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This paper presents an in-depth study of a concatenation model with
power-law nonlinearity. The integral form of the original model is derived,
and the corresponding dynamic system is obtained. A qualitative analysis
is conducted to identify the types of equilibrium points, phase diagrams,
and trajectories. From specific trajectories, we can infer that this equa-
tion has periodic and soliton solutions. To validate these conclusions, the
corresponding exact solutions are constructed, and several new solutions
are initially presented in this paper. Finally, by adding a specific external
perturbation term, we found that this model also exhibits chaotic behavior,
which is presented in this paper for the first time.
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1. Introduction

The concatenation model is an innovative approach in the study of
pulse propagation dynamics in optical fibers [1–3] that integrates three well-
established nonlinear evolution equations: the nonlinear Schrödinger equa-
tion, the Sasa–Satsuma equation, and the Lakshmanan–Porsezian–Daniel
model. This model effectively describes the behavior of long-distance op-
tical solitons and has been studied extensively from different perspectives.
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These include its historical connection to Painlevé analysis, numerical analy-
sis using the Laplace–Adomian decomposition method for the identification
of conservation laws, the study of stable solitons in the presence of nonlin-
ear chromatic dispersion (CD) effects, and various other findings [4–8]. The
previous analysis was conducted within the framework of Kerr nonlinearity,
which describes the empirical relationship between refractive index change
and light intensity as light propagates through a medium [9, 10]. A specific
manifestation of the Kerr effect in optical pulse transmission is a self-phase
modulation (SPM). This paper extends the concept of SPM to power-law
nonlinearity, allowing for a power-law relationship between the nonlinear
response and optical intensity, rather than the conventional linear or cu-
bic relationship. The concatenation model with the power-law nonlinearity
represents a significant advancement in the study of pulse propagation dy-
namics in optical fibers. The power-law nonlinearity manifests in diverse
physical phenomena, including light propagation in nonlinear optical media,
Bose–Einstein condensate dynamics, and other systems exhibiting nonlinear
responses. Thus, the research on the concatenation model with the power-
law nonlinearity is of great significance for governing and analyzing optical
propagation phenomena. The concatenation model with the power-law non-
linearity is defined as in Eq. (1) [11], which is a common variant of the
concatenation model

iqt + aqxx + b|q|2nq + c1
[
σ1qxxxx + σ2(qx)

2q∗ + σ3|qx|2q + σ4|q|2nqxx
+σ5q

2q2xx + σ6|q|2n+2q
]
+ ic2

[
σ7qxxx + σ8|q|2nqx + σ9q

2q∗x
]
= 0 , (1)

where q(x, t) denotes the wave profile and the complex-valued function, x is
the spatial variable, t signifies the temporal variable, n denotes the power-
law nonlinearity parameter, a is the coefficient of chromatic dispersion, b is
the coefficient of the Kerr law of self-phase modulation, c1 is the coefficient
derived from the Lakshmanan–Porsezian–Daniel model, c2 is a coefficient
from the Sasa–Satsuma equation, and σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9 are con-
stants.

Qualitative analysis is an effective technique [12, 13] for analyzing the
physical laws governing light-wave propagation. Qualitative analyses have
been conducted on significant physical equations, such as the cubi–quartic
nonlinear Schrödinger equation [14, 15], the Khokhlov–Zabolotskaya–
Kuznetsov equation [16], and the Nagumo nerve conduction equation [17].
Analyzing chaotic behavior provides deeper insights into the underlying
physical principles of optical propagation [18–20]. There are many meth-
ods for solving nonlinear partial differential equations and obtaining exact
traveling wave solutions for various physical equations. These include the
new Kudryashov method [21], the Lie symmetry method [22, 23], the first
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integral method [24, 25], the exp-function method [26, 27], etc. The com-
plete discrimination system for the polynomial method [28–33] is a newly
proposed method that has obtained exact solutions for many classical equa-
tions [34–40]. In this paper, the original model is transformed into an in-
tegral form using a traveling wave transformation. From this integral form,
a corresponding dynamic system is derived. Through a qualitative analy-
sis, the types of equilibrium points, phase diagrams, and trajectories are
identified. In addition, the existence of solitons and periodic solutions is es-
tablished by analyzing the characteristics of these trajectories. To validate
the findings from the qualitative analysis, the corresponding exact solutions
to the dynamic system are constructed, leading to the discovery of several
new solutions. Finally, the models response to specific external perturbation
terms is examined, revealing that the system can exhibit chaotic behaviors
under specific conditions. In addition, the chaotic behaviors identified in
this work are reported for the first time, illuminating the future study of the
mechanisms underlying chaotic phenomena in nonlinear optics.

