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The instanton vacuum provides an effective description of chiral symme-
try breaking by local topological fluctuations of the gauge fields, as observed
in lattice QCD simulations. The resulting effective dynamics at momenta
below 1/ρ̄ ≈ 0.6 GeV explains the basic features of light-quark correlation
functions and is used extensively in studies of hadron structure. The in-
stanton fields also make definite contributions to the gluonic structure of
light hadrons, as expressed in the matrix elements of composite quark–
gluon or gluon operators. The article reviews the gluonic structure of light
hadrons (nucleon, pion) induced by instantons. This includes: (i) twist-2
parton distributions and momentum sum rule; (ii) twist-3 angular mo-
mentum and spin-orbit interactions; (iii) twist-3 and twist-4 quark–gluon
correlations and power corrections; (iv) trace anomaly and hadron mass
decomposition; (v) scalar gluon form factors and mechanical properties;
(vi) axial anomaly and pseudoscalar gluon form factors. It also discusses
possible further applications of the methods and recent developments in-
cluding gauge field configurations beyond instantons.
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1. Introduction

Chiral symmetry breaking (ChSB) plays an essential role in the emer-
gence of hadron structure from QCD. It is connected with the dynamical
generation of mass in the world of light hadrons, including the baryons, and
determines the effective dynamics governing their structure. It gives rise
to nearly massless bosonic excitations, the pions, and restricts the form of
their interactions with other hadrons. The long-distance behavior of strong
interactions on the 1/Mπ scale can be described by an effective field theory
based on ChSB.

ChSB in QCD is caused by topological fluctuations of the gauge fields. In
the sense of real-time evolution, these fields describe tunneling trajectories
between configurations in sectors with different winding number [1–3]. The
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topological gauge fields induce zero-virtuality modes of the fermion field with
definite chirality. ChSB arises from the delocalization of the zero modes at
finite density of the topological gauge fields. The direct connection between
ChSB and the zero modes is apparent from the Banks–Casher theorem,
which states that the chiral condensate is proportional to the spectral density
of the Dirac operator at zero virtuality [4].

The quantitative features of the topological gauge field fluctuations and
ChSB in the imaginary-time (Euclidean) formulation have been investi-
gated in lattice QCD. Cooling methods suppress quantum fluctuations and
produce smooth configurations showing local concentrations of topological
charge and action (see Fig. 1 for a visualization [5]); similar results are
obtained with modern gradient flow techniques [6–8]. The typical size of
the topological fluctuations is ρ̄ ∼ 0.3 fm, much smaller than the hadronic
size ∼ 1 fm. The typical distance between the topological fluctuations is
R̄ ∼ 1 fm, and only a small fraction of 4-dimensional Euclidean space is oc-
cupied by such fields, π2ρ̄ 4/R̄4 ∼ 0.1. The average field strength inside the
topological fluctuations is (FµνFµν)

1/2 ∼ (32π2/π2ρ̄ 4)1/2 ∼ 2 GeV2, which
is very large on the hadronic scale. Such strong fields present favorable
conditions for a semiclassical description [1, 2].

Fig. 1. Local concentrations of topological charge in cooled lattice configurations
of gluodynamics [5]. Yellow: Positive charge (instantons). Blue: Negative charge
(antiinstantons).

An effective description of ChSB by topological gauge fields is provided
by the instanton vacuum [9, 10]; see Refs. [11, 12] for reviews. The basic
idea is to separate the modes of the gauge fields according to the scale ρ̄−1

and perform the functional integration using different approximations (see
Fig. 2). The modes with momenta k < ρ̄−1 are described as a superposition
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Fig. 2. Instanton vacuum. (a) Separation of modes according to the dynamical
scale ρ̄−1. (b) Instanton ensemble describing the low-momentum modes.

of instantons and instantons-localized classical solutions with topological
charge ±1, and integrated using nonperturbative methods of statistical me-
chanics. The modes with k > ρ̄−1 are integrated perturbatively and enter
in the statistical weight of the classical fields. The procedure can be for-
mulated as a variational approximation to the QCD partition function [10];
questions such as the gauge dependence in the separation of modes, ansatz
dependence in the superposition of instantons, etc., are part of the “choice of
trial function” and contained in the overall variational approximation. The
construction uses the instanton packing fraction π2ρ̄ 4/R̄4 ≪ 1 as a small
parameter [9] and employs it in the functional integration. A stable ensem-
ble is obtained by including instanton interactions derived from QCD [10].
The quantitative features agree well with those observed in lattice QCD.
The picture is robust and does not depend on the details of the variational
approximation [12].

ChSB in the instanton vacuum has been studied extensively and is well
understood [13, 14]; see Refs. [11, 12] for reviews. The instantons induce mul-
tifermion interactions between the quarks through the fermion zero modes.
The finite density of instantons in the vacuum leads to the formation of a chi-
ral condensate, and the quarks acquire a dynamical mass M ∼ 0.3–0.4 GeV,
of the order of a typical constituent quark mass. The effective dynamics can
be constructed and solved systematically in the 1/Nc expansion [14–19]. The
interactions can be bosonized and take the form of massive quarks interact-
ing with chiral meson fields. The resulting field theory captures the effective
dynamics at Euclidean momenta k < ρ̄−1 and describes a wide range of
structures and phenomena. Correlation functions in the meson sector ex-
hibit the quasi-massless pion pole in the pseudoscalar–isovector channel and
the massive η′ pole in the isoscalar channel [15, 17, 19]; see Ref. [12] for
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a review of other channels. Correlation functions in the baryon sector are
characterized by a localized classical chiral field (“soliton”), in which the
quarks move in independent-particle orbits [20], providing a specific realiza-
tion of the mean-field picture of baryons in the large-Nc limit of QCD [21];
see Ref. [22] for a review.

In the effective dynamics emerging from ChSB, the instanton gauge fields
are subsumed in the massive quark/antiquark degrees of freedom. Hadronic
matrix elements of QCD quark operators (vector or axial vector current,
scalar density) can be obtained from the effective dynamics without explicit
reference to instantons. The instanton vacuum also enables the computation
of hadronic matrix elements of quark–gluon or pure gluon QCD operators,
normalized at the scale ρ̄−1 [18, 19, 23]. In this context the instanton gauge
fields appear explicitly and give rise to a definite “gluonic structure” of the
light hadrons. Exploring this structure is interesting for several reasons:

(i) Gluon operators in the instanton vacuum are evaluated in an expansion
in the instanton packing fraction. The small parameter enables a sys-
tematic analysis and establishes a hierarchy in the matrix elements of
gluon operators with different quantum numbers (spin, twist).

(ii) The gluonic structure induced by instantons is derived using the same
approximations as in the effective dynamics emerging from ChSB. This
preserves the essential connections between the quark and gluon op-
erators, e.g. the momentum sum rule for twist-2 operators, or QCD
equation-of-motion relations for higher-twist operators.

(iii) The instanton fields are strong on the hadronic scale. In channels
where single instantons are allowed to contribute, they likely represent
the dominant effect in low-energy gluonic structure.

(iv) The gluon operators enable the direct demonstration of instanton ef-
fects in hadron structure. The selection rules implied by the symme-
tries of the instanton field are very distinctive and can be compared
with observations.

(v) The instanton vacuum preserves the renormalization properties of QCD
and implements the conformal (trace) anomaly through instanton den-
sity fluctuations. It enables study of the interplay of conformal and
chiral symmetry breaking, which is essential for the mass decompo-
sition of light hadrons. The instanton vacuum also implements the
U(1)A axial anomaly through topological charge fluctuations and en-
ables the study of its expression in hadron structure.
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This article reviews the gluonic structure of light hadrons in the instan-
ton vacuum. It covers the basic methods, established and recent results,
and suggestions for future developments and applications. The treatment is
based on the variational formulation of the instanton vacuum of Refs. [10, 14]
and the effective operator method of Ref. [18], which permits systematic cal-
culation and characterization of gluonic structure.

Section 2 introduces the elements of the instanton ensemble and ChSB
needed in the present review. Section 3 describes the effective operator
method for the study of gluonic structure. Section 4 reviews the main re-
sults in gluonic structure, organized according to the type of QCD operator;
conclusions and suggestions for further studies are presented at the end of
each subsection. Section 5 describes recent developments in extending the
semiclassical approximation beyond instantons.

