field in the Ā background is given by diagrams in Fig. 3 and the source δJ0
should be chosen such that ⟨Â⟩Ā = 0.

Let us first calculate contribution of the diagram in Fig. 4 (a). We get〈
Âα(x)

〉
Ā

Fig. 4 (a)
=

〈
Âaα(x) exp

{
−igµε

∫
dzfmnlÂmµ Â

n
ν

(
DµÂν

)l}〉
Ā

= −igµεfmnl
∫
dz
〈
Âaα(x)Â

m
µ (z)

〉〈
Ânν (z)

(
DµÂν(z)

)l
− µ↔ ν

〉
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− i

2
gfmnl

∫
dz

〈
Âaα(x)

(
DµÂν(z)

)l
− µ↔ ν

〉〈
Âmµ (z)Â

n
ν (z)

〉
= igµεfmnl

∫
dz
〈
Âaα(x)Â

m,µ(z)
〉
Ā

(〈
D̄µÂnν (z)Â

l
ν(z)

〉
Ā

−2
〈
D̄νÂnµ(z)Â

l
ν(z)

〉
Ā
+
〈
D̄νÂnν (z)Â

l
µ(z)

〉
Ā

)
= igµεfmnl

∫
dz
〈
Âaα(x)Â

m,µ(z)
〉
Ā

(
z

∣∣∣∣−Pµ( 1

P 2 + 2iF̄

)
νν

+2Pν

(
1

P 2 + 2iF̄

)
µν

− Pν

(
1

P 2 + 2iF̄

)
νµ

∣∣∣∣∣ z
)nl

. (A.1)

Let us find the UV-divergent part of this contribution. Using formulas (B.7)
and (B.8), one easily obtains

〈
Âaα(x)

〉UV

Ā

Fig. 4 (a)
= − ig

2Nc

16π2
5

2ε

∫
dz
〈
Âaα(x)Â

m,µ(z)
〉
D̄ξF̄mξµ(z) (A.2)

in accordance with Eq. (18). Note that due to explicit gauge invariance
of Eq. (B.7), we obtain the above result in the gauge-invariant form. In
particular, this means that the UV parts of diagrams in Fig. 1 (d), (e), and
(h) are given by the non-Abelian terms in D̄ξF̄ξµ(z).

x x

(a) (b) (c) (d)

+ .. . +
xx

Fig. 4. Quantum field in Ā background. The lines are propagators in the back-
ground field given by Eq. (9).

Similarly, one gets for the ghost diagram in Fig. 4 (b)〈
Âaα(x)

〉
Ā

Fig. 4 (b)
= gµε

∫
dz

〈
Âaα(x)c̄

m
←
D̄µ Âmnµ cn(z)

〉
Ā

= igµεfmnl
∫
dz
〈
Âaα(x)Â

m
µ (z)

〉(
z

∣∣∣∣Pµ 1

P 2

∣∣∣∣ z)nl (A.3)

and the UV part according to Eq. (B.8) has the form

〈
Âaα(x)

〉UV

Ā

Fig. 4 (b)
= − ig

2Nc

16π2
1

6ε

∫
dz
〈
Âaα(x)Â

m,µ(z)
〉
D̄ξF̄mξµ(z) . (A.4)
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For the quark contribution in diagram Fig. 4 (c), one obtains〈
Âaα(x)

〉
Ā

Fig. 4 (c)
= igµε

∫
dz
〈
Âaα(x)

ˆ̄ψÂµγ
µψ̂(z)

〉
Ā

= gµε
∫
dz
〈
Âaα(x)Â

m
µ (z)

〉
Tr

{
tmγµ

(
z

∣∣∣∣∣/P 1

P 2 + 1
2σF̄

∣∣∣∣∣ z
)}

(A.5)

and the UV-divergent part is〈
Âaα(x)

〉UV

Ā

Fig. 4 (c)
=

ig2

16π2
2

3ε

∫
dz
〈
Âaα(x)Â

m,µ(z)
〉
D̄ξF̄mξµ(z) (A.6)

due to Eq. (B.10).
Adding these contributions, we obtain

⟨Aα(x)⟩Ā
Fig. 4 (a)-(c)

= gµε
∫
dz
〈
Aaα(x)A

b,µ(z)
〉
Ā

[
if bcd

(
z

∣∣∣∣−Pµ( 1

P 2 + 2iF̄

)
νν

+ 2Pν

(
1

P 2 + 2iF̄

)
µν

− Pν

(
1

P 2 + 2iF̄

)
νµ

+ Pµ
1

P 2

∣∣∣∣∣ z
)cd

+nfTr

{
tbγµ

(
z

∣∣∣∣∣/P 1

P 2 + 1
2σF̄

∣∣∣∣∣ z
)}]

(A.7)

and the UV-divergent part is〈
Âα(x)

〉UV

Ā

Fig. 3 (a)-(c)
= − ig2

16π2

[
8

3
Nc −

2

3ε
nf

]∫
dz
〈
Âaα(x)Â

m,µ(z)
〉
D̄ξF̄mξµ(z) . (A.8)

Finally, we need to add contribution of the last term in Eq. (15) schematically
shown in Fig. 4 (d).〈
Âα(x)

〉
Ā

Fig. 4 (d)
= i

∫
dz
〈
Âaα(x)Â

b,µ(z)
〉
Ā

[
1

2
(δZ + δZ3)D̄µF̄

b,µν − δJb,ν0

]
.

