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The monomer–trimer model is studied on the fractal 3-simplex lattice.
Configurations are enumerated by an exact system of recurrence relations.
Asymptotic forms for the number of pure trimer and monomer–trimer con-
figurations of equal weights as well as entropy are found. The asymptotic
form in the close-packed limit differs from the one obtained for dimers on
the square lattice. By introducing monomer fugacity, configurations are
classified according to the number of monomers (or trimers), and the prob-
lem is formulated in the grand canonical ensemble. The average number of
monomers and entropy are calculated as functions of fugacity. Entropy as
a function of trimer fraction coverage shows qualitatively similar behavior
to that found on the square lattice.
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1. Introduction

In the 1930s, Fowler and Rushbrooke [1] introduced the monomer–dimer
model in order to represent a liquid mixture of differently-sized molecules.
In this model, a monomer occupies one lattice site, whereas a dimer occupies
two adjacent lattice sites. Double occupancy of sites is forbidden. The main
question was to find the number of ways in which a lattice can be covered
with a mixture of monomers and dimers. Although simple, the problem has
not been solved exactly on any periodic lattice yet (except in one dimension).
Over the years, the model has been extensively applied in surface physics
as a model for the adsorption of diatomic molecules. Its simplified version,
the so-called close-packed dimer limit, in which the lattice is completely
covered by dimers, was solved analytically on planar lattices [2–5]. The
problem was generalized to include rectilinear trimers [6–8], and moreover,
rectilinear k-mers [9–11] in the studies on the orientational ordering of long
rod-like molecules related to liquid crystals. In the k-mer model, k connected
monomers singly occupy k contiguous lattice sites.
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Due to the intractability of models on periodic lattices (only some specific
cases are solved exactly, for example, triangular (V-shaped) trimers on the
triangular lattice in the close-packed trimer limit [12]), the problems are usu-
ally posed on some graphs or lattices on which exact or asymptotic solutions
can be drawn. For this purpose, fractal lattices with finite ramification have
proven to be very suitable, because their hierarchical structure enables the
recurrent enumeration of configurations. Moreover, the lack of translational
symmetry makes them convenient for the simulation of inhomogeneous sub-
strates in adsorption phenomena (the application of the model for adsorption
on the homogeneous substrate is considered, for example, in [13]).

Although the close-packed dimer model and the monomer–dimer model
have been studied on fractal lattices [14–17], the monomer–trimer model
has not yet been studied in this way. In this paper, we take a step forward
and study the monomer–trimer system on the fractal 3-simplex lattice. We
aim at finding out what effects the fractal structure has on the behavior
of the model. Trimers of all possible shapes on this lattice are considered.
An exact set of recurrence equations is constructed for the enumeration of
close-packed trimer configurations, from which the asymptotic growth con-
stant (or equivalently entropy) is found. Then, by extending the recurrent
technique and applying the grand canonical ensemble, the entropy of the
monomer–trimer model and the density of trimers are calculated numeri-
cally as functions of monomer fugacity. Finally, the plot of entropy versus
density is presented.

Section 2 is concerned with pure trimers, Section 3 with the mixture of
monomers and trimers, whereas discussion and conclusions are presented in
Section 4.

2. The close-packed trimers

In this section, the 3-simplex lattice relevant to this study is described, af-
ter which the derivation of recurrence equations for the close-packed trimers
is outlined. The asymptotic expression for the number of close-packed trimer
configurations and the entropy per lattice site in the thermodynamic limit
are determined.

2.1. The 3-simplex lattice

The 3-simplex lattice [18, 19] is a fractal lattice embedded in two-dimen-
sional space. It is constructed in an iterative manner, starting with a unit
triangle as an initiator. In each step, the generator of the rth order (G(r))
is obtained by connecting three generators of the order of r − 1 (G(r−1)) by
three bonds, as shown in the first three steps of construction in Fig. 1. The
complete lattice is obtained when the number of steps tends to infinity. The
generator of the rth order comprises 3 generators of the order of r−1 (as sub-
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generators), 32 generators of the order of r−2, . . . and 3r−1 unit triangles. It
has Nr = 3r lattice sites and Nb = 3(3r−1)/2 bonds. Its coordination num-
ber is three. The lattice can be obtained from a two-dimensional Sierpinski
gasket by splitting the vertices of its neighboring triangles. It is equivalent
to the infinite graph of the Hanoi tower, a commonly used graph in physics
and combinatorial mathematics [20, 21].

r=1

r=2

r=3

Fig. 1. The first three generators of the 3-simplex lattice. The complete lattice is
obtained when r → ∞.