Theoretical models of the nonperturbative gluonic structure of the nu-
cleon and other light hadrons are urgently needed for many problems of cur-
rent interest, such as generalized parton distributions, the energy-momen-
tum tensor (EMT) form factors and hadron mass decomposition (trace
anomaly), higher-twist effects in inclusive and exclusive scattering, heavy-
quark contributions to nucleon observables, heavy-quarkonium production
at near-threshold energies, hadronic CP violation, and other phenomena.
The instanton vacuum can classify and estimate the gluon matrix elements
in a systematic fashion and make essential contributions to these areas of
study.

The methods and results presented here are based on the renowned work
of D.I. Diakonov and V.Yu. Petrov on the instanton vacuum, and represent
only one of its many contributions to the understanding of nonperturba-
tive QCD and hadron structure. The applications to gluonic structure re-
viewed here were in large parts developed by M.V. Polyakov and represent
only a small part of his extensive and profound impact on modern hadronic
physics. The effective operator method was proposed in a work by Diakonov,
Polyakov, and this author as a junior collaborator. I had the fortune to work
under the guidance of DPP and learn from them over an extended time and
consider this the greatest blessing of my scientific and intellectual life. The
best way in which our community can honor their memory is to move ahead
with the same energy and enthusiasm, keep up the intellectual standards to
the best of our abilities, realize the potential of the concepts and methods
they developed, and pass them on to the next generation.
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2. Effective dynamics from instantons

The basic elements of the instanton vacuum are described in Refs. [11,
12]. QCD is considered in 4-dimensional Euclidean space-time, with coordi-
nates xµ, µ = 1–4, and metric x2 ≡

∑
x2µ > 0. The normalization volume V

is finite and taken to be large, with densities such as N/V remaining stable
in the limit.

2.1. Instanton ensemble

The conceptual framework is a variational approximation to the gluo-
dynamics partition function [10] (see comments in Section 1). The low-
momentum modes of the gauge potential (k < ρ̄−1) are parametrized by
a sum of instanton and antiinstanton potentials in singular gauge (denoted
by subscripts ±)

A(x) =

N+∑
I

A+ (x|zI , OI , ρI) +

N−∑
Ī

A− (x|zĪ , OĪ , ρĪ) ; (1)

the explicit form of A± is given in Refs. [11, 12]. Each instanton depends on
a set of collective coordinates: the center coordinate z, color orientation O,
and size ρ (see Fig. 3 (a)). The functional integration is performed as∫ N±∏

I,Ī

dzI dOI dρI [. . . ] . (2)

The high-momentum modes (k > ρ̄−1) are integrated out separately around
each instanton, as justified a posteriori by the diluteness of the instanton
medium, and result in a statistical weight per instanton [24]

d0(ρ) = const.× ρ−5(ρΛQCD)
b × [NLO] , b =

11

3
Nc −

2

3
Nf , (3)

where b is the LO coefficient of the QCD beta function; see Refs. [12, 25]
for details. The weight of Eq. (3) strongly increases at large sizes and would
not in itself result in a stable system.

A stable system is obtained by including the effect of instanton interac-
tions, which suppress instantons with a large size. This can be done consis-
tently and efficiently with the variational approximation of Ref. [10]. The
trial partition function is chosen as an ensemble of independent instantons
with an effective size distribution

Zint =

∫ N±∏
I,Ī

dzI dOI dρI deff(ρI) . (4)
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Fig. 3. (a) Collective coordinates characterizing the instanton. (b) Effective instan-
ton size distribution of Eq. (5).

Performing a variational estimate of the full QCD partition function in terms
of the trial partition function of Eq. (4), one can naturally identify the
instanton interactions generated by QCD and evaluate their effect on the
size distribution. The effective size distribution is obtained as

deff(ρ) = const.× d0(ρ) e−αρ2 , α = γ
8π2

g2
N

V
, (5)

where γ is a constant characterizing the instanton interactions, g is the
coupling constant at the scale ρ̄−1, and N/V ≡ (N+ + N−)/V is the total
instanton density. The distribution of Eq. (5) suppresses large sizes and
leads to a stable system (see Fig. 3 (b)). In the large-Nc limit, the width
of deff(ρ) is O(1/Nc), so that fluctuations of the sizes are suppressed, and
the averaging over sizes in the ensemble of Eq. (4) is performed by simply
replacing ρ→ ρ̄.

Numerical studies have been performed using various forms of the in-
stanton interaction [10, 18]. The properties of the variational ensemble are
not sensitive to the details of the interaction or other elements of the ap-
proximation. The average instanton size is obtained as ρ̄ ∼ 0.3 fm, and the
instanton packing fraction as

κ ≡ π2ρ̄ 4/R̄4 ∼ 0.1 , (6)

consistent with the results of lattice simulations. The small value of the
instanton packing fraction (“diluteness”) justifies the approximations made
in the functional integration and provides a small parameter for organizing
the calculation of ensemble averages.

An important feature of the instanton ensemble is that all dynamical
scales emerge from the QCD scale in the running coupling, ΛQCD. No di-
mensionful parameters are introduced in the approximations; the instan-
ton interactions are parametrized by dimensionless constants [10, 18]. As
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a consequence, all dynamical scales in the low-momentum sector (k < ρ̄−1),
including the average size ρ̄, can be expressed as powers of the instanton
density N/V . In this way, the instanton density can be regarded as the fun-
damental scale in low-momentum dynamics, and all other scales arise from
it through the nonlinearity of the dynamics [17–19]. This fact is essential
for the realization of conformal symmetry breaking and the trace anomaly
in the instanton vacuum (see Section 4.4).

2.2. Fermions and ChSB

When fermions are coupled to the instantons, the field of a single (anti-)
instanton induces a zero-virtuality mode of the Dirac operator[

i/∂x +A±(x|z,O, ρ)
]
Φ±(x|z,O, ρ) = 0 . (7)

The zero-mode wave function Φ± is normalizable, localized at the position
of the instanton, and depends on the collective coordinates of the instanton
field. The zero mode has definite chirality, γ5Φ± = ±Φ±. The interaction of
the fermion fields with the zero mode of a single instanton is described by
the vertex created by the projector on the zero mode

V±(z,O, ρ)
[
ψ†, ψ

]
≡
∫

d4 x′ψ† (x′) i/∂Φ±
(
x′| . . .

)∫
d4xΦ†

±(x) i/∂ψ(x| . . . ) ,
(8)

where ψ† ≡ iψ̄. In the presence of Nf ≥ 1 light flavors, the instanton inter-
acts with all of them (see Fig. 4 (a)). By averaging over the color orientation
of the instanton, one obtains a vertex of the form∫

dO

Nf∏
f

V±(z,O, ρ)
[
ψ†
f , ψf

]
= const.× detψ†(z)

←−
F γ±

−→
F ψ(z) , (9)

where γ± ≡ (1 ± γ5)/2 is the chiral projector. The vertex has the charac-
teristic form of the determinant of the Nf ×Nf matrix formed by the flavor
components of the quark fields and involves all light flavors in the system
(’t Hooft vertex, see Fig. 4 (b)) [24]. From Eq. (9),

−→
F ψ(z) ≡

∫
d4p

(2π)4
eip·zF (p)ψ(p) , (10)

ψ†(z)
←−
F ≡

∫
d4p′

(2π)4
e−ip′·zψ† (p′)F (

p′
)
, (11)

where F (p) is a form factor arising from the wave function of the zero mode
in momentum representation, with F (0) = 1, and F (p) → 0 for p > ρ−1

[18]. The vertex thus has a finite range, given by the instanton size ρ.
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Fig. 4. Fermion interactions induced by instantons. (a) Fermions in the (anti-)
instanton field (L,R denote the chirality). (b) Flavor interaction from averaging
over the color orientation (’t Hooft vertex). (c) Interaction with the chiral field
from bosonization.

In the ensemble with a finite density of instantons, the fermion zero
modes cause ChSB. The phenomenon can be understood as the delocaliza-
tion of the zero modes created by the individual instantons and is analogous
to band formation in the electron structure of solids [11, 12]. It can be
demonstrated by studying the propagation of fermions in the multiinstan-
ton background using the Green function [14, 16] or effective action methods
[15, 18, 19]. In the large-Nc limit, the functional integral over the fermions
can be computed in the saddle-point approximation. A nontrivial saddle
point appears, characterized by a dynamical quark mass M of parametric
order M2 ∼ κρ̄−2, with a numerical value of M ∼ 0.3–0.4 GeV.

