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Under the framework of non-extensive statistical mechanics, the opti-
mal fund allocation of pension is studied by maximizing the expected utility
of terminal wealth. In order to accurately approximate the actual financial
market, the non-extensive statistical theory is employed to model prices of
the risky asset, which can describe the high peak and fat tail characteristics
of returns. Based on the criterion of maximizing the expected utility of ter-
minal wealth, the Hamilton–Jacob–Bellman equation is established under
the condition of the exponential utility function. Furthermore, using the
duality theory, an analytical solution for the optimal investment strategy
is obtained. Finally, the influence of the main model parameters on the
optimal investment strategy is analyzed through numerical methods.
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1. Introduction

With the improvement of healthcare and the acceleration of aging popu-
lation, the pressure on pension payments is increasing. How to optimize the
allocation of pension funds in the financial market to maintain and increase
their value is a very urgent and important issue, because it is related to
the retirement security of pension holders and the harmony and stability of
society.
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At present, there are two main types of pension plans: one is a defined-
benefit (DB) pension, the other is a defined-contribution (DC) pension.
A defined-benefit pension plan assumes that the benefits of pension hold-
ers are predetermined after retirement. However, the contribution rate can
be changed, and the risk generated during the investment process is borne
by the pension plan manager. In a defined-contribution pension, the con-
tribution rate is predetermined, and the investment risk is borne by pen-
sion plan holders. Defined-contribution pension plans are more suitable for
the pension management mechanism than defined-benefit pension plans and
many countries have adopted them. Therefore, the optimal allocation of
the defined-contribution pension has become a new research hotspot in the
financial field. The optimal investment problem of the defined-contribution
pension in a multi-period and discrete-time framework was first studied by
Vigna and Haberman [1]. Considering personal investment risk and annual-
ized fund risk, the optimal investment strategy for the defined-contribution
pension was obtained by using a dynamic programming method. Boulier
et al. [2] studied the optimal allocation of the defined-contribution pension
in a continuous-time framework, based on a constant relative risk aversion
(CRRA) utility function and constant interest rate. Devolder et al. [3] aimed
at maximizing the utility of terminal wealth. Under the constant absolute
risk aversion (CARA) and constant relative risk aversion (CRRA) utility
functions, the optimal investment strategy of the defined-contribution pen-
sion in two stages before and after retirement was obtained. Gerrard et al. [4]
studied the investment of the defined-contribution pension in a complete
market, and analyzed the impact of interest rates on the optimal investment
strategy. Cairns et al. [5] added random wages to Gerrard’s research and ob-
tained the analytical solution of the optimal strategy under the logarithmic
utility function. Vigna [6], He and Liang [7], and Menoncin and Vigna [8]
derived the optimal investment strategy for the defined-contribution pen-
sion under the mean-variance criterion. The above research results provide
an important theoretical and practical support for the improvement of the
pension system.

A large number of empirical results show that due to the complexity of
asset-price fluctuations, using the classical Brownian motion for modeling
the stock-price variation cannot closely match the actual financial market.
The fact that the stock price follows the Brownian motion means that its
return is a normal distribution, but the actual return has the characteristics
of a high peak and fat tail. This phenomenon is common in the finan-
cial markets of many countries [9–12]. To make pricing and investment
more accurate, several price models different from the Brownian motion
have been developed. For example, Gu et al. [13] and Dufera [14] employed
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the fractional Brownian motion to model the stock-price variation, which can
characterize the phenomenon of self-similarity and long-term correlation in
stock prices. Carr et al. [15] and Kim et al. [16] used Lévy processes, which
can describe the peak and thick tail characteristics of stock prices, while
Duffie et al. [17] and Wang et al. [18] employed jump-diffusion processes.

Recently, many scholars have used statistical physics to study financial
problems, resulting in a new discipline called Econophysics [19]. Especially
in 1988, Tsallis [20] proposed non-extensive statistical mechanics, which is
a generalization of Boltzmann–Gibbs statistics. It has been widely applied
in the field of finance, thus promoting the development of Econophysics.
For example, using the non-extensive statistical approach, Tsallis et al. [21],
Rak et al. [22], Senapati and Karameshu [23], and Duarte Queirós [24] stud-
ied the variation of stock prices. Drożdż et al. [25] studied the fluctuation of
foreign exchange rates. Borland [26], Nayak et al. [27], and William et al. [28]
explored the pricing problem of options. In addition, Trindade et al. [29]
considered the optimal investment in the stock market.