The remainder of this paper is structured as follows: Section 2 elaborates
on the traveling wave reduction methodology. Section 3 conducts a qualita-
tive analysis of the system. Section 4 derives exact traveling wave solutions
for Eq. (1), while Section 5 systematically investigates the chaotic dynamics.
The comprehensive findings and discussions are presented in Section 6.

2. Traveling wave reduction

By taking the following traveling wave transformation:

q(x, t) = y(ξ) ei(kx−wt+θ0) , ξ = x− vt , (2)

and substituting it into Eq. (1), the resulting overdetermined system of
equations can be obtained [8]. The imaginary part of the results is presented
as follows:

(c2σ7 + 4c1kσ1)y
′′′ + (c2σ8 + 2c1kσ4)y

2ny′ + (c2σ9 + 2c1kσ2 − 2c1kσ5)y
2y′

+
(
2ak − 4c1σ1k

3 − 3c2σ7k
2 − v

)
y′ = 0 . (3)

The real part of the results is presented as follows:

c1σ1y
(4) +

(
b− c1k

2σ4 − c2kσ8
)
y2n+1 + c1σ6y

2n+3 + c1σ4y
2ny′′

+
(
a− 6c1k

2σ1 − 3c2kσ7
)
y′′ + c1σ5y

2y′′ + c1(σ2 + σ3)y
(
y′
)2

−
(
k2c1σ2 − c1σ3k

2 + k2c1σ5 − kσ9c2
)
y3

−
(
ak2 − w − σ1k

4c1 − c2σ7k
3
)
y = 0 , (4)



7-A4.4 Bing Guan et al.

where y(ξ) is the envelope packet, θ0 is a constant, k is the wave number,
and w is the wave velocity. Equations (3) and (4) can be simplified into the
following form: (

y′
)2

= Ay4 +By2n+2 + Cy2 +Dy + E , (5)

where

A = − c2σ8 + 2c1kσ4
(2n+ 1)(n+ 1)(c2σ7 + 4c1kσ1)

,

B = −c2σ9 + 2c1kσ2 − 2c1kσ5
6(c2σ7 + 4c1σ1)

,

C = −2ak − 4c1kσ1k
3 − 3c2σ7k

2 − v

c2σ7 + 4v1kσ1
,

D =
2C1

c2σ7 + 4c1kσ1
, (6)

and C1 and E are arbitrary constants. In the following equation, we focus
on the condition of n = 1

2 :(
y′
)2

= Ay4 +By3 + Cy2 +Dy + E , (7)

and other cases could be conducted similarly. Through the following trans-
formation:

ϕ = A
1
4

(
y +

B

4A

)
, ς = A

1
4 ξ , (8)

we obtain the following equation:

(ϕς)
2 = ϕ4 + a2ϕ

2 + a1ϕ+ a0 , (9)

where a2 = C√
A

, a1 = ( B3

8A2 − BC
2A +D), a0 = −−3B4

256A3 + B2C
16A2 − BD

4A + E.
Equation (7) can be transformed into the following dynamic system:

ϕ′ = ψ ,

ψ′ = 2
(
ϕ3 + b2ϕ+ b1

)
, (10)

where b2 = 1
2a2, b1 = 1

4a1. Then, we can obtain a conserved quantity as
follows:

H(ϕ, ψ) = ψ2 −
(
ϕ4 + a2ϕ

2 + a1ϕ
)

(11)

due to the following equation:

dH

dς
=
∂H

∂ϕ

∂ϕ

∂ξ
+
∂H

∂ψ

∂ψ

∂ξ
= 0 . (12)
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In fact, H(ϕ, ψ) represents the Hamiltonian; thus, −(ϕ4 + a2ϕ
2 + a1ϕ)

corresponds to the potential energy U(ϕ) of the system. In addition, since
Eq. (11) is autonomous, the system trajectories correspond exactly to the
contour lines of the function H(ϕ, ψ). This relationship is used in the
following sections to conduct the qualitative analysis.