The functional integral can be bosonized by introducing meson fields
M±(x), which are Nf ×Nf matrices in flavor. At the saddle point,

M±(x)f ′f ∝
〈
det′f ′f ψ

†(x)
←−
F γ±

−→
F ψ(x)

〉
, (12)

where ⟨. . . ⟩ denotes the average over the fermion fields and det′f ′f is the
minor of the flavor determinant with row f and column f ′ removed. This
makes it possible to convert the multifermion interaction at the saddle point
to an interaction of the quarks with the meson field

det ψ†(x)
←−
F γ±

−→
F ψ(x) → ψ†(x)

←−
F γ±M±(x)

−→
F ψ(x) . (13)

In many applications, the meson field can be restricted to the chiral degrees
of freedom and is parametrized as

M±(x) =MU±(x) , U±(x) = e±iπa(x)τa , (14)

where U± are SU(Nf ) unitary unimodular matrices, πa is the pion field,
and τa are the generators of the SU(Nf ) algebra. At the saddle point, the



3-A7.10 C. Weiss

effective action of the fermions can then be represented as [14, 15, 18, 19]

Seff(x) =

∫
d4xψ†(x)

[
−i/∂ − iM

←−
F Uγ5(x)

−→
F
]
ψ(x) , (15)

Uγ5(x) ≡ γ+U+(x) + γ−U−(x) = eiγ5π
a(x)τa . (16)

It describes the coupling of the massive quarks to the chiral meson field and
captures the low-energy dynamics emerging from ChSB (k < ρ̄−1). The
form of the coupling is dictated by chiral invariance and can be derived from
general considerations [26]. The instanton vacuum provides the dynamical
mechanism of ChSB, predicts the value of the dynamical quark mass, and
defines the range of the effective interaction.

Hadronic correlation functions in the effective theory can be computed in
the 1/Nc expansion. Meson correlation functions exhibit the quasi-massless
pion pole in the pseudoscalar–isovector channel, and the massive η′ pole in
the isoscalar channel [in this channel the pseudoscalar U1 degrees of freedom
in the meson field Eq. (12) must be retained] [14, 15, 19]. Baryon correlation
functions are characterized by a classical chiral field (“soliton”), in which the
quarks move in independent-particle orbits [20]. The calculation of nucleon
matrix elements of quark operators (vector/axial currents, scalars) in this
approach has been discussed extensively in the literature; see Ref. [22] for
a review.

Instantons convert the QCD color interactions at low energies to effective
spin-flavor interactions. This effect plays an essential role in the emergence
of hadron structure from QCD. The same effect is observed in the gluonic
structure of light hadrons induced by instantons in Section 3.

The effective spin-flavor interactions induced by instantons have specific
quantum numbers as encoded in the ’t Hooft vertex Eq. (9). The interac-
tions occur in the scalar/pseudoscalar channel and have the characteristic
determinantal flavor dependence. The instanton-induced interactions give
rise to ChSB, but this effect is not unique to the specific quantum numbers
and could also be obtained from other effective interactions. The instanton-
induced interactions also give rise to other effects which attest to the specific
spin-flavor quantum numbers, such as the η′ mass, the differences between
vector and scalar correlation functions, and others [12]. The expression of
instantons in low-energy dynamics thus extends beyond ChSB and can be
observed in specific spin-flavor-dependent phenomena.
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3. Effective operators from instantons

The instanton vacuum allows one to compute correlation functions of
QCD operators involving the gauge fields. Such operators can be converted
to “effective operators” in the effective theory of massive quarks with chi-
ral interactions emerging after ChSB [18]. The effective operators provide
a concise representation of the instanton effects in the QCD operators and
enable efficient computation of the hadronic matrix elements.

Consider a gauge-invariant composite QCD operator involving the gauge
potential, O[A,ψ†, ψ], normalized at the µ = ρ̄−1 scale. In the scheme
of approximations based on the separation of modes (see Fig. 2 (a)), the
gauge potential in the operator is identified with the classical field of the
superposition of instantons, Eq. (1). In leading order of the packing fraction,
the function of the gauge potential can be approximated by the sum of the
functions evaluated in the fields of the individual instantons

O
[
A,ψ†, ψ

]
→

∑
I+Ī

O
[
AI , ψ

†, ψ
]
. (17)

The integration over the collective coordinates of the active instanton, com-
bined with the coupling of the instanton to the fermions through the zero
mode, converts the gluon operator into an effective fermion operator. The
effective operator is defined such that〈

. . . O
[
A,ψ†, ψ

]
. . .

〉
inst

!
=

〈
. . . Oeff

[
ψ†, ψ

]
. . .

〉
eff
, (18)

i.e., the correlation functions of the effective operator in the effective the-
ory of massive quarks (“after” integration over instantons) reproduce the
correlation functions of the original quark–gluon operator in the instanton
ensemble with quarks (“before” integration over instantons). The expression
of the effective operator is derived in the saddle-point approximation, going
through the same steps as in deriving the effective action. It is given by [18]

Oeff

[
ψ†, ψ

]
= N

∑
±

∫
dz dO dρ deff(ρ)

×O
[
A±(z,O, ρ), ψ

†, ψ
] Nf∏

f

V±(z,O, ρ)
[
ψ†
f , ψf

]
, (19)

where A± is the gauge potential of the single instanton coupling to the
operator and V± is its zero mode vertex of Eq. (8). Both depend on the
collective coordinates of the instanton, and the integration connects the
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QCD operator with the instanton-induced interactions. The normalization
factor N is determined within the saddle-point approximation and discussed
in Refs. [18, 27].

The form of the effective operator depends on the color structure of the
QCD operator. One class of QCD operators has the structure

O
[
A,ψ†, ψ

]
= ψ†(x)Γψ(x)F [A] , (20)

where the quark bilinear is a color-singlet and F [A] is a color-singlet function
of the gauge fields (both Γ and F may carry Lorentz indices, which are
omitted for brevity). In this case, the operator in the instanton field does
not depend on the instanton color orientation, and

F [A±(z,O, ρ)] = F±(x− z|ρ) , (21)

where F± is a scalar function of the coordinates and the size ρ. The color
average in Eq. (19) is then the same as in the fermion vertex of Eq. (9), and
the gluon part of the operator becomes the ’t Hooft vertex

Oeff

[
ψ†, ψ

]
= ψ†(x)Γψ(x)×N

∑
±

∫
d4z F±(x− z|ρ̄)

× detψ†(z)
←−
F γ±

−→
F ψ(z) . (22)

A similar form applies to pure gluon QCD operators without the quark
bilinear, O[A] = F [A] [28].

Another class of QCD operators has the structure

O
[
A,ψ†, ψ

]
= ψ†(x)Γ

λa

2
ψ(x) Fa[A](x) , (23)

where the quark bilinear is the color-octet current of the quark field and
Fa[A] is a color-octet function of the gauge potential (see Fig. 5 (a)). In the
field of the instanton, the color-octet function takes the form (see Fig. 5 (b))

Fa [A±(z,O, ρ)] (x) = Oabηb∓µνF±µν(x− z|ρ) , (24)

where η∓µν ≡ η̄µν , ηµν are the ’t Hooft symbols and F±µν is a tensor-valued
function of the coordinates and the size ρ. In this case the function of the
instanton field depends on the color orientation, and the average in Eq. (19)
entangles the function with the zero-mode projector. The effective operator
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now becomes (see Fig. 5 (c))

Oeff

[
ψ†, ψ

]
= ψ†(x)Γ

λa

2
ψ(x)×N

∑
±

∫
d4z F±µν(x− z|ρ̄)

×
∑
ff ′

ψ†
f ′(z)

←−
F
λa

2
σµνγ±

−→
F ψf (z) det

′
f ′f ψ

†(z)
←−
F γ±

−→
F ψ(z) .

(25)

The flavor determinant gets “differentiated”, and one of the quark bilinears
is now the color-octet Lorentz-tensor projection of the quark fields.

(d)(a)

...

(c)

+ (−)
MU+ (−)

...
(b)

+ (−)

det’

Fig. 5. Effective operators from instantons [here for a color-octet QCD operator of
the form of Eq. (23)]. (a) QCD quark–gluon operator. (b) Operator with the gluon
field evaluated in an (anti-) instanton. (c) Effective fermion operator from averaging
over the collective coordinates. (d) Bosonized form of the effective operator.