In this study, to get close to the actual financial market, the non-extensive
statistical mechanics is employed to describe the fluctuation of risky asset
prices. Then we use the expected utility maximization method to study
the investment problem of the defined-contribution pension. Furthermore,
under the condition of the exponential utility function, we obtain an ana-
lytical solution for the optimal investment strategy of defined-contribution
pension using the dynamic programming method and duality theory. Fi-
nally, the effects of main parameters on investment strategies are illustrated
by numerical methods.

The study is organized as follows. In Section 2, the non-extensive statis-
tical mechanics is employed to model the risky asset price. The price model
can describe the high peak and fat tail characteristics of returns. In Sec-
tion 3, we derive the wealth equations of the defined-contribution pension
in two different periods before and after retirement. In Section 4, an op-
timal investment model for the defined-contribution pension is established
under the criterion of maximizing expected utility. In Section 5, the analyt-
ical solution of the optimal investment strategy for the defined-contribution
pension is obtained using dynamic programming, Legendre transformation,
and duality theory. In Section 6, the summary of this study is provided.

2. Asset price model

In our model, as in the literature [4–6], the pension fund is invested in
two assets, a risk-free asset and a risky asset. Let the price B(t) of the
risk-free asset satisfy the following differential equation:
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dB(t) = rB(t)dt ,
B(0) = B0 ,

(1)

where r is a positive constant called the risk-free return rate. Let the price
S(t) of the risky asset satisfy the following differential equation:{

dS(t) = S(t)(µdt+ σdΩ(t)) ,
S(0) = S0 ,

(2)

where µ > r is an expected return rate, and σ is a volatility of the risky
asset. Moreover, let the random variable Ω(t) satisfy

dΩ(t) = P (Ω, t)
1−q
2 dW (t) , (3)

where {W (t)}t≥0 is the standard Brownian motion defined on the probability
space (F , {Ft}t≥0,P). Moreover, P (Ω, t) is a Tsallis distribution with the
index q satisfying the following equation:

P (Ω, t) =
1

z(t)

[
1− β(t)(1− q)Ω2

] 1
1−q , (4)

with

z(t) = [(2− q)(3− q)kt]
1

3−q , (5)

β(t) = k
1−q
3−q [(2− q)(3− q)t]

2
q−3 , (6)

k =
π

q − 1

Γ 2
(

1
q−1 − 1

2

)
Γ 2

(
1

q−1

) . (7)

In the q → 1 limit (see [26]), equation (4) recovers a Gaussian distri-
bution. When q > 1, the Pq(Ω) distribution exhibits the characteristics
of high peak and fat tail, which can better fit the actual market than the
Gaussian distribution. That comes from the fact that, for the correlated ran-
dom variables of price returns, the q-Gaussian distributions are stable, and
their tail behavior can resemble power laws. In fact, there has been some
evidence that the q-Gaussian distributions can approximate the empirical
return distributions (see [22, 30–35]).

3. Wealth model

In this study, we divide the defined-contribution pension plan into two
stages: before and after retirement. Then, the wealth value process of pen-
sion fund investors can be correspondingly divided into two periods. We
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reasonably assume that the payment method after retirement is an annuity,
and the amount is predetermined by the pension fund manager. In addition,
the death of the policyholder is not considered. Let T be the time point of
retirement. Let N be the payment cycle of the annuity after retirement.
Suppose the total amount of the pension fund is used to invest in the risky
asset and risk-free asset. Let π(t) and 1 − π(t) be the proportion of the
wealth invested in the risky asset and the risk-free asset at time t. Let V (T )
be the wealth value of the pension fund investors.

3.1. Wealth model before retirement

Let c be the pension contribution rate which is a positive constant. Let
the salary be taken as 1. Then the wealth value process V(t) before retire-
ment can be written as the following stochastic differential equation:{

dV (t) = [1− π(t)]V (t)dB(t)
B(t) + π(t)V (t)dS(t)S(t) + cdt ,

V (0) = V0 ,
(8)

where V0 is the initial wealth. Substituting (1) and (2) into equation (8),
we can obtain

dV (t) = [π(t)V (t)µ+ (1− π(t))V (t)r + c] dt

+π(t)V (t)σP (Ω, t)
1−q
2 dW (t) ,

V (0) = V0 .