3. Qualitative analysis

By introducing the following discriminant:

∆ = −
(
b2
4

+
b1
27

)
, (13)

four cases arise that require detailed analysis.

Case 1. ∆ = 0, b2 < 0, U(ϕ)′ is given as follows:

−U(ϕ)′ = 4(ϕ− a)(ϕ− b)2 , (a+ 2b = 0) . (14)

There are two equilibrium points: (a, 0), which is a center, and (b, 0), which
is a cuspidal point. For example, when a = 1, b = −0.5, the corresponding
phase diagram is shown in Fig. 1. Figures 1–4 were created by using the
drawing functions of the MATLAB software.

Fig. 1. Phase diagram of Case 1 when a = 1, b = −0.5.

Case 2. ∆ = 0, b2 = 0, U(ϕ)′ is given as follows:

−U(ϕ)′ = 4ϕ3 . (15)

There is one equilibrium point under this condition: (0, 0), which is a cus-
pidal point. For example, when b1 = b2 = 0, this case is realized, and the
corresponding phase diagram is shown in Fig. 2.
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Fig. 2. Phase diagram of Case 2 when b1 = 0, b2 = 0.

Case 3. ∆ > 0, b2 < 0, U(ϕ)′ is presented as follows:

−U(ϕ)′ = 4(ϕ− a)(ϕ− b)(ϕ− c) , (a+ b+ c = 0 , a < b < c) . (16)

In this case, there are three equilibrium points: (a, 0) and (c, 0), which
are nodes, and (b, 0), which is a center. The value of b = 0 influences the
topological properties of the phase diagram. For example, the conditions of
a = −0.5, b = 0, c = 0.5 and a = −2, b = −1, c = 3 are shown in Figs. 3–4.

Fig. 3. Phase diagram of Case 3 when a = −0.5, b = 0, c = 0.5.

For the symmetric case shown in Fig. 3, there are two heteroclinic orbits,
indicating the existence of kink and antikink solitary wave solutions. In ad-
dition, a closed trajectory with an interior center point is present, signifying
that the original model has a periodic solution. In contrast, for the asym-
metric case shown in Fig. 4, there is a homoclinic trajectory and a closed
trajectory featuring an interior center point. This suggests the existence of
a bell-shaped soliton solution and a periodic solution.
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Fig. 4. Phase diagram of Case 3 when a = −2, b = −1, c = 3.

Case 4. ∆ < 0, U(ϕ)′ is given as follows:

−U(ϕ)′ = 4(ϕ− a)
[
ϕ+ c2

]
. (17)

There is one equilibrium point, (a, 0), identified as a saddle point. Since
this case is analogous to Case 1, the corresponding results can be referenced
from Case 1.

In this section, we conduct a qualitative analysis of Eq. (10) and prove the
existence of solitary wave, soliton, and periodic solutions. To demonstrate
our conclusions more directly, we construct all the traveling wave solutions.
The results show that these solutions indeed exist.

4. Classification of traveling wave solutions

By denoting Q(ϕ) = ϕ4 + a2ϕ
2 + a1ϕ+ a0 and introducing the following

discrimination system:

R1 = 4 , R2 = −b2 , R3 = −2b32 + 8b2b0 − 9b21 , Z2 = 9b22 − 32b2b0 ,

R4 = −b32b21 + 4b42b0 + 36b2b
2
1 − 32b22b

2
0 −

27

4
b41 + 64b30 , (18)

we can obtain nine cases of exact traveling wave solutions.