The effective operators induced by instantons are originally obtained
as multifermion operators, Eqs. (22) and (25). When used in correlation
functions in the bosonized effective theory of Eq. (15), the multifermion
effective operators can be converted to the bosonized form, applying the
same techniques as in the bosonization of the effective action, see Eq. (12).
The bosonized form of the color-octet effective operator of Eq. (25) is (see
Fig. 5 (d))

Oeff

[
ψ†, ψ

]
= ψ†(x)Γ

λa

2
ψ(x) × iM

Nc

∑
±

∫
d4z F±µν(x− z|ρ̄)

×ψ†(z)
←−
F
λa

2
σµνU±(z)γ±

−→
F ψ(z) . (26)

Here, the coefficient is given by dynamical quark mass M ; its value is unam-
biguously determined within the scheme of approximations. This shows the
close connection between the effective dynamics and the effective operators
in the instanton vacuum.
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Hadronic matrix elements are computed by inserting the effective oper-
ators in correlation functions and evaluating them using the same methods
as for quark operators (1/Nc expansion); see Refs. [27, 29] for an overview.

The effective operators illustrate the conversion of color interactions to
spin-flavor interactions by the instantons, as already observed in the effec-
tive dynamics (see Section 2). The different color structure of the QCD
operators of Eqs. (20) and (23), gives rise to a different spin-flavor structure
of the effective operators, see Eqs. (22) and (25). It implies a spin-flavor de-
pendence of the gluonic structure of hadrons, as can be seen in the hadronic
matrix elements.

The expressions of Eqs. (19) and the following apply to the effective
operators in leading order of the packing fraction, where the gauge field in
the QCD operator is that of a single instanton. Recent work has derived the
effective operators including also instanton–antiinstanton pairs, which give
rise to additional spin-flavor structures (see Section 5) [23, 30].

4. Gluonic structure from instantons

4.1. Twist-2 parton distributions and momentum sum rule

The effective operator method can be used to evaluate hadronic matrix
elements of various QCD quark–gluon and pure gluon operators in the in-
stanton vacuum. It is helpful to organize the discussion according to the
twist (= mass dimension minus spin) of the operators, as this property
is important for the size of the instanton effects and the parametric or-
der of the effective operators. In the following, the QCD operators and
the instanton-induced effective operators are presented in the Minkowskian
form (4-vectors, fields, gamma matrices) to facilitate comparison with phe-
nomenology; see Refs. [12, 29] for the Euclidean–Minkowskian correspon-
dence.

Twist-2 QCD operators describe scaling contributions to the DIS struc-
ture functions. The twist-2 quark and gluon operators of spin-2 are the
rank-2 symmetric traceless tensors

Oαβ
f (x) ≡ 1

2
ψ̄f (x)γ

{αi∇β} ψf (x)− trace

=
1

2
ψ̄f (x)γ

{α
(
i∂β} +

λa

2
(Aa)β} (x)

)
ψf (x)− trace , (27)

Oαβ
g (x) ≡ F {α

γ (x)F β}γ(x)− trace , (28)

where {αβ} ≡ αβ + βα. The effective operators can be determined using
the methods summarized in Section 3. The gluon part of the twist-2 quark
operator of Eq. (27) is of the color-octet form operator of Eq. (23), and the
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effective operator is given by the general formula of Eq. (25). The explicit
calculation shows that, when the multifermion effective operator is inserted
in correlation functions and the quark fields are contracted, the result is of
the order of M2ρ̄2 ∼ κ and thus suppressed in the packing fraction of Eq. (6)
[27, 31]. The twist-2 gluon operator of Eq. (28) is zero in the field of one
instanton, and its effective operator is zero in leading order of the packing
fraction. Altogether, the twist-2 effective operators are obtained as(

Oαβ
f

)
eff

(x) =
1

2
ψ̄f (x)γ

{α∂β}ψf (x)− trace +O(κ) , (29)(
Oαβ

g

)
eff

(x) = 0 +O(κ) . (30)

The twist-2 quark operators are O(1) in the instanton packing fraction. The
effect of the gauge potential in the covariant derivative of the QCD operators
is suppressed, and the effective operator is given by the twist-2 operator in
the massive quark fields formed with ordinary derivatives. The twist-2 gluon
operator is O(κ) and suppressed in the packing fraction. These conclusions
follow from the symmetry properties of the gauge potential/field of a single
instanton, in particular its O(4) rotational covariance [27, 31].

The spin-2 twist-2 operators constitute the spin-2 part of the QCD
EMT. Their forward matrix elements (zero momentum transfer) in the
nucleon or pion state define the light-cone momentum fraction carried by
quarks/antiquarks and gluons in the hadron

⟨p|
∑

fO
αβ
f (0) |p⟩ = 2Aq

(
pαpβ − trace

)
, (31)

⟨p|Oαβ
g (0) |p⟩ = 2Ag

(
pαpβ − trace

)
. (32)

The effective operators of Eqs. (29) and (30) imply that

Aq = 1 +O(κ) , Ag = O(κ) , (33)

so that the light-cone momentum sum rule is satisfied in leading order of
the packing fraction

Aq +Ag = 1 +O(κ) . (34)

This is a crucial test of the consistency of the approximations. In the instan-
ton vacuum, the momentum sum rule is saturated by quarks and antiquarks
in leading order of the packing fraction, and gluons are suppressed.

These findings can be generalized to the quark and gluon twist-2 opera-
tors of spin n > 2

Oα1...αn
f = ψ̄f (x)γ

{α1∇α2 . . .∇αn}ψf (x)− traces , (35)

Oα1...αn
g = F {α1

γ Dα2 . . . Dαn−1Fαn}γ − traces . (36)
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In leading order of the packing fraction, the twist-2 spin-n quark operator is
given by the rank-n symmetric tensor operator in the ordinary derivatives
of the massive quark field; the effect of the gauge potential in the covariant
derivatives is suppressed. The twist-2 spin-n gluon operator is zero in the
field of a single instanton.

The nucleon matrix elements of the twist-2 QCD operators define the
moments of the nucleon parton distributions. The effective theory derived
from the instanton vacuum can be used to compute the nucleon parton
distributions directly as functions of the light-cone momentum fraction x.
Calculations have been performed by evaluating the effective light-cone oper-
ators in a nucleon state at rest [32], and by using the equivalent formulation
in terms of particle densities in a state with the large 3-momentum p→∞
[33]. In this picture, the nucleon’s partonic structure is carried by the quark
and antiquark distributions; the gluon distribution is suppressed. The anti-
quark distribution is O(1) and exhibits a rich spin and flavor dependence,
generated by the classical chiral field. In particular, the picture predicted
a large polarized antiquark flavor asymmetry ∆ū(x) − ∆d̄(x), which ap-
pears in leading order of the 1/Nc expansion [32, 33]. The prediction agrees
with results of experiments in W+ production in polarized pp collisions at
RHIC [34–37] and a global analysis of the polarized sea-quark distributions
[38]. It can also be tested with lattice QCD calculations using quasi/pseudo-
distribution method [39].

In summary, at the level of twist-2 structure, and in leading order of the
instanton packing fraction, the instanton fields are “subsumed” in the inter-
actions in the effective theory and not manifest in partonic content. The
partonic content is given by quarks and antiquarks. ChSB determines the
effective interactions that create the quark/antiquark distributions and their
spin and flavor dependence. The dynamical mass of the quarks/antiquarks
is not manifest directly in the parton distributions; it is a part of the in-
teractions in the system that define the parton distributions, not an ele-
mentary property of the particles being measured by the partonic operators.
This picture is specific to twist-2 structure and is qualitatively different in
higher-twist structure (see Section 4.2 and following).

Recent developments enable computation of the twist-2 quark and gluon
densities at next-to-leading order of the packing fraction, including effects
of instanton–antiinstanton molecules (see Section 5) [23, 40, 41]. Results for
the momentum fractions Aq and Ag in the pion show numerically small O(κ)
contributions [42]. Explaining the nucleon’s twist-2 gluon density remains
a prime task. Fits to DIS data with valence-like input densities at low
scales of µ ≳ 0.5 GeV [43] give large gluon momentum fractions Ag ∼ 0.3–
0.4, showing the need for sizable contributions from mechanisms other than
single instantons.
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4.2. Twist-3 angular momentum and spin-orbit interactions

Twist-3 QCD operators appear in the decomposition of the QCD angular
momentum in spin and orbital contributions, and in the description of quark
spin-orbit correlations in the nucleon. The nonforward matrix elements of
these operators receive O(1) contributions from instantons and represent
a unique case of gluonic structure induced by instantons [31].