(9)

3.2. Wealth model after retirement

Suppose the pension accumulated from t = 0 to t = T is all used to
purchase annuities. Let D be the pension fund paid when purchasing the
N -term annuity, which obviously satisfies D ≤ V (T ). Let D̄ = D/āN̄ | be the
payment amount at time t after retirement, where āN̄ | = (1− e−δN/δ) and
δ is a continuous technical rate. Then the wealth value process V (t) after
retirement can be written as the following stochastic differential equation:

dV (t) =
[
π(t)V (t)µ+ (1− π(t))V (t)r − D̄

]
dt

+π(t)V (t)σP (Ω, t)
1−q
2 dW (t) ,

V (0) = V0 .

(10)

4. Optimal investment problem

In the field of economics, expected utility is commonly used to describe
investors’ sense of gain. Moreover, pension fund investors are generally con-
servative and belong to risk-averse investors. Therefore, we choose the ex-
ponential function as the expected utility function for investors.
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Definition 1. Suppose the expected utility function of pension fund in-
vestors is an exponential function as follows:

U(x) = − 1

β
e−βx , β > 0 . (11)

Then, they are called exponential utility function investors.

Definition 2. If the investment strategy π(t) is the solution of the stochastic
differential equation (9), then the investment strategy π(t) is feasible. Note
that the set of all feasible solutions is L2

F(0, T ;R), then π(t) ∈ L2
F(0, T ;R).

4.1. Optimal investment model before retirement

Based on maximizing the expected utility criterion, we can write the op-
timal investment problem for defined-contribution pension before retirement
as {

max
π(t)

E[U(v)] ,

s.t. π(t) ∈ L2
F(0, T ;R) .

(12)

4.2. Optimal investment model after retirement

Similarly, we can easily provide the mathematical expression of the op-
timal investment problem for the defined-contribution pension after retire-
ment under the maximizing expected utility criterion as{

max
π(t)

E[U(v)] ,

s.t. π(t) ∈ L2
F(T, T +N ;R) .

(13)

5. Model solution

To obtain the optimal investment strategy, we will apply a dynamic
programming principle to transform the stochastic differential equation of
the optimization problem into the corresponding Hamilton–Jacobi–Bellman
equation. Then, the non-linear quadratic partial differential equation is de-
rived. Furthermore, using the Legendre transformation and duality theory,
we change the non-linear quadratic partial differential equation into a lin-
ear quadratic partial differential equation. Finally, the analytical solution is
obtained by solving the linear partial differential equation.
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5.1. Solving before retirement

Theorem 1. When the expected utility of investors is the exponential func-
tion (11), the optimal investment strategy for the defined-contribution pen-
sion before retirement is

π∗
t =

µ− r

βvσ2P (1−q)
e−r(T−t) . (14)

Proof. According to the dynamic programming principle, we define the value
function of the optimization problem before retirement (12) as

H(t, s, v) = sup
π(t)

E{U(V (T ))|S(t) = s, V (t) = v} , 0 < t < T , (15)

where H(T, s, v) = U(v). Then the corresponding Hamilton–Jacobi–Bellman
equation can be written as

Ht + µsHs + (rv + c)Hv +
1

2
σ2P (1−q)s2Hss

+max
π(t)

[
πt(µ− r)vHv + πtσ

2P (1−q)svHsv +
1

2
π2
t σ

2P (1−q)v2Hvv

]
= 0 , (16)

where Ht, Hs, Hv, Hsv, Hss, and Hvv are the first-order and second-order
partial derivatives of time t, asset price s, and pension wealth v. Solving
the partial derivative of the above equation with respect to the investment
strategy πt and making it equal to zero, we get

π∗
t = −(µ− r)Hv + σ2P (1−q)sHsv

σ2P (1−q)vHvv
. (17)

Substituting (17) into (16), we obtain

Ht + µsHs + (rv + c)Hv +
1

2
σ2P (1−q)s2Hss

−
(
(µ− r)Hv + σ2P (1−q)sHsv

)2
2σ2P (1−q)Hvv

= 0 . (18)

H(t, s, v) can be obtained by solving equation (18). Then by substituting
H(t, s, v) into equation (17), the optimal solution of the investment strategy
can be derived. Based on the analysis above, we will first solve equation (18).