4.1. Solitary wave solutions

Case 1. For R4 = 0, R3 = 0, R2 > 0, and Z2 > 0, we have the following
equation:

Q(ϕ) = (ϕ− r)2(ϕ− o)2 , (r + o = 0) , (19)
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where r > o. We can obtain the following equation:

±(ξ1 − ξ0) =

∫
dϕ

(ϕ− r)(ϕ− o)
=

1

r − o
ln

∣∣∣∣ϕ− r

ϕ− o

∣∣∣∣ . (20)

When ϕ > r or ϕ < o, the solution can be denoted as follows:

ϕ =
o− r

e±(r−o)(ξ1−ξ0) − 1
+ o =

o− r

2

[
coth

±(r − o)(ξ1 − ξ0)

2
− 1

]
+ o , (21)

and when o < ϕ < r, we can obtain the following equation:

ϕ =
o− r

−e±(o−m)(ξ1−ξ0) − 1
+ o =

o− r

2

[
tanh

±(r − o)(ξ1 − ξ0)

2
− 1

]
+ o .

(22)
Equations (21) and (22) are solitary wave solutions. Specifically, Eq. (22)

represents the antikink solitary wave solution, whereas Eq. (21) represents
a singular and kink solitary wave solution.

Case 2. When R4 = 0 and R2R3 < 0, we obtain the following equation:

Q(ϕ) = (ϕ− µ)2
[
(ϕ− r)2 + o2

]
, (µ+ r = 0) , (23)

where µ, r, and o are real numbers. Then, the expression can be presented
as follows:

±(ξ1 − ξ0) =

∫
dϕ

(ϕ− µ)
√
(ϕ− r)2 + o2

=
1√

(µ− r)2 + o2
ln

∣∣∣∣∣ϵϕ+ η −
√

(ϕ− r)2 + o2

ϕ− µ

∣∣∣∣∣ , (24)

where

δ =
µ− 2s√

(µ− r)2 + o2
,

η =
√
(µ− r)2 + o2 − µ(µ− 2s)√

(µ− r)2 + o2
. (25)

Thus, the following expression can be obtained:

ϕ =

(
e±

√
(µ−r)2+o2(ξ1−ξ0) − δ

)
+
√
(µ− r)2 + o2(2− δ)(

e±
√

(µ−r)2+o2(ξ1−ξ0) − δ
)2

− 1
. (26)
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Equation (26) is a singular solitary wave solution. Specifically, when δ = 0

and
√

(µ− r)2 + o2(2− δ) = 1, a bell-shaped soliton solution is obtained.

Case 3. For R4 = 0, R3 > 0, and R2 > 0, we get

Q(ϕ) = (ϕ− µ1)
2(ϕ− µ2)(ϕ− µ3) , (2µ1 + µ2 + µ3 = 0) , (27)

where µ2 > µ3. By setting h = (µ1 − µ2)(µ1 − µ3), we have

ϕ =
2h

±(µ2 − µ3) sinh[
√
−h(ξ1 − ξ0)]− (2µ1 − µ2 − µ3)

, (µ2 > µ1 > µ3)

(28)
and

ϕ =
2h

(µ2 − µ3) cosh[
√
h(ξ − ξ0)]− (2µ1 − µ2 − µ3)

, (µ1 > µ2 or µ1 < µ3) .

(29)
Equations (28) and (29) are twisted soliton solutions.

4.2. Periodic solutions

The periodic solutions are presented in Cases 1 to 4.

Case 1. When R4 = 0, R3 = 0, and R2 < 0, Q(ϕ) can be written as
follows:

Q(ϕ) =
(
ϕ2 + o2

)2
, (30)

where m > 0. Thus, we obtain the following equation:

±(ξ1 − ξ0) =

∫
dϕ

ϕ2 + o2
=

1

o
arctan

ϕ

o
. (31)

Then, we obtain the following solution:

q = ±o tan o(ξ1 − ξ0) , (32)

which is a triangle function periodic solution.