The twist-3 QCD operator with natural parity is given by the antisym-
metric rank-2 tensor

Oαβ(x) ≡ 1

2
ψ̄(x)γ[αi

←→
∇ β] τ ψ(x)

=
1

2
ψ̄(x)γ[α

(
i
←→
∂ β] +

λa

2
(Aa)β](x)

)
τ ψ(x) , (37)

where
←→
∂ = 1

2(
−→
∂ −

←−
∂ ) and [αβ] ≡ αβ − βα. τ denotes a flavor matrix and

can be a singlet (τ = 1) or non-singlet (τ = τa, a = 1, 2, 3 for Nf = 2). The
operator of Eq. (37) with the flavor-singlet matrix represents the antisym-
metric part of the QCD EMT [the symmetric part is given by Eq. (27)], and
its nonforward matrix elements describe the spatial distribution of quark
spin in hadrons [44].

The QCD operator of Eq. (37) contains the gauge potential in the co-
variant derivative. The gauge-potential-dependent term is of the form of
Eq. (23), and the effective operator in the instanton vacuum is given by
Eq. (26), where the function F±µν now is the instanton gauge potential [31].
Equation (26) represents the effective operator as a four-fermion operator,
formed by the product of two color-octet in the background of the chiral field
(see Fig. 5 (d)). When inserted in hadronic correlation functions, the fields
in the color-octet currents in the operator are contracted, reducing the op-
erator to a two-fermion operator (see Fig. 6 (a)). The loop integral resulting
from the contraction can be computed and is parametrically large ∼ ρ̄−2

(it would be quadratically divergent for pointlike vertices and is rendered
finite by zero mode form factors). The integral ∼ ρ̄−2 compensates a factor
∼ ρ̄2 contained in the function F±µν and gives a result that is independent
of the instanton size (see Fig. 6 (b)). Altogether, the effective operator for
the twist-3 QCD operator of Eq. (37) is obtained as [31](

Oαβ
)
eff

(x) =
1

2
ψ̄(x)

(
γ[αi
←→
∂ β]τ +

iM

2
σαβ[τ, Uγ5(x)]

)
ψ(x) . (38)

The first term results from the quark field derivatives in the QCD operator
of Eq. (37). The second term results from the gauge potential in the QCD
operator through the instanton. The instanton converts the color interaction
in the QCD operator to a spin-flavor interaction of the quark with the chiral
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field in the effective operator, with a coefficient given by the dynamical
quark mass. (Here, the effective operator is presented for energies/momenta
p ∼ M ≪ ρ̄−1, for which the zero-mode form factors in the external quark
momenta can be neglected, F → 1.)

+

(b)
M + (−)U

(a)

Fig. 6. (a) Contraction of the bosonized effective operator (see Fig. 5 (d)). (b) Re-
sulting chiral quark operator. The dashed lines denote the chiral meson field.

The twist-3 QCD operator Eq. (37) satisfies an operator relation due to
the QCD equations of motion. Using the QCD equations of motion for the
quark fields, −→

/∇ψ(x) = 0 , ψ̄(x)
←−
/∇ = 0 , (39)

the QCD operator of Eq. (37) can equivalently be expressed as the total
derivative of the QCD axial vector current

Oαβ(x) = −1

4
ϵαβγδ∂γ

[
ψ̄(x)γδγ5τψ(x)

]
, (40)

where ∂γ [. . . ] denotes the total derivative. The effective operator of Eq. (38)
satisfies the same relation in the effective theory of massive quarks with chiral
interactions [31]. Using the equations of motion of the quark fields in the
effective theory (here in the Minkowskian convention)[

i
−→
/∂ −MUγ5(x)

]
ψ(x) = 0 , ψ̄(x)

[
−i
←−
/∂ −MUγ5(x)

]
= 0 , (41)

the effective operator of Eq. (38) can be converted to the total derivative of
the axial current in the effective theory(

Oαβ
)
eff

(x) = −1

4
ϵαβγδ∂γ

[
ψ̄(x)γδγ5τψ(x)

]
eff
. (42)

This remarkable result is obtained thanks to the chiral interaction term in
the effective operator induced by instantons. It attests to the consistency of
the approximations in the derivation of the effective action and the effective
operator (packing fraction expansion, 1/Nc expansion). The QCD equation
of motion in the effective operator is realized because the single instanton is
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a solution to the Yang–Mills equation. Similar equation-of-motion relations
have been demonstrated for other higher-twist operators in the instanton
vacuum [27]. An important consequence is that the results of the effective
operator calculations are the same for different QCD operators related by
QCD equations of motion and thus do not depend on the choice of operator
basis used for the QCD operator analysis.

The matrix element of the twist-3 QCD operator of Eq. (37) describes
the spatial distribution of quark spin in the nucleon [44]. The effective
operator of Eq. (38) reveals an interesting flavor dependence. The instanton-
induced interaction term in Eq. (38) is proportional to the flavor commutator
[τ, Uγ5(x)]. In the flavor-singlet operator (τ = 1), the interaction term
is zero. The total spin distribution is thus not affected by the instanton-
induced interactions. This is consistent with the fact that the total spin
distribution can be derived from the EMT in the effective theory, obtained
as the conserved current associated with the space-time symmetries. In the
flavor-nonsinglet operator (τ = τ3 for Nf = 2), the interaction effect is
nonzero. The spin distributions of individual quark flavors are, therefore,
affected by the instanton-induced interactions.

The twist-3 QCD operator analogous to Eq. (37) with unnatural parity,

Oαβ
5 (x) ≡ 1

2
ψ̄(x)γ[αγ5i

←→
∇ β] τ ψ(x) , (43)

describes the spin-orbit correlations of quarks in QCD [45]. Its effective
operator has been derived, going through the same steps as for the natural
parity operator, and is given by [31](
Oαβ

5

)
eff

(x) =
1

2
ψ̄(x)

(
γ[αγ5i

←→
∂ β]τ +

iM

2
σαβγ5{τ, Uγ5(x)}

)
ψ(x) . (44)

It exhibits a similar instanton-induced interaction term as the natural-parity
operator of Eq. (38) and satisfies similar equation-of-motion relations. In the
unnatural-parity operator of Eq. (44), the interaction term is now propor-
tional to the flavor anticommutator {τ, Uγ5(x)}, and is, therefore, nonzero
also in the flavor-singlet operator. The interaction term plays an essential
role in the theory of spin-orbit correlation of quarks in the nucleon (see
Fig. 7). Its mechanical interpretation in the mean-field picture of the nu-
cleon in large-Nc limit has been explored in Ref. [46].

The twist-3 operators of Eqs. (37) and (43) have hadronic matrix el-
ements proportional to the momentum transfer p′–p between the states,
which vanish in the forward limit. This can be seen from the fact that the
operators can be converted to total derivative operators using the equations
of motion. Large instanton effects in thetwist-3 operators have so far only
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F̃u+ d(t)[kin]

F̃u+ d(t)[pot]

−1
2
Gu+ d
E (t)

Fig. 7. Nucleon form factor F̃u+d(t) of the twist-3 QCD operator of Eq. (43) ob-
tained from the instanton vacuum [46]. Black solid line: Contribution of quark
field derivative in effective operator of Eq. (44). Dashed red line: Contribution of
chiral interaction term induced by instantons in effective operator of Eq. (44). Dot-
ted blue line: Total result, satisfying the sum rule F̃u+d(t) = − 1

2G
u+d
E (t) (nucleon

vector form factor).

been observed in the “nonforward” operators presented here; in other twist-3
operators, the effects of the instanton field are suppressed (see Section 4.3).

In summary, in the twist-3 QCD operators, the instanton field can cause
O(1) effects, by converting the color interaction in the QCD operator into
a chiral spin-flavor interaction in the effective operator. This dynamical
effect has important consequences for the flavor dependence of the quark
spin distributions and the quark spin-orbit correlations in the nucleon and
should be explored further.

4.3. Higher-twist quark–gluon correlations and power corrections

The twist-3 and twist-4 QCD operators appear in power corrections to
polarized and unpolarized DIS structure functions [47, 48]. The instanton
effects in these operators depend on the quantum numbers (spin, isospin)
and give rise to a hierarchy of structures, which can be compared with
experimental data.