Definition 3. Suppose f : Rn → R is a convex function, and z > 0. Then
the Legendre transformation is defined as

L(z) = max
x

(f(x)− zx) . (19)



7-A2.8 P. Zhao, J. Zhang, L. Sun

L(z) is called the Legendre dual function of f(x) (see [36]). According
to Definition 3, applying the Legendre transformation to the value function
H(t, s, v), we can obtain

H̃(t, s, z) = sup
v>0

{H(t, s, v)− zv|v > 0} , z > 0 , 0 < t < T , (20)

where z and v are dual variables. The value of v where this optimum is
attained is denoted by g(t, s, z), so that (see [36])

g(t, s, z) = inf
v>0

{
v|H(t, s, v) ≥ zv + H̃(t, s, z)

}
, 0 < t < T . (21)

The function H̃(t, s, z) is related to g(t, s, z) by

g(t, s, z) = −H̃(t, s, z) . (22)

Both g(t, s, z) and H̃(t, s, z) are dual functions of H(t, s, v). Moreover, there
is a correlation as follows:

H̃(t, s, z) = H(t, s, g)− zg , g(t, s, z) = v , Hv = z . (23)

Let Ũ(z) = sup
x>0

{U(v)−zv|v > 0} and G(z) = sup
v>0

{v|U(v) ≥ zv+ Ũ(z)}.

Then there is G(z) = (U ′)−1(z). At the terminal time T , since H(T, s, v) =

U(v), we can obtain g(T, s, z) = inf
v>0

{v|U(v) ≥ zv+H̃(T, s, z)}, H̃(T, s, z) =

sup
v>0

{U(v)− zv}, and g(T, s, z) = (U ′)−1(z). Solving the derivatives of vari-

ables t, s, and z for equation (23), the derivative relation between the value
function H and its dual function H̃ is obtained as follows:

Hv = z , Ht = H̃t , Hs = H̃s ,

Hss = H̃ss −
H̃2

sz

H̃zz

, Hsv = − H̃sz

H̃zz

, Hvv = − 1

H̃zz

. (24)

Substituting (24) into (18), we have

H̃t + µsH̃s + rzv +
1

2
σ2P (1−q)s2H̃ss +

(µ− r)2

2σ2P (1−q)
z2H̃zz

−(µ− r)szH̃sz = 0 . (25)

Solving the derivative of variable z for (25) and considering v = g = −H̃z,
the partial differential equation of g is obtained

gt + rsgs − rg − c+
1

2
σ2P (1−q)s2gss +

(
(µ− r)2

σ2P (1−q)
− r

)
zgz

+
(µ− r)2

2σ2P (1−q)
z2gzz − (µ− r)szgsz = 0 . (26)
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Thus, the non-linear quadratic partial differential equation (18) is trans-
formed into a linear partial differential equation (26). According to equa-
tion (17), the optimal investment strategy represented by the dual func-
tion g is

π∗
t = −(µ− r)Hv + σ2P (1−q)sHsv

σ2P (1−q)vHvv

= −
(µ− r)z − σ2P (1−q)s

(
H̃sz/H̃zz

)
σ2P (1−q)vH̃−1

zz

= −(µ− r)zH̃zz − σ2P (1−q)sH̃sz

σ2P (1−q)v

=
−(µ− r)zgz + σ2P (1−q)sgs

σ2P (1−q)g
. (27)

Therefore, we only need to solve the linear partial differential equa-
tion (26) of g, and then substitute its solution into equation (27) to obtain
the optimal investment strategy for pension. Considering the exponential
utility function (11) and g(T, s, z) = (U ′)−1(z), the boundary condition for
the terminal time T is obtained

g(T, s, z) = − 1

β
ln z . (28)

Suppose the form of the solution to the partial differential equation (26) is

g(t, s, z) = − 1

β
[m(t)(ln z + n(t, s))] + h(t) . (29)