Case 2. When R4 > 0 and R2R3 ≤ 0, we obtain the following equation:

Q(ϕ) =
(
(ϕ− µ1)

2 + s21
) (

(ϕ− µ2)
2 + s22

)
, (33)

where l1 ≥ l2 > 0. By applying the following transformation:

ϕ =
R1 tan θ +R2

R3 tan θ +R4
, (34)
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where

R1 = µ1R3 + s1R4 ,

R2 = µ1R4 − s1R3 ,

R3 = −s1 −
l2
f2
,

R4 = µ1 − µ2 ,

e2 =
(µ1 − µ2)

2 + s21 + s22
2s1s2

,

f2 = e2 +
√
e22 − 1 , (35)

we obtain the following equation:

ξ1 − ξ0 =

∫
dϕ√(

(ϕ− µ1)2 + s21
) (

(ϕ− µ2)2 + s22
)

=
R2

3 +R2
4

s2

√(
R2

3 +R2
4

) (
f22R

2
3 +R2

4

) ∫ dθ√
r −m2

2 sin
2 θ

, (36)

where m2
2 =

f2
2−1

f2
2

. Then, the solution can be presented as follows:

ϕ =
R1 sn(η(ξ1 − ξ0),m2) +R2 cn(η(ξ1 − ξ0),m2)

R3 sn(η(ξ1 − ξ0),m2) +R4 cn(η(ξ1 − ξ0),m2)
, (37)

where

η =
s2

√(
R2

3 +R2
4

) (
f22R

2
3 +R2

4

)
R2

3 +R2
4

. (38)

Equation (37) is a double-periodic elliptic function solution.

Case 3. When R4 < 0 and R2R3 ≥ 0, Q(ϕ) is represented as follows:

Q(ϕ) = (ϕ− µ)(ϕ− β)
[
(ϕ− r)2 + o2

]
, (µ+ β + r = 0) , (39)

where µ > β and o > 0.
We obtain the following transformation:

ϕ =
R1 cos θ +R2

R3 cos θ +R4
, (40)
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where

R1 =
1

2
(µ+ β)R3 −

1

2
(µ− β)R4 ,

R2 =
1

2
(µ+ β)R4 −

1

2
(µ− β)R3 ,

R3 = µ− r − o

f2
,

R4 = µ− r − of2 ,

e2 =
o2 + (µ− r)(β − r)

o(µ− β)
,

f2 = e2 ±
√
e22 + 1 , (41)

which yields the following equation when f2 > 0:

±(ξ − ξ0) =

∫
dq√

±(ϕ− µ)(ϕ− β) ((ϕ− r)2 + o2)

=
2f2m2√

∓2lf2(µ− β)

∫
dϕ√

r −m2
2 sin

2 θ
, (42)

where m2
2 =

1
1+f2

2
. Thus,

cos θ = cn

(√
∓2m2f2(µ− β)

2f2m2
(ξ1 − ξ0),m2

)
, (43)

and we obtain the following solution:

ϕ =

R1 cn

(√
∓2m2f2(µ−β)

2f2m2
(ξ1 − ξ0),m2

)
+R2

R3 cn

(√
∓2m2f2(µ−β)

2f2m2
(ξ1 − ξ0),m2

)
+R4

, (44)

where Eq. (44) is a double-periodic elliptic function solution.

Case 4. When R4 > 0, R2 > 0, and R3 > 0, we obtain the following
equation:

Q(ϕ) = (ϕ−µ1)(ϕ−µ2)(ϕ−µ3)(ϕ−µ4) , (µ1+µ2+µ3+µ4 = 0) , (45)

where µ1 > µ2 > µ3 > µ4, using the following transformations:

ϕ =
µ2(µ1 − µ4) sin

2 θ − µ1(µ2 − µ4)

(µ1 − µ4) sin
2 θ − (µ2 − µ4)

, (ϕ > µ1 or ϕ < µ4) , (46)
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or

ϕ =
µ4(µ2 − µ3) sin

2 θ − µ3(µ2 − µ4)

(µ2 − µ3) sin
2 θ − (µ2 − µ4)