2.2. Recurrence equations for pure trimers

A trimer can be considered as a triatomic molecule which occupies three
adjacent lattice sites. In the close-packed trimer model, all lattice sites
are singly occupied with units that belong to trimers (there are no sin-
gle monomer units i.e. vacancies). We consider flexible trimers of different
shapes that can exist on the 3-simplex lattice: rectilinear and bent at angles
of 60 and 120 degrees. One configuration in which pure trimers cover all
lattice sites of the generator G(4) is presented in Fig. 2. As one can ob-
serve, trimer configurations on sub-generators are such that trimers either
completely belong to the same sub-generator (internal trimers) or they pro-
trude along the bonds between neighboring sub-generators, in which case
we say that they are external trimers. In Fig. 2, the encircled configuration
on G(2) in the right corner of G(4) contains only internal trimers, whereas
another encircled configuration contains parts of two external trimers. Ex-
ternal trimers start at the corner vertex of one sub-generator, enter the
neighboring sub-generator via its corner vertex, and end in one of its two
remaining nearest neighboring vertices (starting and ending points are sym-
metrical). Therefore, each external trimer occupies one or two lattice sites
on a sub-generator. At most three external trimers can be associated with
each sub-generator. Since each G(r) contains Nr = 3r vertices, due to the
close packing, configurations with external trimers are permissible only if
trimers altogether visit three or six vertices on the considered generator
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Fig. 2. Close-packed trimer covering of the fourth order generator of the 3-simplex
lattice. Two possible types of configurations on the generators are encircled and
shown schematically aside.

(the number of remaining vertices on the generator must be divisible by
three). Some of these configurations are further forbidden due to the lattice
geometry. Classifying all possible configurations on an arbitrary generator
according to the occupancy of its corner vertices, we find that only two types
of configurations are possible. In the configuration denoted by T , all corner
vertices are occupied with internal trimers. This configuration represents
all close-packed trimer configurations on the generator. In the the coarse-
grained description, a generator with a T configuration is represented as a
gray triangle with each corner vertex filled with a black circle representing
a monomer that belongs to an internal trimer (Fig. 2). The only possible
configuration with external trimers, denoted as k, is the one in which one
corner vertex is occupied with a trimer from the inside, another corner ver-
tex is occupied with the end-point of an external trimer (with a trimer from
the outside), and the third corner vertex is occupied with the middle-point
of another external trimer. A generator with a k configuration, as shown in
Fig. 2, is depicted as a gray triangle in which one corner vertex is filled with
the black circle, another is empty (the external trimer ends in this corner
vertex), whereas the third corner vertex contains black line representing an
external trimer which starts inside and extends out of the generator. The
close-packed trimer configuration on G(4) shown in Fig. 2 is composed of
three k configurations, one on each G(3).

In order to find recurrence equations for the numbers of T and k config-
urations, in Fig. 3, we present all possibilities to obtain a T configuration
on G(r+1) from T and k configurations on G(r). Since each configuration on
each of the three sub-generators G(r) can be combined into one configuration
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Fig. 3. Decomposition of configuration T on G(r+1) on its composing parts-
configurations T and k on G(r). Initial T configurations on the unit triangle are
shown in the second row.

on G(r+1), the number of configurations on G(r+1) can be obtained as the
product of the number of configurations on its sub-generators. Denoting the
numbers of T and k configurations on an arbitrary G(r) as Tr and kr, the
recurrence relation for Tr, according to Fig. 3, is given by

Tr+1 = T 3
r + 2k3r . (1)

In Fig. 4, we present all possibilities to obtain a k configuration on G(r+1)

from T and k configurations on G(r), from which the recurrence relation for
the variable k follows as:

kr+1 = Trk
2
r + k3r . (2)