Moreover, the boundary conditions are m(T ) = 1, h(T ) = 0, and n(T, s) = 0.
By solving the derivatives of equation (29), we can obtain

gs = − 1

β
m(t)ns ,

gt = − 1

β

[
m′(t)(ln z + n(t, s)) +m(t)nt

]
+ h′(t) ,

gz = − 1

βz
m(t) ,

gzz =
1

βz2
m(t) ,

gss = − 1

β
m(t)nss ,

gsz = 0 .
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Substituting them into equation (26), we have[
m′(t)− rm(t)

]
ln z +

[
c+ rh(t)− h′(t)

]
β

+

[
nt + rsns +

1

2
σ2P (1−q)s2nss +

(µ− r)2

2σ2P (1−q)
− rn+

m′(t)

m(t)
n− r

]
m(t) = 0 .

(30)

Then, we split equation (30) into the following three equations:

m′(t)− rm(t) = 0 , (31)
c+ rh(t)− h′(t) = 0 , (32)

nt + rsns +
1

2
σ2P (1−q)s2nss +

(µ− r)2

2σ2p(1−q)
− rn+

m′(t)

m(t)
n− r = 0 . (33)

Using the boundary condition m(T ) = 1 and h(T ) = 0, we can obtain

m(t) = e−r(T−t) , (34)
h(t) = −ch̄T−t| , (35)

where h(t) = −ch̄T−t| is the continuous annuity during the T − t period.
Now, we only need to solve equation (33). Let x = ln s and n(t, s) = u(t, x).
Then, we can get u(T, x) = 0, nt = ut, gs = 1

sux, and gss = 1
s2
(uxx − ux).

Substituting them into equation (33), we have

ut + rs
1

s
ux +

1

2
σ2P (1−q)s2

1

s2
(uxx − ux) +

(µ− r)2

2σ2p(1−q)
− r = 0 . (36)

Combining the terms of ux and uxx in equation (36), we obtain

ut +

(
r − 1

2
σ2P (1−q)

)
ux +

1

2
σ2P (1−q)uxx +

(µ− r)2

2σ2p(1−q)
− r = 0 . (37)

Using the homogenization method, we first solve the following auxiliary
equation {

ũt +
(
r − 1

2σ
2P (1−q)

)
ũx +

1
2σ

2P (1−q)ũxx = 0 ,

ũ(t, x; ξ) = (µ−r)2

2σ2p(1−q) − r ,
(38)

where ũ = ũ(t, x; ξ), and the solution ũ(t, x; ξ) of the auxiliary equation (38)
has the relation with the solution u(t, x) of the original equation (37) as
follows:

u(t, x) =

T∫
t

ũ(t, x; ξ)dξ . (39)
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Let

ũ(t, x; ξ) =

[
(µ− r)2

2σ2p(1−q)
− r

]
ek1(t;ξ)x+k2(t;ξ) , (40)

where k1(ξ; ξ) = 0, k2(ξ; ξ) = 0, ũt = [ (µ−r)2

2σ2p(1−q)−r]ek1(t;ξ)x+k2(t;ξ)(dk1dt x+
dk2
dt ),

ũx = [ (µ−r)2

2σ2p(1−q)−r]k1e
k1(t;ξ)x+k2(t;ξ), and ũxx = [ (µ−r)2

2σ2p(1−q)−r]k21e
k1(t;ξ)x+k2(t;ξ).

Substituting them into equation (38), we have

dk1
dt

x+
dk2
dt

+
1

2
σ2P (1−q)k21 +

(
r − 1

2
σ2P (1−q)

)
k1 = 0 . (41)

Using k1(ξ; ξ) = 0 and k2(ξ; ξ) = 0, we get{
k1
dt = 0 ,

k1(ξ; ξ) = 0 ,
(42)

{
k2
dt +

1
2σ

2P (1−q)k21 +
(
r − 1

2σ
2P (1−q)

)
k1 = 0 ,

k2(ξ; ξ) = 0 .
(43)

By solving them, we can obtain

k1(t, ξ) = 0 , k2(t, ξ) = 0 . (44)

Substituting equation (44) into equation (40), we have

ũ(t, x; ξ) =
(µ− r)2

2σ2p(1−q)
− r . (45)

Substituting equation (45) into equation (39), we get

u(t, x) =

T∫
t

(
(µ− r)2

2σ2P (1−q)
− r

)
dξ ,

=

(
(µ− r)2

2σ2P (1−q)
− r

)
(T − t) . (46)

Thus, we can obtain

n(t, s) = u(t, x) =

(
(µ− r)2

2σ2P (1−q)
− r

)
(T − t) . (47)
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Substituting equations (34), (35), and (47) into equation (29), we have

g(t, s, z) = − 1

β

[
e−r(T−t)

(
ln z +

(
(µ− r)2

2σ2P (1−q)
− r

)
(T − t)

)]
− ch̄T−t| .