The twist-3 and twist-4 operators of dimension 5 with unnatural par-
ity are

Oαβγ(x) = ψ̄(x)γ{αF̃ β}γ(x) τψ(x)− traces (twist-3) , (45)

Oβ(x) = ψ̄(x)γαF̃
βα(x) τψ(x) (twist-4) , (46)
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where F̃ βγ = 1
2ϵ

βγδϵFδϵ is the dual field strength and τ is a flavor matrix.
The nucleon matrix elements are parametrized as1

⟨ps|Oαβγ(0)|ps⟩ = 2d2

(
2p{αpβ}sγ − 2p{αsβ}pγ − traces

)
, (47)

⟨ps|Oβ(0)|ps⟩ = 2f2s
β , (48)

where s is the polarization 4-vector, sµpµ = 0, s2 = −1. They describe
quark–gluon correlations in various spin projections in the polarized nucleon
and can be interpreted as electric and magnetic color polarizabilities; see
Ref. [49] for a review. d2 and f2 appear in the 1/Q2 power corrections to
the lowest moment of the spin structure function g1. d2 also appears in the
x2 moment of g2, at the same level in 1/Q2 as the twist-2 matrix element;
the contribution of g2 to the DIS cross section is overall power-suppressed
by 1/Q2 [50].

The instanton vacuum makes definite predictions for the spin-dependent
higher-twist matrix elements [27]. The twist-3 effective operator obtained
from Eq. (45) has hadronic matrix elements of the order of M2ρ̄2 ∼ κ, while
the twist-4 effective operator obtained from Eq. (46) has matrix element of
the order of unity

d2 = O(κ) , f2 ∼ ρ̄−2 = O(1) . (49)

The reason for the different behavior is the O(4) rotational symmetry of
the instanton field. It governs the parametric order of the loop integral
appearing in the contraction of the effective operator (see Fig. 6 (a)) and
causes a qualitative difference between the results for the twist-3 (= spin-2)
and twist-4 (= spin-1) operators.

Numerical predictions for the higher-twist matrix elements from the in-
stanton vacuum have been obtained and can be compared with experimen-
tal extractions. The small value of d2 ∼ few × 10−3 predicted in Ref. [27]
is consistent with the results of g2 measurements at SLAC and JLab; see
Ref. [51] for a global analysis. They are also consistent with modern lattice-
QCD calculations using nonperturbative renormalization [52]. The value
fu−d
2 ∼ 0.2 GeV2 predicted in [27] is consistent with the extraction of higher-

twist corrections to g1 in Ref. [53]; for estimates of fu+d
2 , see Ref. [54]. While

large uncertainties remain, especially in the extraction of f2 from power cor-
rections, the pattern appears consistent with the instanton predictions.

Other twist-4 operators appear in the power corrections to the unpolar-
ized structure functions. The 1/Q2 corrections to F2 and FL involve quark–
gluon and 4-quark operators [48]. The instanton vacuum predicts that one of

1 The twist-4 matrix element f2 is defined here with mass dimension (mass)2, which
is natural for the present discussion. In the literature, the mass dimension of f2 is
usually absorbed by factor nucleon mass, f2(our) = m2

Nf2(lit).
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the quark–gluon operators has a large matrix element ρ̄−2 = O(1), while the
matrix elements of the 4-quark operators are suppressed [29]. As a conse-
quence, large 1/Q2 corrections are predicted in FL, and much smaller correc-
tions in F2. The pattern is consistent with the results of a phenomenological
analysis of higher-twist corrections [29]. The twist-4 operators appearing in
the neutrino-structure functions F1ν and F3ν have also been computed and
have matrix elements O(1) [27, 55].

In summary, the instanton vacuum allows one to evaluate a range of
higher-twist operators governing power corrections to deep-inelastic pro-
cesses. It predicts a hierarchy of higher-twist matrix elements, with “se-
lection rules” dictated by the O(4) rotational symmetry of the instanton
field. Power corrections thus show the footprint of the topological fields in
deep-inelastic processes. The approach has been applied to compute matrix
elements of chiral-odd higher-twist operators [56] and nonforward matrix
elements of higher-twist operators in generalized parton distributions [57].
It can also be extended to compute power corrections in the extraction of
quasi-parton distributions [58].

4.4. Trace anomaly and hadron mass decomposition

The twist-4 scalar gluon operator FµνFµν appears in the trace anomaly of
the EMT and plays an important role in the hadron-mass decomposition in
QCD. The instanton vacuum encodes the trace anomaly in the density fluc-
tuations of instantons and allows one to compute and interpret its hadronic
matrix elements.

At the classical level, QCD is scale-invariant up to effects proportional to
the light-quark masses, and the trace of the EMT is zero, Tµ

µ = 0 +O(m).
At the quantum level, scale invariance is broken by quantum fluctuations,
which require an UV cutoff whose presence is felt even after sending it to
infinity (anomaly). The trace of the EMT becomes

Tµ
µ(x) =

β(g)

4g4
FµνFµν(x) +m [1 + γm(g)]

∑
f

ψ̄fψf (x) , (50)

β(g)

4g4
= − b

32π2
+O

(
g2
)
, γm(g) = O

(
g2
)
, (51)

where the coefficient b of the beta function is given in Eq. (3), m is the
light-quark mass (assumed to be the same for all light flavors here), and
γm its anomalous dimension. This operator relation equates the trace of
the EMT with the dimension-4 gluon operator. It connects the breaking
of scale invariance in QCD with the scalar gluon content of hadrons and is
fundamental for hadron structure. The expectation value of the EMT in the
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nucleon state at rest, averaged over the spin, is given by2

⟨n|Tµ
µ(0)|n⟩ = 2m2

n . (52)

This follows from the general form of the nucleon matrix element of the
EMT (relativistic covariance, current conservation ∂µT

µ
ν = 0) and the fact

that T 00 measures the total energy of the state. Equations (50) and (52)
imply that

⟨n|FµνFµν(0)|n⟩
2m2

n

= −32π2

b
+O(m) . (53)

This is a remarkable statement: The average of the scalar gluon density
in the nucleon state, a quantity arising from nonperturbative dynamics, is
constrained by the coefficient of the QCD beta function, a property of per-
turbation theory. It calls for a mechanical explanation how this connection
is realized.

In the instanton vacuum, the trace anomaly is expressed in the fluctua-
tions of the instanton density. The variational approximation to the QCD
vacuum is performed with a grand canonical ensemble of instantons, with
a variable instanton number N = N+ +N− fluctuating with a distribution
P (N) (see Fig. 8) [17, 18]. The ensemble average is now understood as∑

N

P (N) ⟨. . . ⟩N , (54)

where the subscript N denotes the canonical ensemble average used in the
derivation of ChSB (see Section 2). The instanton number is proportional
to the volume-integrated Euclidean operator F 2 = FµνFµν ,

fluctN/V

(a)

b

( N )P

N
−

N

4/

(b)

Fig. 8. (a) Instanton density fluctuations in the grand canonical ensemble. (b) In-
stanton number distribution of Eq. (57).

2 The nucleon state is denoted here by |n⟩, to avoid confusion with the instanton
number N .
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N =
1

32π2

∫
d4x F 2(x) , (55)

where 32π2 is the action of a single instanton. The instanton number dis-
tribution can be inferred from the low-energy theorems for the vacuum cor-
relation functions of the scalar gluon operator in gluodynamics〈

1

32π2

∫
F 2 1

32π2

∫
F 2

〉
−
〈

1

32π2

∫
F 2

〉2

=
4

b

〈
1

32π2

∫
F 2

〉
(56)

etc., which are derived by differentiating the renormalized partition function
with respect to the inverse coupling constant [59]. It is obtained as [18]

P (N) ∝
(
N

N̄

)−bN/4

ebN/4 . (57)

The variance of the instanton number fluctuations is controlled by the coef-
ficient of the beta function (

N − N̄
)2

N̄
=

4

b
, (58)

and is known as the topological vacuum compressibility. The instanton
number fluctuations are stronger than Poissonian, attesting to the presence
of interactions in the system.