= +
k
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Fig. 4. Decomposition of the configuration k on G(r+1) on its composing parts —
configurations T and k on G(r). The initial k configuration on the unit triangle is
shown in the second row. The empty corner vertex is occupied with an external
trimer from the outside.
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Equations (1) and (2) form a closed system of non-linear difference equa-
tions. Initial conditions are given as T1 = 3 and k1 = 1, with the initial
configurations illustrated in Figs. 3 and 4. Equations can be iterated and
the number Tr of close-packed trimer configurations on any G(r) can be found
explicitly. To obtain the asymptotic form, according to which the number
of configurations grows with the number of lattice sites, it is convenient to
introduce a new variable defined as xr = kr/Tr. Then, from (1) and (2),
a new equation for variable xr is obtained as

xr+1 = x2r
1 + xr
1 + 2x3r

, (3)

whose fixed points x∗ are obtained as solutions of the equation

x∗ = (x∗)2
1 + x∗

1 + 2(x∗)3
. (4)

Among four solutions, the only real, non-negative is x∗ = 0. It is a stable
fixed point, so that iteration of equation (3) from the initial condition x1 =
1/3 leads to zero. This implies that variable Tr increases much faster than kr,
and equation (1) for r ≫ 1 takes on the asymptotic form

Tr+1 ∼ T 3
r . (5)

The solution is Tr ∼ ω3r , where ω is the so-called growth constant. Express-
ing Tr in terms of the number of vertices Nr = 3r on G(r), we have

Tr ∼ ωNr . (6)

The growth constant ω is determined from lnω = limN→∞ lnTr/Nr. Nu-
merical iteration gives lnω = 0.374338099718 . . ., from which it follows that
ω = 1.454028674046 . . . Since the entropy of close-packed trimer configura-
tions on G(r) is given as Sr = kB lnTr, where kB is the Boltzmann constant,
the value of lnω represents the entropy per Boltzmann constant, per lat-
tice site in the thermodynamic limit, i.e. s = limNr→∞ Sr/(kBNr) = lnω =
0.374338099718 . . . The entropy per trimer is three times larger.

As one can see, the asymptotic expression (6) is exponential, with no cor-
rection factor. The same form (with a different growth constant) is found
for close-packed dimers on other fractal lattices [16] (close-packed dimers
cannot exist on the three-simplex lattice). However, for dimers on the very
large portion of the square lattice, with a free boundary (without periodic or
any other boundary conditions imposed), the stretched exponential correc-
tion factor µN1/2 to the leading exponential is obtained [5]. More precisely,
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the asymptotic expansion of the free energy consists of a leading order expo-
nential term and a stretched exponential as a higher-order correction term.
This correction is due to the ‘surface’ effect, i.e. to the smaller coordination
number of N1/2 sites on the lattice boundary. In the case of the 3-simplex
lattice, all sites have the coordination number of three, except for three cor-
ner vertices of the largest generator with the coordination number of two.
This negligible number of sites has no effect on the asymptotic form of dimers
nor trimers.

3. The monomer–trimer system

In this section, the recurrence method for the enumeration of monomer–
trimer configurations is developed. Then, the asymptotic expression for the
number of configurations and the corresponding entropy are obtained. In
this approach, configurations with different numbers of trimers, from zero
to maximal number Nr/3, are all equally weighted. However, by assigning
a fugacity to each monomer and applying the grand canonical ensemble,
configurations with a different number of monomers (trimers) get different
weights. This enables us to obtain the entropy of the monomer–trimer model
as a function of density (fraction of lattice sites covered with trimers).

3.1. Recurrence equations for the monomer–trimer system

Generalization of the method of recurrence equations from Section 2 on
the mixture of monomers and trimers is quite straightforward, but much
more complicated. Analysis of possible types of configurations on genera-
tors shows that ten different types are possible. Similarly as in the case
of pure trimers, one of them, denoted as T , represents all monomer–trimer
configurations, whereas nine other types represent configurations with ex-
ternal trimers. In Fig. 5, one monomer–trimer configuration on G(4) of the
3-simplex lattice is presented together with a schematic representation of
some possible types of configurations on sub-generators of the second order.
In Fig. 6, all ten types of configurations are schematically represented. The
black circle means that the corner vertex of a generator is occupied with a
single monomer or a trimer from the inside. The black line which extends
through the corner vertex represents an external trimer which starts inside
the generator. A corner vertex which stays empty is occupied by an exter-
nal trimer from the outside. Recurrence equations for all ten configurations
are obtained from schematic representations as the one shown in Fig. 7 for
the configuration T . The configuration T on G(r+1) can be obtained by
combining different types of configurations on sub-generators G(r). Each
type is marked inside the constituting sub-generators. This gives rise to
different terms in the recurrence equation for the variable T , given by the
first equation in (7). The numbers in front of triangles stand for different,
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Fig. 5. Monomer–trimer configuration on the fourth order generator of the 3-simp-
lex lattice. Some configurations on the second order generators are encircled and
represented schematically aside.
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Fig. 6. Schematic representation of different types of configurations of the
monomer–trimer system on generators of the 3-simplex lattice.