(48)
Calculating the partial derivatives of equation (48), we obtain

gs = 0 , (49)

gz = − 1

βz
e−r(T−t) . (50)

Substituting equations (49), (50), and v = g = −H̃z into equation (27), we
have

π∗
t =

µ− r

βvσ2P (1−q)
e−r(T−t) . (51)

5.2. Solving after retirement

Theorem 2. When the expected utility of investors is the exponential func-
tion (11), the optimal investment strategy for the defined-contribution pen-
sion after retirement is

π∗
t =

µ− r

βvσ2P (1−q)
e−r(T+N−t) . (52)

Proof. Similar to the solving method before retirement, we first define the
value function of the optimization problem (13) after retirement as

H(t, s, v) = sup
π(t)

E{U(V (T +N))|S(t) = s, V (t) = v} , T < t ≤ T +N .

(53)
Then, its corresponding Hamilton–Jacobi–Bellman equation is

Ht + µsHs +
(
rv − D̄

)
Hv +

1

2
σ2P (1−q)s2Hss

+max
π(t)

[
πt(µ− r)vHv + πtσ

2P (1−q)svHsv +
1

2
π2
t σ

2P (1−q)v2Hvv

]
= 0 , (54)

where H(T, s, v) = U(v). Ht, Hs, Hv, Hsv, Hss, and Hvv are the first-order
and second-order partial derivative functions of time t, asset price s, and
pension wealth v. Solving the partial derivative of the above equation with
respect to the investment strategy πt and making it equal to zero, we have

π∗
t = −(µ− r)Hv + σ2P (1−q)sHsv

σ2P (1−q)vHvv
. (55)
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Substituting (55) into (54), we obtain

Ht + µsHs +
(
rv − D̄

)
Hv +

1

2
σ2P (1−q)s2Hss

−
(
(µ− r)Hv + σ2P (1−q)sHsv

)2
2σ2P (1−q)Hvv

= 0 . (56)

Using Definition 2 for the value function H(t, s, v), we get

H̃(t, s, z) = sup
v>0

{H(t, s, v)− zv|v > 0} , z > 0 , T < t ≤ T +N ,

(57)
where z is the dual variable of v. Moreover, v satisfies the following equation:

g(t, s, z) = inf
v>0

{
v|H(t, s, v) ≥ zv + H̃(t, s, z)

}
, T < t ≤ T +N , (58)

where H̃(t, s, z) and g(t, s, z) are both dual functions of H(t, s, v). Moreover,
they have the relation as follows:

H̃(t, s, z) = H(t, s, g)− zg , g(t, s, z) = v , Hv = z . (59)

Let Ũ(z) = sup
x>0

{U(x)−zv|v > 0} and G(z) = sup
v>0

{v|U(v) ≥ zv+ Ũ(z)}.

It is not difficult to obtain G(z) = (U ′)−1(z). At the terminal time T +N ,
using H(T + N, s, v) = U(v), we have g(T + N, s, z) = inf

v>0
{v|U(v) ≥ zv +

H̃(T + N, s, z)}, H̃(T + N, s, z) = sup
v>0

{U(v) − zv}, and g(T + N, s, z) =

(U ′)−1(z). Solving the derivatives of variables t, s, and z for (59), we have

Hv = z , Ht = H̃t , Hs = H̃s ,

Hss = H̃ss −
H̃2

sz

H̃zz

, Hsv = − H̃sz

H̃zz

, Hvv = − 1

H̃zz

. (60)

Substituting (60) into (56) and using v = g = −H̃z, the partial differential
equation of g is obtained

gt + rsgs − rg + D̄ +
1

2
σ2P (1−q)s2gss +

(
(µ− r)2

σ2P (1−q)
− r

)
zgz

+
(µ− r)2

2σ2P (1−q)
z2gzz − (µ− r)szgsz = 0 . (61)
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Meanwhile, substituting (60) into (55) and using v = g = −H̃z, we have