Hadronic matrix elements of F 2 are extracted from the 3-point corre-
lation functions of the gluon operator with interpolating operators for the
hadronic states. In the connected part of the 3-point correlation function,
the contributions proportional to the average instanton number N̄ cancel,
and the result arises entirely from the fluctuations of N . Schematically,

⟨n|F 2(0)|n⟩
⟨n|n⟩

= lim
T→∞

⟨Jn(T )F 2(0)Jn(−T )⟩conn
⟨Jn(T )Jn(−T )⟩

= lim
T→∞

32π2

2TV3

(
N − N̄

)2
N̄

N
d

dN
⟨Jn(T )Jn(−T )⟩N

⟨Jn(T )Jn(−T )⟩N

∣∣∣∣∣∣∣
N=N̄

, (59)

where Jn is the nucleon interpolating operator, T is the Euclidean time sepa-
ration, V3 is the spatial volume, and ⟨n|n⟩ = 2mnV3 from the normalization
of the states [18]. At large times, the 2-point correlation function decays
exponentially, with the range given by the nucleon mass. The logarithmic
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derivative of the correlation function with respect to the instanton number
becomes the derivative of nucleon mass

⟨Jn(T )Jn(−T )⟩N ∝ e−2mnT ,
1

2T

N
d

dN
⟨. . . ⟩N

⟨. . . ⟩N
= −N dmn

dN
. (60)

In the instanton vacuum at zero light-quark masses, the only dynamical
scale is the instanton density N/V , and hadronic scales arise as powers of
this scale according to their naive mass dimension (see Section 2). The
nucleon mass thus depends on the instanton density as

mn = [dimensionless constant]×
(
N

V

)1/4

. (61)

Altogether, Eqs. (59)–(61) determine the nucleon matrix element as

⟨n|F 2(0)|n⟩
2m2

n

= −32π2

b
, (62)

in agreement with the general result from the trace anomaly of Eq. (53).
This remarkable result comes about because in the instanton vacuum the
information on the beta function is encoded in the instanton number fluctu-
ations of Eq. (58), and the nucleon mass arises as a power of the instanton
density.

The result of Eq. (62) shows several interesting features. (i) The expec-
tation value of F 2 in the nucleon state is negative, even though F 2 > 0 in
the Euclidean metric. This is explained by the fact that the nucleon matrix
element measures the change in the vacuum expectation value of F 2 caused
by the presence of the nucleon, and the change is negative. (ii) In the large-
Nc limit, b ∼ Nc, see Eq. (3). The matrix element of Eq. (62) is, therefore,
suppressed in 1/Nc compared to its natural size. This circumstance allows
for the mixing of gluon and scalar quark/antiquark modes in the t-channel
spectral representation of the matrix element and plays an important role
in the generalization to nonzero momentum transfer (see Section 4.5).

The trace anomaly of Eq. (50) can also be evaluated in the pion state. In
this case, the quark-mass term cannot be neglected, because the pion mass
depends on the quark mass as M2

π ∝ m. One obtains [42]

− b

32π2
⟨π|F 2|π⟩
2Mπ

+
⟨π|m

∑
f ψ̄fψf |π⟩

2Mπ
=Mπ , (63)

where the contribution of γm = O(g2) in the quark-mass term is neglected.
It shows that the pion mass arises both from the scalar density of the gluon
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field (trace anomaly) and the quark mass times the scalar quark density
(sigma term). The instanton vacuum allows one to compute both terms
separately using the methods described above, and gives [42]

− b

32π2
⟨π|F 2|π⟩
2Mπ

=
Mπ

2
[1 +O(m)] , (64)

⟨π|m
∑

f ψ̄fψf |π⟩
2Mπ

=
Mπ

2
[1 +O(m)] . (65)

It shows that the pion mass arises in equal parts from the trace anomaly
and the sigma term. Note that the pion matrix element of F 2, Eq. (64),
vanishes in the chiral limit, highlighting the interplay of conformal and chiral
symmetry breaking. The result for the pion sigma term, Eq. (65), agrees
with the result of chiral reduction (soft-pion theorem). Altogether, these
results attest to the consistency of the approximations in the description of
conformal and chiral symmetry breaking in the instanton vacuum.

In summary, the instanton vacuum describes the hadronic matrix ele-
ments of the trace anomaly in accordance with the low-energy theorems of
conformal and chiral symmetry breaking. It provides a mechanical picture
for the intrusion of the beta function into nonperturbative hadron structure.
As such, it represents an essential tool for the study of the hadron mass de-
composition and the interplay of conformal and chiral symmetry breaking
in QCD.

4.5. Scalar gluon form factors and mechanical properties

Much more information is contained in the form factor of the scalar
gluon operator FµνFµν at nonzero momentum transfer. The form factors of
the EMT define the so-called mechanical properties of hadrons, which have
become a field of study in their own right; see Refs. [60, 61] for reviews. The
scalar gluon form factor of the nucleon is also measured in heavy quarkonium
photo- and electroproduction near threshold; see Ref. [62] and references
therein.

The scalar gluon form factors of light hadrons can be computed in the
instanton vacuum. An important effect at the nonzero momentum transfer
is the mixing of the instanton density fluctuations with the scalar quark–
antiquark modes in the effective dynamics arising from ChSB (“glueballs”
and “mesons” in colloquial terms). This mixing can be studied within the
1/Nc expansion [19, 23, 42]. It is made possible by the fact that the width
of the instanton density fluctuations is b ∼ 1/Nc, so that the action of these
modes is of the same order in 1/Nc as that of scalar quark–antiquark modes.
Practical methods for the computation of nonforward matrix elements of
scalar operators have been developed in the regimes of momentum transfers
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of the order of Q ∼ M (soft regime), where the instantons act collectively,
and Q ∼ ρ̄−1 (semi-hard regime), where the scattering process is mediated
by single instantons or pairs [23, 63].

Figure 9 shows the results of an instanton vacuum calculation of the
gluon scalar form factor of the pion, defined as [see Eq. (50)]

Gπ

(
Q2

)
=
⟨π (p′) |Tµ

µ(0)glue|π(p)⟩
2M2

π

= − b

32π2
⟨π (p′) |FµνFµν(0)|π(p)⟩

2M2
π

,

(66)
where Q2 = −(p′−p)2 [42]. This calculation uses the light-front formulation
developed in Refs. [40, 41] and subsequent works, and includes instanton
pair contributions; see Ref. [42] for details. At the zero momentum transfer,
it reproduces the value Gπ(0) = 1/2 obtained from the instanton density
fluctuations (see Section 4.4). The instanton vacuum result for the pion
scalar gluon form factor agrees well with the recent lattice-QCD calculations
[64, 65].

Fig. 9. Pion scalar gluon form factor from the instanton vacuum [42]. Green band:
Full instanton vacuum result with uncertainty estimate (see the reference for de-
tails). Red bands: Semi-hard contribution Q ∼ 1/ρ̄ in the instanton vacuum. Blue
points: Lattice QCD results [64]. Blue dashed line: Form factor slope from LO
chiral perturbation theory. Yellow dashed line: 0++ glueball exchange.

In summary, the instanton vacuum predicts the scalar gluon form factors
of light hadrons up to momentum transfers Q ∼ few GeV2 based on the non-
perturbative gauge field dynamics abstracted from lattice-QCD calculations.
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It represents an essential tool in the study of hadron mechanical properties
and high-momentum transfer processes. Future studies could (i) compute
the nucleon and other baryon form factors in the chiral soliton picture in
the large-Nc limit, (ii) revisit the quark and gluon decomposition of the
c̄ form factor of Ref. [66] and extend it to the nonzero momentum trans-
fer, (iii) compute the amplitude of heavy quarkonium production on light
hadrons and other gluonic processes mediated by the instantons.

4.6. Axial anomaly and pseudoscalar gluon form factors

The dimension-4 pseudoscalar gluon operator FµνF̃µν represents the
topological charge density of the gauge fields in QCD. The U(1)A axial
anomaly equates this operator with the divergence of the flavor-singlet axial
current, providing a direct connection between the gauge field topology and
the spin-flavor dynamics of light quarks. The instanton vacuum encodes
the axial anomaly through topological fluctuations of the instanton number,
making it possible to compute and interpret the hadronic matrix elements of
FµνF̃µν . The pseudoscalar meson matrix elements (η′ mass etc.) have been
extensively discussed in the literature [12, 18]; the present review focuses on
the nucleon matrix element.