symmetrically-related configurations of the same type, and represent the co-
efficients of the terms in the recurrence equation. Recurrence equations for
other configurations are obtained by similar illustrations, and altogether are
given by
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Fig. 7. Decomposition of the configuration T on G(r+1) on its composing parts —
configurations on G(r).

T ′ = T 3 + 6Tfp+ 3gp2 + 6fkp+ 3f2u+ 6gku+ 2k3 ,

f ′ = T 2f + 2Tfk + 2Tgp+ 2f2p+ 2fk2 + 4gkp+ 2fgu+ f2l + 2fmp

+hp2 + 2gkl + 2k2m+ 2gmu+ 2hku ,

g′ = Tf2 + 2Tgk + 2f2k + 2fgp+ 2fkm+ 2hkp+ 2fgl + 2gmp+ 3gk2

+g2u+ 2glm+ 2km2 + 2hkl + 2hmu ,

h′ = f3 + 6fgk + 6gkm+ 3hk2 + 3g2l + 6hlm+ 2m3 ,

k′ = Tfp+ Tk2 + Tgu+ f2u+ 2fkp+ gp2 + 2fkl + 2kmp+ fgv + glp

+fmu+ hpu+ 3gku+ k3 + gl2 + 3klm+m2u+ gmv + hkv + hlu ,

l′ = fp2 + 2k2p+ 2gpu+ 2fku+ 3k2l + 4kmu+ 2gkv + 2glu+ hu2

+4l2m+ 2m2v + 2hlv ,

m′ = f2p+ 2gkp+ 2fk2 + 2fgu+ 3k2m+ 2hku+ 4gkl + 2gmu+ g2v

+4lm2 + 2hl2 + 2hmv ,

p′ = T 2p+ 2Tfu+ 2Tkp+ 2fp2 + 4fku+ 2gpu+ 2k2p+ f2v + 2flp

+mp2 + 2gkv + 2k2l + 2glu+ 2kmu ,

u′ = Tp2 + 2Tku+ 2fpu+ 2kp2 + 2flu+ 2mpu+ 2fkv + 2klp+ gu2

+3k2u+ 2glv + 2kl2 + 2kmv + 2lmu ,

v′ = p3 + 6kpu+ 6klu+ 3mu2 + 3k2v + 6lmv + 2l3 , (7)

where the subscript r + 1 is replaced with the prime symbol, whereas r is
omitted, for simplicity. The sum of coefficients in each equation is twenty
seven. Initial conditions are given as: T1 = 4, f1 = 2, g1 = 0, h1 = 0, k1 = 1,
l1 = 0, m1 = 0, p1 = 1, u1 = 1, v1 = 1.

Iterating the system of equations (7) from initial values, we find that all
ratios fr/Tr, gr/Tr, . . . , vr/Tr tend to constant values when r → ∞, imply-
ing that Tr+1 ∼ const. T 3

r when r → ∞. Then, it follows that Tr ∼ Aω3r ,
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where A is some constant. Therefore, the number of all monomer–trimer
configurations increases with the number of lattice sites as Tr ∼ AωNr .
The logarithm of the growth constant ω in this case is found to be lnω =
0.597237947983 . . . which is also the entropy per site in the thermodynamic
limit.