(A.9)
From Eq. (16) we see that 1

2(δZ+δZ3) =
g2

16π2ε
(83Nc− 2

3nf ) so the UV part of
the contribution of diagrams Fig. 3 (a)–(c) is canceled by the contribution of
the counterterm 1

2(δZ + δZ3). The remaining final part should be canceled
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by δJ0, so we get

δJbν0 (z) = gµεf bcd
(
z

∣∣∣∣−Pµ( 1

P 2 + 2iF̄

)
νν

+2Pν

(
1

P 2 + 2iF̄

)
µν

− Pν

(
1

P 2 + 2iF̄

)
νµ

+ Pµ
1

P 2

∣∣∣∣∣ z
)cd

−igµεnfTr

{
tbγµ

(
z

∣∣∣∣∣/P 1

P 2 + 1
2σF̄

∣∣∣∣∣ z
)}

−UV pole . (A.10)

Note that the first term of the expansion of the RHS in powers of Ā agrees
with Eq. (17). However, the full expression (A.10) is gauge invariant.

Appendix B

Heat kernel expansions

To obtain the expansion of propagators (9) near x = 0, it is convenient
to use the representation in terms of the integrals of corresponding “heat
kernels”. Let us start with a scalar propagator(

x

∣∣∣∣ 1

P 2 + iϵ

∣∣∣∣ y) = −i
∞∫
0

ds
(
x
∣∣∣eisP 2

∣∣∣ 0) =

∞∫
0

ds
(
x
∣∣∣eis(p2+{p,Ā }+Ā2)

∣∣∣ 0) .
(B.1)

Expanding the eis({p,Ā}+Ā
2) in powers of the proper time s and using for-

mulas from Ref. [10], one obtains(
x
∣∣∣eis(P 2−m2)

∣∣∣ 0)
=
(
x
∣∣∣eis(p2−m2)

∣∣∣ 0)
[x, 0] + s

1∫
0

du ūu[x, ux]D̄µF̄µνxν(ux)[ux, 0]

+2is

1∫
0

du

u∫
0

dv ūv[x, ux]xµF̄µξ(ux)[ux, vx]xνF̄νξ(vx)[vx, 0]

+2s2
1∫

0

du

u∫
0

dv [x, ux]
(
ūvF̄ξη(u)[ux, vx]F̄ξη(v) + ū2v2

×xλxρDηF
λξ(u)[ux, vx]D̄ηF̄ρξ(v)

)
[vx, 0]

}
+O

(
D̄ξF̄ξηF̄µν , F̄3

)
. (B.2)
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We also need a heat kernel for gluon operator(
x
∣∣∣eis(P 2+2iF̄−m2)

∣∣∣ 0)
αβ

=
(
x
∣∣∣eis(p2−m2)

∣∣∣ 0)
[x, 0] + sgαβ

1∫
0

du ūu[x, ux]D̄µF̄µx(ux)[ux, 0]

+2isgαβ

1∫
0

du

u∫
0

dv ūv[x, ux]F̄ ξ
x (ux)[ux, vx]F̄xξ(vx)[vx, 0]

−2s

1∫
0

du [x, ux]F̄αβ(ux)[ux, 0]

+s2
1∫

0

du [x, ux]
{
2iūuD̄2F̄αβ(ux)[ux, 0]

+

u∫
0

dv
[
4F̄αξ(ux)[ux, vx]F̄ξ

β(vx)− 4ūv
(
D̄ξF̄αβ(ux)[ux, vx]F̄ξx(vx)

+F̄ξx(ux)[ux, vx]D̄ξF̄αβ(vx)
)
+ 2gαβ

(
ūvF̄ξη(u)[ux, vx]F̄ξη(v)

+ū2v2D̄ηF̄ ξ
x (u)[ux, vx]D̄ηF̄xξ(v)

)]
[vx, 0]

}
−4is3

1∫
0

du

u∫
0

dv[x, ux]
[
ū2v2

(
D̄ηD̄ξF̄αβ(ux)[ux, vx]D̄ηF̄xξ(vx)

+D̄ηF̄xξ(ux)[ux, vx]D̄ηD̄ξF̄αβ(vx)
)