In classical QCD, the axial currents are conserved in the chiral limit. In
the quantum theory, the flavor-singlet axial current acquires an anomalous
divergence due to quantum fluctuations and renormalization

∑
f∂

µ
[
ψ̄fγµγ5ψf

]
(x) =

Nf

16π2
FµνF̃µν(x) + 2

∑
fmf ψ̄f iγ5ψf (x) . (67)

This operator relation connects the hadronic matrix elements of FµνF̃µν with
those of the axial current. The nucleon matrix element of the pseudoscalar
gluon operator is parametrized as

⟨p′σ′|FµνF̃µν(0) |pσ⟩ = AP

(
q2
)
mnū

′iγ5u , (68)

where u ≡ u(p, σ), u′ ≡ u(p′, σ′) are the nucleon 4-spinors and AP is an
invariant form factor. Using the axial anomaly of Eq. (67) and the standard
representation of the nucleon matrix element of the axial current in terms
of the axial and pseudoscalar form factors, and taking the chiral limit, one
obtains

AP(0) = 2g
(0)
A /Nf , (69)

where g(0)A is the nucleon flavor-singlet axial coupling. This remarkable re-
lation connects the nucleon matrix elements of the gluon operator and the
light-quark operator of the axial current.
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In the instanton vacuum, the axial anomaly is expressed in the fluctua-
tions of the topological charge of the instanton ensemble, i.e., fluctuations
of the difference of the number of instantons and antiinstantons

∆ ≡ N+ −N− . (70)

They can be implemented in the variational approximation with the grand
canonical ensemble, in a similar way as the fluctuations of the total instanton
number N = N+ +N− (see Section 4.4) [17–19]. The fluctuations of ∆ are
described by a distribution P (∆). The instanton number difference is equal
to the topological charge in the form of the volume-integrated Euclidean
operator FF̃ ≡ FµνF̃µν

∆ =
1

32π2

∫
d4x FF̃ (x) . (71)

The distribution P (∆) can be inferred from the vacuum correlation function
of the topological charge,〈

1

32π2

∫
FF̃

1

32π2

∫
FF̃

〉
, (72)

the so-called topological susceptibility of the QCD vacuum. The topological
susceptibility has been analyzed both in pure gluodynamics and including
fermions; it is qualitatively affected by the presence of light fermions and
vanishes in the chiral limit [12]. The distribution P (∆) is obtained as [18]

P (∆) ∝ exp

(
−∆

2

2N

)
× exp

 ∆2

2V ⟨ψ̄ψ⟩

Nf∑
f

m−1
f

 . (73)

The first factor results from gluodynamics (so-called quenched topological
susceptibility); the second factor results from the fermion determinant (note
that ⟨ψ̄ψ⟩ < 0). The width of the distribution vanishes when mf → 0 for at
least one flavor f . For quark masses close to the chiral limit, the width of
the second factor is much smaller than that of the first, and the width of the
overall distribution is dominated by the fermions and their chiral behavior.

The distribution of Eq. (73) can also be derived directly from the fermion
determinant in the instanton ensemble with fermions [18]. The instanton
ensemble provides a simple explanation of the vanishing of the topological
susceptibility in the chiral limit. In the instanton background fields with the
nonzero topological charge, ∆ ̸= 0 andN+ ̸= N−, the fermion spectrum after
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ChSB contains “unbalanced” zero modes, which cause the determinant to
vanish in the chiral limit (the functional determinant is the product of the
eigenvalues of the modes).

The hadronic matrix elements of FF̃ can be extracted from the 3-point
correlation functions, using similar methods as for FF (see Section 4.4). The
average is performed with the grand canonical ensemble. The ∆ fluctuations
connect the gluon operator of Eq. (71) with the effective dynamics of the
light quarks, in a way that the U(1)A anomaly is realized; see Ref. [18] for
details. The chiral singularity of the ∆-fluctuation width is canceled, and
a stable result is obtained in the chiral limit. The nucleon matrix element
Eq. (68) is obtained consistently with the U(1)A anomaly of Eq. (69), with
g
(0)
A given by the nucleon axial coupling predicted by the effective dynamics

of light quarks. The consistent realization of this subtle relation between
gluon and light-quark dynamics is a major accomplishment for an effective
description of low-energy QCD3.

The form factors of FF̃ and similar operators at finite momentum trans-
fer can be computed using the methods developed in Refs. [19, 23, 42]. The
pseudoscalar form factors at momentum transfers Q ∼ M are governed by
the mixing of gluon and pseudoscalar quark–antiquark modes, similar to the
scalar gluon form factors (see Section 4.5).

In summary, the instanton vacuum describes the hadronic matrix ele-
ments of FF̃ in accordance with the U(1)A anomaly. It provides a mechani-
cal interpretation of the chiral behavior of the topological susceptibility and
illustrates the interplay of chiral dynamics and topological fluctuations in
low-energy QCD.

The gluon operators with axial vector quantum numbers appear in the
operator expansion of heavy-flavor contributions to the nucleon spin struc-
ture functions [67]; their nucleon matrix elements can be evaluated using
similar methods as described here.

5. Beyond instantons

The instanton vacuum describes the nonperturbative QCD gauge fields
as a superposition of well-separated instantons. The instanton fields are spe-
cial in that they carry local topological charge ±1 and induce zero modes
of the fermion fields, and thus cause ChSB, which determines the effective
dynamics and the structure of light hadrons. This review covers the distinct

3 The nucleon matrix element Eq. (68) vanishes for zero momentum transfer q → 0 and
has to be computed using the position-dependent local operator FF̃ (x). A careful
procedure is needed when integrating the position over a finite volume and associating
the operator with the topological charge of the ensemble, requiring considerations
beyond the treatment of Ref. [18]; see Ref. [28] for a discussion.



Gluonic Structure from Instantons 3-A7.31

gluonic structure induced by well-separated instantons, relevant for the rea-
sons summarized in Section 1. Other vacuum fluctuations can also give
rise to strong gauge fields and make significant contributions to the gluonic
structure of hadrons.

A broader view of the possible vacuum fluctuations can be obtained from
an analysis of the topological landscape of the Yang–Mills gauge theory.
Gauge fields configurations are characterized by a winding number NCS (the
Chern–Simons number); the energy is a periodic function of NCS, with min-
ima at integer values and a finite potential barrier between them; the height
of barrier is determined by the size of the field configurations, ρ [12, 25]. In-
stantons represent semiclassical tunneling trajectories between minima with
∆NCS = ±1 at zero energy. Recent work [40] has explored the effects of
other semiclassical trajectories in the topological landscape: (i) instanton–
antiinstanton molecules, or streamline paths, where the semiclassical mo-
tion does not result in tunneling (“failed tunneling trajectories”). (ii) finite-
energy tunneling trajectories, or zig–zag paths, where the tunneling process
occurs at finite energy and includes both real-time and imaginary-time mo-
tion. These types of field configurations are different from well-separated
instantons; they do not induce fermion zero modes and thus do not con-
tribute to ChSB. However, they give rise to strong fields and contribute to
the Wilson loops [12], high-momentum transfer processes (form factors), and
other structures. They should, therefore, be included in the semiclassical de-
scription of QCD vacuum.

Including the instanton–antiinstanton molecules in the variational de-
scription of instanton vacuum poses several questions [40]. One needs to
reassess the instanton density (especially at small sizes ρ < ρ̄) and revise
the notion of instanton interaction. One also needs to revisit the instan-
ton packing fraction expansion, which provides a simple ordering scheme
and guarantees conservation laws (current conservation, energy-momentum
conservation). The benefit of including instanton–antiinstanton molecules
is that one obtains quantitative estimates for the many structures that are
absent in the dilute instanton medium, especially the twist-2 gluon density.

Including the effects of instanton–antiinstanton molecules in the effec-
tive dynamics arising from ChSB (1/Nc expansion, chiral soliton picture of
nucleon) and in the effective operator approach presents many opportuni-
ties for further development. It can lead to a more realistic semiclassical
description of light hadron structure, especially gluonic structure [23].
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6. Related subjects

This review focuses on the gluonic properties of light hadrons, whose
structure is essentially determined by ChSB. The instanton vacuum can
also be employed to study heavy–light hadrons [68–70], where ChSB controls
the dynamics of the light flavors in the presence of the heavy quark. The
instanton vacuum and its extensions can also be applied to study heavy
quarkonia [71–76]; in these systems, semiclassical trajectories beyond well-
separated instantons are expected to play an important role.

The effective operator method can also be used to compute vacuum ex-
pectation values of higher-dimensional QCD quark–gluon operators, such
as the dimension-5 chiral-odd operator ψ̄(x)(λa/2)σµνψ(x)F a

µν(x) [of the
form of Eq. (23)] and similar dimension-7 operators [77, 78]. These higher-
dimensional vacuum condensates are generalizations of the chiral order pa-
rameter and sensitive to the gluon fields active in ChSB. Comparison of the
instanton vacuum results with lattice-QCD calculations provides direct in-
formation on the instanton-size distribution in the vacuum, complementary
to cooling studies.

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics under contract DE-
AC05-06OR23177. The research reported here takes place in the context
of the Topical Collaboration “3D quark–gluon structure of hadrons: mass,
spin, tomography” (Quark–Gluon Tomography Collaboration) supported by
the U.S. Department of Energy, Office of Science, Office of Nuclear Physics
under contract DE-SC0023646.
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