3.2. The grand canonical ensemble approach

In the previous consideration, calculated entropy corresponds to mono-
mer-trimer configurations with all possible numbers of trimers. To find en-
tropies which correspond to a fixed, average number of trimers, we assign
a fugacity (activity) x = exp(µ/kT ) to each single monomer (equivalently,
a fugacity can be assigned to a monomer that belongs to a trimer, but in our
case, the former choice turned out to be simpler). In the previous expression,
µ is the chemical potential and T is the absolute temperature. On a lattice
with Ns sites, each monomer–trimer configuration consists of N monomers
and (Ns −N)/3 trimers. The grand canonical partition function is

Ξ(x) =

Ns∑
N=0

xNZN , (8)

where the sum runs over all possible numbers of monomers (trimers). ZN is
the partition function in the canonical ensemble, which in our model is equal
to the number of configurations in which N monomers and Nt = (Ns−N)/3
trimers can be arranged on a lattice. That is, ZN is the ‘partition function’
in the microcanonical ensemble, since all configurations have equal energy
taken to be zero. The only energy associated with the model is the excluded
volume effect which is accounted for by single occupancy of sites. In the
thermodynamic limit, the number of sites Ns tends to infinity. From the
grand canonical partition function Ξ, the average number of monomers can
be obtained as

⟨N⟩ = x
∂ lnΞ

∂x
. (9)

Since the internal energy is zero, the expression U −TS−µ⟨N⟩ = −kT lnΞ
gives the entropy

S = k lnΞ − (k lnx)⟨N⟩ . (10)

The average density of monomers (the monomer fraction coverage) is given
by

ρm = lim
Ns→∞

⟨N⟩
Ns

, (11)

while the average density of monomers connected into trimers (trimer frac-
tion coverage) is ρ = 1−ρm (density of trimers is ρt = ρ/3). From equations
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(10) and (11), it follows that the entropy per site, in the thermodynamic
limit, is

s = k lim
Ns→∞

lnΞ

Ns
− (k lnx)ρm . (12)

In the limit when x → ∞ i.e. µ → ∞, ρm → 1 (ρ → 0). In this case,
the whole lattice is covered with monomers, which can be done in just one
way, leading to zero entropy. In the limit when x → 0 i.e. µ → −∞, the
close-packed trimer limit is obtained. In this limit, the density of monomers
tends to zero, whereas trimer fraction coverage tends to one (ρ → 1). For
x = 1 (µ → 0 or T → ∞), the model reduces to unweighted model in which
Ξ(1) represents the overall number of monomer–trimer configurations with
all possible numbers of monomers (trimers).

The unweighted monomer–trimer model analyzed in the previous sub-
section can very simply be turned into a weighted model. Namely, we will
now assign a weight x to each monomer in monomer–trimer configurations,
which can be done by assigning weights to initial configurations. Instead
of numbers of initial configurations T1, f1, g1, . . ., v1, we now have initial
weights of the configurations given by: T1 = x3 + 3, f1 = 2x, g1 = 0,
h1 = 0, k1 = 1, l1 = 0, m1 = 0, p1 = 1, u1 = x, and v1 = 1. In this
context, Tr becomes a polynomial in x with the maximum degree equal to
Nr, which is the number of sites Ns of the rth order generator. In the ther-
modynamic limit Nr → ∞. The coefficient of the term with xN is equal to
the number of monomer–trimer configurations which consist of N monomers
and (Ns − N)/3 trimers. Comparing this observation with expression (8),
one can see that Tr becomes the grand canonical partition function, from
which the average density of monomers (11) and entropy (12) can be cal-
culated numerically for each particular value of x. However, the calculation
of the average number of monomers and density requires partial derivatives
of the grand canonical partition function with respect to x, so that besides
ten variables already introduced, ten new variables are defined as their par-
tial derivatives with respect to x. Recurrence equations for new variables
are obtained from the system given by (7). By the simultaneous iteration
of twenty recurrence equations, entropy is calculated numerically and pre-
sented in Fig. 8 (circles) as a function of density (fraction of sites covered by
trimers, ρ). In the same figure, the entropy of the monomer–dimer system
(squares) obtained in [17] is also presented for comparison. Some values of
fugacity x with the corresponding values of density and entropy are given
in Table 1. Results in the table are presented with four significant figures,
although the values can be calculated with almost arbitrarily high accuracy.
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Fig. 8. Entropy of the monomer–trimer system on the 3-simplex lattice as a function
of density, obtained in this paper (blue circles). Also, the entropy of the monomer–
dimer model on the same lattice obtained in [17] (green squares) is presented.