π∗
t = −(µ− r)Hv + σ2P (1−q)sHsv

σ2P (1−q)vHvv

= −
(µ− r)z − σ2P (1−q)s

(
H̃sz/H̃zz

)
σ2P (1−q)v

(
1/H̃vv

)
=

−(µ− r)zgz + σ2P (1−q)sgs

σ2P (1−q)g
. (62)

Therefore, to obtain the optimal investment strategy of the defined-
contribution pension, we only need to solve g through (61) and then substi-
tute the solution into (62). Similar to the solution method before retirement,
we suppose that the form of the solution of equation (61) is

g(t, s, z) = − 1

β
[m(t)(ln z + n(t, s))] + h(t) . (63)

Solving the derivatives of equation (63), we obtain

gs = − 1

β
m(t)ns ,

gt = − 1

β

[
m′(t)(ln z + n(t, s) +m(t)nt

]
+ h′(t) ,

gz = − 1

βz
m(t) ,

gzz =
1

βz2
m(t) ,

gss = − 1

β
m(t)nss ,

gsz = 0 .

Substituting them into equation (61), we have[
m′(t)− rm(t)

]
ln z +

[
rh(t)− h′(t)− D̄

]
β + nt + rsns

+
1

2
σ2P (1−q)s2nss +

(µ− r)2

2σ2P (1−q)
− rn+

m′(t)

m(t)
n− rm(t) = 0 . (64)

We split equation (64) into the following three equations:

m′(t)− rm(t) = 0 , (65)
−D̄ + rh(t)− h′(t) = 0 , (66)

nt + rsns +
1

2
σ2P (1−q)s2nss +

(µ− r)2

2σ2p(1−q)
− rn+

m′(t)

m(t)
n− r = 0 . (67)
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Using the boundary conditions m(T +N) = 1 and h(T +N) = 0, we obtain

m(t) = e−r(T+N−t) , (68)
h(t) = D̄ h̄T+N−t| . (69)

Then, we only need to solve equation (67). Let x = ln s and n(t, s) =
u(t, x). Using the boundary condition n(T+N, s)=0, we have u(T+N, x)=0,
nt = ut, gs = 1

sux, and gss =
1
s2
(uxx − ux). Substituting them into equation

(67), we get

ut + rs
1

s
ux +

1

2
σ2P (1−q)s2

1

s2
(uxx − ux) +

(µ− r)2

2σ2p(1−q)
− r = 0 . (70)

Combining the terms of ux and uxx in equation (70), we obtain

ut +

(
r − 1

2
σ2P (1−q)

)
ux +

1

2
σ2P (1−q)uxx +

(µ− r)2

2σ2p(1−q)
− r = 0 . (71)

Using the homogenization method, we first solve the auxiliary equation (72)
as follows: {

ũt +
(
r − 1

2σ
2P (1−q)

)
ũx +

1
2σ

2P (1−q)ũxx = 0 ,

ũ(t, x; ξ) = (µ−r)2

2σ2p(1−q) − r ,
(72)

where ũ = ũ(t, x; ξ) and

u(t, x) =

T+N∫
t

ũ(t, x; ξ)dξ . (73)

Let

ũ(t, x; ξ) =

[
(µ− r)2

2σ2p(1−q)
− r

]
ek1(t;ξ)x+k2(t;ξ) . (74)

Substituting equation (74) into equation (72), we have

dk1
dt

x+
dk2
dt

+
1

2
σ2P (1−q)k21 +

(
r − 1

2
σ2P (1−q)

)
k1 = 0 . (75)

Using k1(ξ; ξ) = 0 and k2(ξ; ξ) = 0, we get{
k1
dt = 0 ,

k1(ξ; ξ) = 0 ,
(76)

{
k2
dt +

1
2σ

2P (1−q)k21 +
(
r − 1

2σ
2P (1−q)

)
k1 = 0 ,

k2(ξ; ξ) = 0 .
(77)
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Furthermore, it can easily be obtained that

k1(t, ξ) = 0, k2(t, ξ) = 0 . (78)