, (µ3 < ϕ < µ2) , (47)

we obtain the following equation:

ξ1 − ξ0 =

∫
dϕ√

(ϕ− µ1)(ϕ− µ2)(ϕ− µ3)(ϕ− µ4)

=
2√

(µ1 − µ3)(µ2 − µ4)

∫
dθ√

1−m2 sin2 θ
, (48)

where m2 = (µ1−µ4)(µ2−µ3)
(µ1−µ3)(µ2−µ4)

. Then we have

ϕ =

µ2(µ1 − µ4) sn
2

(√
(µ1−µ3)(µ2−µ4)

2 (ξ1 − ξ0),m

)
− µ1(µ2 − µ4)

(µ1 − µ4) sn2
(√

(µ1−µ3)(µ2−µ4)

2 (ξ1 − ξ0),m

)
− (µ2 − µ4)

, (49)

and

ϕ =

µ4(µ2 − µ3) sn
2

(√
(µ1−µ3)(µ2−µ4)

2 (ξ1 − ξ0),m

)
− µ3(µ2 − µ4)

(µ2 − µ3) sn2
(√

(µ1−µ3)(µ2−µ4)

2 (ξ1 − ξ0),m

)
− (µ2 − µ4)

. (50)

Equations (49) and (50) are two double-periodic elliptic function solutions.
According to the seven cases mentioned above, the original equation

has periodic solutions and solitary wave solutions. Specifically, the solitary
wave solutions consist of kink, antikink, and singular solitary wave solutions.
Therefore, the conclusions drawn in the previous section are validated.

To further enrich our findings, the following cases explore rational func-
tion solutions.

4.3. Rational function solutions

Case 1. When R4 = 0, R3 = 0, and R2 = 0, Q(ϕ) is denoted as follows:

Q(ϕ) = ϕ4 . (51)

Thus, we can obtain the following equations:

±(ξ1 − ξ0) =

∫
dϕ

ϕ2
= −ϕ−1 , (52)
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and
ϕ = ∓ 1

ξ1 − ξ0
. (53)

Equation (53) is a rational function solution.

Case 2. When R4 = 0, R3 = 0, R2 > 0, Z2 = 0, we have

Q(ϕ) = (ϕ− r)3(ϕ− o) , (o+ 3s = 0) . (54)

We obtain the following equation:

±(ξ1 − ξ0) =

∫
dϕ

(ϕ− r)
√

(ϕ− r)(ϕ− o)
=

2

o− r

√
ϕ− o

ϕ− r
. (55)

Therefore, we obtain the following solutions:

ϕ =
4(r − o)

(o− r)2(ξ1 − ξ0)2 − 4
+ r . (56)

In this case, equation (56) represents a rational function solution that is
distinct from the one presented in Case 1.

Case 3. For R4 = 0, R3 = 0, R2 > 0, and Z2 = 0, we obtain

Q(φ) = (φ− r)3(φ− o) , (o+ 3s = 0) , (57)

which yields the following equation:

±(ξ1 − ξ0) =

∫
dφ

(φ− r)
√

(φ− r)(φ− o)
=

2

o− r

√
φ− o

φ− r
. (58)

Thus, we get

φ =
4(r − o)

(o− r)2(ξ1 − ξ0)2 − 4
+ r . (59)

Equation (59) is also a rational function solution. Compared with existing
studies, Wang et al. [41] used the trial equation method to obtain dark
and single solitons and Yildirim et al. [42] applied four integration schemes
to analyze optical solitons and straddled stationary solitons. However, this
study presents for the first time all traveling wave solutions to Eq. (1) are
presented.
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To investigate the nature of the obtained solutions, graphical simulations
are conducted. Equation (21) is selected to represent the solitary wave
solutions, whereas Eq. (44) represents the elliptic periodic solutions. The
corresponding parameters are set as o = 1, r = −1, ξ0 = 0, v = 5 for
Eq. (21) and o = 3, µ = 1, β = −1, r = 0, ξ0 = 0, f2 = 2, m2 =√

5
5 for Eq. (44). Graphical simulations are performed on the soliton and

periodic solutions, resulting in Figs. 5 and 6, which are generated by using
the MATLAB software.