Table 1. Values of density and entropy of the monomer–trimer system on the
3-simplex lattice for some chosen values of x. The last digit is rounded off.

x 0.01 0.05 0.1 0.2 0.4 0.6 0.8 0.9

ρ 0.9999 0.9994 0.9957 0.9732 0.9011 0.8297 0.7615 0.7282

s 0.3743 0.3762 0.3856 0.4277 0.5154 0.5655 0.5901 0.5955

x 1.0 1.1 1.5 2 3 5 8.0 15.0

ρ 0.6954 0.6630 0.5385 0.4012 0.2105 0.06354 0.01702 0.002653

s 0.5972 0.5957 0.5638 0.4880 0.3183 0.1248 0.04115 0.008072

4. Summary and conclusions

In this paper, the monomer–trimer model is studied on the fractal
3-simplex lattice. A simpler variant, the close-packed trimer model in which
the whole lattice is covered with trimers, with no overlap or vacancies,
is considered first. From the exact system of recurrence equations, it is
found that the number of trimer configurations asymptotically increases as
Tr ∼ ωNr . The growth constant ω, which determines the entropy per lat-
tice site in the thermodynamic limit, is found numerically. The entropy is
st = lnω = 0.374338099718 . . . The exponential growth, with no correction
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factor, is also found for close-packed dimers on other fractal lattices [16].
The correction factor in the close-packed limit is expected on a very large
subset of a lattice, which has a free boundary, due to the smaller coordina-
tion number of boundary sites. Indeed, in the close-packed dimer problem
on the square lattice, the asymptotic form consists of the leading exponen-
tial factor and the stretched exponential as a perimeter correction [5]. On
the fractal lattice considered here, a negligible number of sites of the largest
generator have a smaller coordination number, and corrections do not ap-
pear. However, in the case of Hamiltonian walks, which can be considered
as the k-mer model in the limit when k → ∞, the stretched exponential
factor exists on some fractal lattices [22]. It exists on the 4-simplex lattice
for example, whereas for close-packed dimers on the same lattice, it does
not. Then, one may wonder whether it appears in the limit when k → ∞,
or it appears for some finite k, in which case one would like to know this
marginal k-value. A generalization of the trimer to the k-mer problem for
an arbitrary k > 3 might not be so straightforward on fractal lattices, and is
left for some future research. The origin of the stretched exponential factor
for Hamiltonian walks on fractal lattices is a subtle effect of corner vertices,
discussed in [23, 24].

The method of recurrence equations from Section 2 is extended to the
monomer–trimer unweighted problem, which turned out to be much more
complicated than the trimers themselves. Ten variables and recurrence equa-
tions were necessary to enumerate all monomer–trimer configurations with
an arbitrary number of trimers. In this case the entropy is found to be
s = lnω = 0.597237947983 . . . , larger than expected, since it includes all
possible numbers of trimers.

In order to find the entropy as a function of the average density of
monomers connected into trimers ρ, a fugacity which controls the number of
monomers (trimers) in the system is introduced and the grand canonical en-
semble is applied. Entropy is calculated numerically and presented in Fig. 8
as a function of ρ. When x → 0, ρ → 0, and entropy tends to zero, the lat-
tice is completely covered with monomers. When x → ∞, ρ → 1, the close-
packed trimer limit is reached. In this limit, the whole lattice is covered with
sole trimers and entropy reduces to st. Finally, for x = 1, the model reduces
to an unweighted model. This corresponds to the maximum value of entropy
s = 0.597237947983 . . . for the density ρ = 0.695376612042 . . . Entropies of
the monomer–trimer (studied here) and the monomer–dimer system [17] on
the 3-simplex lattice are compared in Fig. 8. One can see that there are
slight differences between entropies of two models at low densities, and that
they increase with the density and become significant at close packing. The
maximum entropy of monomer–trimers (with all shapes of trimers) is higher
than the maximum entropy of monomer–dimers (smd = 0.57646430 . . . [17]).
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It is also achieved at a higher density than for monomer–dimers. This ef-
fect is also observed on the square lattice [10], where it is shown that in
the general case of k-mers, the density at which the maximum entropy oc-
curs increases with k. However, it is found that the maximum entropy of
the k-mer system on the square lattice is a non-monotonic function of k,
exhibiting the maximum value for k = 4 [10]. It would be interesting to
find out whether similar behavior occurs on fractal lattices. Also, the k-mer
model with k = 2 and k = 3 with the addition of various energy weights
(as in [8, 25]) would be worthwhile to study, since its critical behavior on
fractal lattices might be absent or different from the one found on periodic
lattices [17, 26, 27].
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