Substituting equation (78) into equation (74), we have

ũ(t, x; ξ) =
(µ− r)2

2σ2p(1−q)
− r . (79)

Substituting equation (79) into equation (73), we get

u(t, x) =

T+N∫
t

(
(µ− r)2

2σ2P (1−q)
− r

)
dξ

=

(
(µ− r)2

2σ2P (1−q)
− r

)
(T +N − t) . (80)

Furthermore, we have

n(t, s) = u(t, x) =

(
(µ− r)2

2σ2P (1−q)
− r

)
(T +N − t) . (81)

Substituting (68), (69), and (81) into (63), the solution for g(t, s, z) is ob-
tained

g(t, s, z)

= − 1

β

[
e−r(T+N−t)

(
ln z +

(
(µ− r)2

2σ2P (1−q)
− r

)
(T +N − t)

)]
− ch̄T+N−t| .

(82)

Solving the derivatives of (82), we get

gs = 0 , (83)

gz = − 1

βz
e−r(T+N−t) . (84)

Substituting (83) and (84) into (62) and using v = g = −H̃z, we have

π∗
t =

µ− r

βvσ2P (1−q)
e−r(T+N−t) . (85)
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According to Theorem 1 and Theorem 2, when q → 1, we can easily de-
rive the optimal investment strategy under the condition that the underlying
asset obeys the Brownian motion as follows:

Before retirement:
π∗
t =

µ− r

βvσ2
e−r(T−t) , (86)

after retirement:
π∗
t =

µ− r

βvσ2
e−r(T+N−t) . (87)

6. Numerical results

This section provides some numerical calculations to illustrate the ap-
plicability of the model and the dynamic behavior of the optimal strat-
egy. The daily closing data of the Shanghai Composite Index is selected
as analyzed data sets. The time span of the data is from 01/04/2022 to
07/30/2024. In practice, we adopt the usual logarithmic return form. De-
noting the closing index on the days as x(t), the daily index return is defined
by R(t) = ln[x(t)]− ln[x(t− 1)].

From Table 1, we find that the kurtosis value of the daily return distribu-
tion is 33.1689 which is much greater than that of the Gaussian distribution
(the kurtosis value of the Gaussian distribution is 3). Moreover, the value
of the J–B test is 24269 and the test probability is 0.0010 (the significance
level is set as 0.05), which means the J–B test rejects the null hypothesis
that the daily return distribution of the Shanghai Composite Index follows
the Gaussian distribution.

Table 1. The statistical characteristics of daily returns of the Shanghai Composite
Index.

Mean Standard deviation Kurtosis J–B P
−0.0000569 0.0108 33.1689 24269 0.0010

Figure 1 illustrates that both the histogram of daily returns and the
Tsallis distribution have greater kurtosis than the Gaussian distribution.
Furthermore, the Tsallis distribution with parameter q = 1.45 fits the em-
pirical density distribution of the daily returns more accurately than the
Gaussian distribution.

Figure 2 shows that the optimal investment strategy for risky assets is
a decreasing function of wealth. However, at the same level of wealth, a
greater parameter q corresponds to a greater optimal investment strategy,
which means that investors need to take higher risks to obtain expected
returns when the market fluctuates greatly.
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Fig. 1. Comparison of fitting of the daily return empirical distribution for the
empirical distribution, Gaussian distribution, and Tsallis distribution (q = 1.45).
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Fig. 2. Comparison of the optimal investment strategies for the Gaussian (q = 1)
and Tsallis distribution. (β = 2, µ = 0.08, σ = 0.2, r = 0.04, v0 = 1, c = 0.1,
q = 1.45, ∆t = 1).

7. Summary

Accurately fitting the volatility of asset prices is the foundation for in-
vestors to make investment decisions. An increasing number of research
results indicate that asset prices often exhibit long-range memory and fat
tails, which are not suitable for modeling using the classical Brownian mo-
tion. In this paper, we use the non-extensive statistical theory to establish
the asset-price model, which can more accurately fit the fluctuations of asset
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prices. Moreover, based on this, we study the optimal investment problem of
pension and obtain an analytical solution for the optimal investment strat-
egy. In future work, we can apply this optimal investment model to study
the investment decision-making problems of other financial derivatives.
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