(a) (b)

-4 -2 2 4
x

-4

-2

2

4

ΦHx,tL

t=1 t=2 t=3

(c)

Fig. 5. Graphical simulations of Eq. (21): (a) 3D graph; (b) contour graph; (c) 2D
graph.
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(a) (b)

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

ΦHx,tL
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Fig. 6. Graphical simulations of Eq. (44): (a) 3D graph; (b) contour graph; (c) 2D
graph.

According to Figs. 5 and 6, the physical phenomena can be intuitively
observed, revealing significant differences between the distributions of soli-
ton and periodic solutions. Figures 5 (a) and 5 (b) show that the solution
distributions are relatively regular and conform to the characteristics of peri-
odic solutions. In Fig. 5 (c), the peak value of the solution remains constant
over time, indicating that the solution has the characteristic of convergence.
From Fig. 6, it can be concluded that the concatenation model has solitary
wave solutions, thereby verifying the accuracy of the obtained solutions.
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5. Chaotic behaviors

From the above discussion, it is evident that the traveling wave system
of the original model does not exhibit chaotic behavior. However, in this
section, we prove that by introducing proper external perturbation terms,
chaotic behaviors emerge. To verify this, we provide the corresponding phase
diagram and calculate the largest Lyapunov exponent (LLE). First, the orig-
inal dynamic system is rewritten in the following form:

ϕ′ = ψ ,

ψ′ = 2
(
ϕ3 + b2φ+ b1

)
+ η(ζ) , (60)

where η(ζ) is the external perturbation.

Case 1. When η(ζ) = −(0.8) cos(0.015ζ), the corresponding figures are
shown in Fig. 7. From Fig. 7 (a), it is evident that this system exhibits the
chaotic phenomenon, and the positive LLE corresponding to the coefficients
verifies this conclusion.

(a) (b)

(c) (d)

Fig. 7. Diagram of Eq. (60) when a2 = −0.75, a1 = −0.125: (a) phase graph;
(b) LLE for a2; (c) LLE for a1; (d) LLE for a0.
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Case 2. When η(ζ) = −200 exp(−0.035t2), the corresponding figures
are shown in Fig. 8. It can be seen that under different perturbation terms,
the chaotic behaviors of the original system vary. However, the exact mecha-
nisms by which external terms affect the system or which specific terms lead
to chaotic behavior remain unknown. We leave this as an open problem for
future investigation.

(a) (b)

(c) (d)

Fig. 8. Diagram of Eq. (60) when a = −0.25, b = −0.125: (a) phase graph; (b) LLE
for a2; (c) LLE for a1; (d) LLE for a0.

6. Conclusions

In this paper, the concatenation model with the power-law nonlinear-
ity is comprehensively studied. The original equation is transformed into
a dynamic system, followed by a qualitative analysis. By applying the bi-
furcation theory, the system’s qualitative properties including global phase
portraits and equilibrium points are revealed. The existence of periodic and
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soliton solutions is proven, and to verify this conclusion, the classification of
traveling wave solutions is constructed, including several new solutions ini-
tially introduced in this paper. The obtained solutions of the concatenation
model are intuitively analyzed using graphical simulations, showcasing their
distribution and convergence characteristics. This means more interesting
structures in quantum optics may be discovered from the results obtained.
In addition, chaotic behaviors are identified by introducing specific exter-
nal terms. This study provides a new perspective on the concatenation
model, presenting novel results, such as elliptic function double-periodic so-
lutions and chaotic behaviors, for the first time. This detailed exploration
of the concatenation model with the power-law nonlinearity contributes to
a broader understanding of nonlinear dynamics in complex systems and has
profound implications for optical communication and other nonlinear opti-
cal applications. And this is the first time that the link between the chaotic
behaviors and the concatenation model with power-law nonlinearity is pre-
sented, which may also be helpful in quantum chaotic theory.
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