−2ūvD̄λF̄αξ(ux)[ux, vx]D̄λF̄ ξ
β (vx)

]
[vx, 0]

}
+O

(
D̄ξF̄ξηF̄µν , F̄3

)
, (B.3)

so the gluon propagator (with IR regulator m) has the form(
x

∣∣∣∣ 1

P 2 + 2iF̄ −m2

∣∣∣∣ 0)
αβ

=

(
x

∣∣∣∣ 1

p2 −m2

∣∣∣∣ 0) [x, 0]

+

(
x

∣∣∣∣ i

(p2 −m2)2

∣∣∣∣ 0)


1∫
0

du [x, ux]
(
gαβūuD̄

µF̄µx(ux)[ux, 0]
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−2F̄αβ(ux)[ux, 0] + 2igαβ

u∫
0

dv ūvF̄ ξ
x (ux)[ux, vx]F̄xξ(vx)[vx, 0]


−
(
x

∣∣∣∣ 2

(p2 −m2)3

∣∣∣∣ 0)
1∫

0

du [x, ux]
{
2iūuD̄2F̄αβ(ux)[ux, 0]

+

u∫
0

dv
[
4F̄αξ(ux)[ux, vx]F̄ξ

β(vx)− 4ūvxη
(
D̄ξF̄αβ(ux)[ux, vx]F̄ξη(vx)

+F̄ξη(ux)[ux, vx]D̄ξF̄αβ(vx)
)
+ 2gαβ

(
ūvF̄ξη(u)[ux, vx]F̄ξη(v)

+ū2v2D̄ηF̄ ξ
x (u)[ux, vx]D̄ηF̄xξ(v)

) ]
[vx, 0]

}
+O

((
x

∣∣∣∣ 1

(p2 −m2)4

∣∣∣∣ 0)) .

(B.4)

For the calculation of contribution of UV-divergent parts of Fig. 3 diagrams
we need a UV part of (0|Pµ 1

P 2gαβ+2iF̄αβ−m2 |0). Using formula

∂

∂xµ
[ux, vx] = iuĀµ(ux)[ux, vx]− [ux, vx]ivĀµ(vx)

−i
u∫
v

dt t[ux, tx]xρF̄ρµ(tx)[tx, vx] , (B.5)

one quickly realizes that the UV part of limx→0(x|Pµ 1
P 2+2iF̄−m2 |0)αβ can

come only from(
0

∣∣∣∣ i

(p2−m2)2

∣∣∣∣ 0) lim
x→0

(
i
∂

∂xµ
+Āµ

)
1∫

0

du[x, ux]

(
gαβūuD̄

ξF̄ξx(ux)[ux, 0]

−2F̄αβ(ux)[ux, 0] + 2igαβ

u∫
0

dv ūvF̄ ξ
x (ux)[ux, vx]F̄xξ(vx)[vx, 0]

)
=

(
0

∣∣∣∣ 1

(p2 −m2)2

∣∣∣∣ 0)[D̄µF̄αβ(0)−
gαβ
6
D̄ξF̄ξµ(0)

]
. (B.6)

Thus,

lim
x→0

(
x

∣∣∣∣Pµ 1

P 2+2iF̄−m2

∣∣∣∣ 0)
αβ

=
i

16π2ε

[
D̄µF̄αβ(0)−

gαβ
6
D̄ξF̄ξµ(0)

]
+ . . .

(B.7)
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Looking at terms ∼ gαβ one quickly gets the UV-divergent part of
limx→0(x| 1

P 2−m2 |0)

lim
x→0

(
x

∣∣∣∣Pµ 1

P 2 −m2

∣∣∣∣ 0)ab = − lim
x→0

(
x

∣∣∣∣ 1

P 2 −m2
Pµ

∣∣∣∣ 0)ba
= − i

16π2ε

1

6
D̄ξF̄ab

ξµ(0) + . . . (B.8)

For quark contribution, we need also

lim
x→0

(
x

∣∣∣∣∣Pµ 1

P 2+ i
2 F̄αβ−m2

∣∣∣∣∣ 0
)

=
1

16π2ε

[
1

4
D̄µσF̄(0)− i

6
D̄ξF̄ξµ(0)

]
+ . . .

(B.9)
The structure in the LHS is the same as in Eq. (B.7) so we just replaced
2iF̄αβ by 1

2σF̄ . Multiplying by γµ, we get the UV part of O(g2) quark
contribution in the form

lim
x→0

(
x

∣∣∣∣∣/P 1

P 2 + 1
2 F̄αβ −m2

∣∣∣∣∣ 0
)

=
i

16π2ε

1

3
D̄ξF̄ξη(0)γη +UV-finite terms .

(B.10)
For many flavors of massless quarks this expression should be multiplied
by nf .
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